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Abstract. ZFC implies that for every cardinal δ we can make δ many
dependent choices over any definable relation without terminal nodes.
Friedman, the first author, and Kanovei constructed a model of ZFC

−

(ZFC without power set) with largest cardinal ω in which this principle
fails for ω many choices. In this article we study failures of dependent
choice principles over ZFC

−
.

Building upon work of Zarach, we provide a general framework for
separating dependent choice schemes of various lengths by producing
models of ZFC

−
. Using a similar idea, we then extend the earlier result

by producing a model of ZFC
−

in which there are unboundedly many
cardinals but the scheme of dependent choices of length ω still fails.

Finally, the second author has proven that a model of ZFC
−

can-
not have a non-trivial, cofinal, elementary self-embedding for which the
von Neumann hierarchy exists up to its critical point. We answer a re-
lated question posed by the second author by showing that the existence
of such an embedding need not imply the existence of any non-trivial
fragment of the von Neumann hierarchy. In particular, that in such a
situation P(ω) can be a proper class.

1. Introduction

Many natural set-theoretic structures satisfy all the axioms of ZFC exclud-

ing the power set axiom. These include the structures Hκ+ (the collection

of all sets whose transitive closure has size at most κ, where κ is a cardi-

nal), forcing extensions of models of ZFC by pretame (but not tame) class

forcing, and first-order structures bi-interpretable with models of the strong

second-order set theory Kelley-Morse together with the choice scheme. The

set theory that these structures satisfy is the theory ZFC−, whose axioms

consist of the axioms of ZFC with the collection scheme in place of the re-

placement scheme and with the well-ordering principle (the assertion that

every set can be well-ordered) in place of the axiom of choice (the asser-

tion that every non-empty family of sets has a choice function). The reason

for the particular choice of axioms comprising ZFC− is that without the

existence of power sets we lose certain equivalences between set theoretic

assertions that we tend to take for granted.
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Definition 1.1.

• Let ZF− be the theory ZF with the power set axiom removed. That

is, ZF− consists of the axioms: extensionality, empty set, pairing,

unions, infinity, the foundation scheme, the separation scheme and

the replacement scheme.

• Let ZFC− denote the theory ZF− plus the well-ordering principle.

• Let ZF(C)
−

denote the theory ZF(C)− plus the collection scheme.

Szczepaniak showed that the axiom of choice is not equivalent to the well-

ordering principle over ZF− (see [Zar82]) and therefore we choose to take

the stronger principle when formulating the theory ZFC−. Zarach showed

that the theory ZFC− does not imply the collection scheme [Zar96]. The

first author et al. showed in [GHJ16] that the theory ZFC− has many other

undesirable behaviors: there are models of ZFC− in which ω1 is singular,

in which every set of reals is countable but ω1 exists, and in which the  Loś

Theorem fails for (class) ultrapowers.

Although the theory ZFC− avoids these pathological behaviors, there is a

number of useful properties of models of full ZFC that fail or are not known

to hold in models of ZFC−, mostly as a consequence of the absence in these

models of a hierarchy akin to the von Neumann hierarchy. It is known that

ground model definability, the assertion that the model is definable in its

set forcing extensions, can fail in models of ZFC− [GJ14]. The intermedi-

ate model theorem, the assertion that any intermediate model between the

model and its set-forcing extension is also its set-forcing extension, can fail

[AFG21]. If there is a non-trivial elementary embedding j : Vλ+1 → Vλ+1,

namely the large cardinal axiom I1 holds, then it gives rise to an elementary

embedding j+ : Hλ+ → Hλ+ which witnesses that Kunen’s Inconsistency

can fail for models of ZFC− [Mat22]. It is an open question whether HOD,

the collection of all hereditarily ordinal definable sets, is definable in models

of ZFC−.

One of the main themes of this article is the various ways in which the

scheme version of dependent choice can fail in models of ZFC−.

Definition 1.2. The DCδ-scheme, for an infinite cardinal δ, asserts for

every formula φ(x, y, a) that if for every set x, there is a set y such that

φ(x, y, a) holds, then there is a function f on δ such that for every ξ < δ,

φ(f ↾ ξ, f(ξ), a) holds.

The DC<Ord-scheme is the scheme asserting that the DCδ-scheme holds

for every cardinal δ.
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In other words, the DCδ schemes states that we can make δ-many depen-

dent choices along any definable relation without terminal nodes. The DCδ-

scheme generalizes the dependent choice axiom DCδ which makes the analo-

gous assertion for set relations. The DC<Ord-scheme follows from ZFC by re-

flecting the definable relation in question to some Vα, and then using a well-

ordering of Vα to obtain the sequence of dependent choices. It follows that

the DC<Ord-scheme holds in every structure Hκ+ . It is not known whether

pretame class forcing over models of ZFC preserves the DCδ-schemes, unless

the forcing has no proper class-sized antichains (see Proposition 2.8).

The DCδ-schemes have numerous applications. Over ZFC−, the DCω-

scheme is equivalent to the reflection principle which is the assertion that

every formula reflects to a transitive set [FGK19] (see Theorem 2.1). Al-

though, there is no known reformulation of the DCδ-scheme for uncount-

able δ in terms of a reflection principle, such a reformulation exists under

mild existence of power set assumptions (see Theorem 2.2). Over ZFC−, for

a regular cardinal δ, the DCδ-scheme implies that every proper class sur-

jects onto δ (see Proposition 2.3). It is not difficult to see that in a model

of ZFC the class partial order Add(Ord, 1), whose conditions are partial

functions from a set of ordinals into 2 orderd by extension, forces a global

well-order without adding sets. This is because, using AC, any set can be

coded as a subset of an ordinal and, by genericity, this subset will appear

somewhere in the generic class function from Ord into 2. We can then well-

order the sets by comparing the least location in the generic function where

a code appears. In a model of ZFC−, the forcing Add(Ord, 1) is pretame if

and only if the DC<Ord-scheme holds. Thus, in a model of ZFC− + DC<Ord-

scheme, we can force a global well-order without adding sets, and conversely

if we can force a global well-order without adding sets using some forcing,

then Add(Ord, 1) must be pretame. We will see another application of the

DC<Ord-scheme shortly to establishing a form of Kunen’s Inconsistency for

models of ZFC−.

Friedman et al. [FGK19] showed that the DCω-scheme can fail in a model

of ZFC−. Moreover, this failure is witnessed by a Π1
2 formula, which turns

out to be the simplest complexity for which such a failure can occur (see

[FGK19] and Theorem VII.9.2 of [Sim09] for more details). The counterex-

ample model is the Hω1 of a symmetric submodel of a forcing extension

by the iteration of Jensen’s forcing along the tree ω<ω1 (see Section 2.D for

details on Jensen’s forcing and this result), in particular, ω is the largest

cardinal in this model. The symmetric submodel in question satisfies ACω,
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but has a Π1
2-definable failure of DC, which translates to its Hω1 having the

requisite properties.

There are two principle difficulties in constructing such consistency re-

sults; having second-order definable failures of DC and satisfying the full

axiom of choice. For example, it is an old result of Jensen that it is possible

to produce models of ZF in which the axiom of choice for families of size

at most δ holds (where δ is an arbitrary regular cardinal), but DCω already

fails. Furthermore, by Pincus, for any regular cardinal δ there is a model of

ZF + DCδ +¬DCδ+ . We refer the reader to Chapter 8 of Jech’s book on the

axiom of choice, [Jec73], for more details.

In this article we obtain the following failures of the various DCδ-schemes

in models of ZFC−.

Theorem 3.6. Suppose that V |= ZFC + CH. Then every Cohen forcing

extension of V has a proper class transitive submodel satisfying ZFC− in

which the DCω-scheme holds, but the DCω2-scheme fails. If we assume fur-

ther that V = L holds then the DCω1-scheme additionally fails.

The model above was constructed by Zarach in [Zar82], and the failure

of DCω1 follows by a result of Blass on the Cohen forcing Add(ω, 1) (see

Theorem 3.5). Note that this model, unlike the counterexample model of

[FGK19], must have unboundedly many cardinals by virtue of being a proper

class transitive submodel of a model of ZFC. The second model is con-

structed by generalizing Zarach’s construction as well as generalizing Blass’s

result to the forcing Add(δ, 1) (see Theorem 4.5).

Theorem 4.6. Suppose that V |= ZFC + 2δ = δ+ for some regular cardinal

δ. Then every forcing extension of V by the poset Add(δ, 1) has a proper

class transitive submodel satisfying ZFC− in which the DCδ-scheme holds,

but the DCδ++-scheme fails. If we assume further that V = L holds then the

DCδ+-scheme also fails.

Using the idea of union models we extend the result of [FGK19] to obtain

a model of ZFC− in which the reflection principle fails and for which there

are unboundedly many cardinals.

Theorem 5.3, 5.4. Every forcing extension of L by the iteration of Jensen’s

forcing along the class tree Ord<ω has a proper class transitive submodel

N satisfying ZFC−, with unboundedly many cardinals, in which the DCω-

scheme fails.

The results of this article were originally motivated by a question from the

work of the second author on Kunen’s Inconsistency in models of ZFC−
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[Mat22]. Suppose that W |= ZFC− and A ⊆ W . We say W |= ZFC−
A if W

continues to satisfy ZFC− in the language expanded by a predicate for A.

Theorem 1.3 ([Mat22]). Suppose thatW |= ZFC−. There is no non-trivial,

cofinal, Σ0-elementary embedding j : W → W such that Vcrit(j) exists in W

and W |= ZFC−
j .

Thus, in particular, the elementary embedding j+ : Hλ+ → Hλ+ resulting

from an I1-embedding j : Vλ+1 → Vλ+1 cannot be cofinal. Moreover, the

second author showed that if the model W additionally satisfies the DC<Ord-

scheme, then the existence of Vcrit(j) follows from the other assumptions

[Mat22]. Thus, we have:

Theorem 1.4 ([Mat22]). Suppose that W |= ZFC− + DC<Ord-scheme.

There is no non-trivial, cofinal, Σ0-elementary embedding j : W → W such

that W |= ZFC−
j .

As a natural next step, the second author asked whether the existence of

Vcrit(j) is truly necessary for Theorem 1.3,

Question 1.5. Is the following situation consistent: There is a non-trivial,

cofinal, elementary embedding j : W → W such that W |= ZFC−
j ?

In private communications with the second author, Yair Hayut has shown

that the above situation is inconsistent, that is there are no non-trivial,

cofinal, elementary embeddings j : W → W for whichW |= ZFC−
j . However,

as an initial attempt to answering this question, the second author asked:

Question 1.6. Suppose that W |= ZFC−
j for a non-trivial, cofinal, elemen-

tary embedding j : W → M with M ⊆ W . Does Vcrit(j) exist in W , does

P (ω) exist in W?

We answer the second question negatively here using models of ZFC− in

which the DCδ-scheme fails for some δ.

Theorem 6.2. There is a model W |= ZFC− in which P(ω) does not ex-

ist and which has a definable, non-trivial, cofinal, elementary embedding

j : W →M ⊆ W .

Remark 1.7 (A note on the title). This paper should be seen as a contin-

uation of the study of models of set theory without power set carried out in

[GHJ16]. In particular, we see some of the pathological properties that can

arise in such models when we don’t assume the DC<Ord-scheme. As such,

we have titled this work as part two on the question of what is ZFC without

power set.
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2. Preliminaries

2.A. Reflection. Although, the connection between the DCδ-schemes and

reflection is not necessary for any of the arguments in this article, we nev-

ertheless devote this section to exploring this unexpected connection. The

connection also lends to the title of the paper.

Theorem 2.1. Over ZFC−, the DCω-scheme is equivalent to the scheme

asserting for every formula ψ(x⃗, a) that there is a transitive set M with

a ∈M reflecting ψ(x⃗, a).

We sketch the proof of this result, which has appeared in [FGK19].

Proof. First, observe that the DCω-scheme is equivalent to the DC∗
ω-scheme

asserting that for every definable relation φ(x, y, a) without terminal nodes,

there is a sequence ⟨bi | i < ω⟩ such that φ(bi, bi+1, a) holds for every i < ω.

Suppose that W satisfies ZFC− and the reflection assertion. Suppose

that φ(x, y, a) is a relation without terminal nodes. Let M be a transitive

set with a ∈ M which reflects φ(x, y, a) together with the assertion that

φ(x, y, a) has no terminal nodes. Since M is a set, there is a well-ordering

w of M in W . Let b0 be the least element of M according to w. Let b1 be

the least element of M according to w such that M |= φ(b0, b1, a), which

exists since M knows that φ(x, y, a) has no terminal nodes. Given that we

have chosen bn ∈M , let bn+1 be the least element of M according to w such

that M |= φ(bn, bn+1, a). Clearly, the sequence ⟨bi | i < ω⟩ witnesses the

DC∗
ω-scheme for φ(x, y, a).

Next, suppose that W |= ZFC− + DCω-scheme. The result will follow

from induction on formulas with the only critical case being those formulas

of the form ∃xψ(x, u). So suppose that the statement has been proven for

ψ(x, u). Observe that, by collection and the induction hypothesis, for any

set A there is a transitive set Aψ containing A which reflects ψ(x, u) and

such that

∀u ∈ A ∃xψ(x, u) −→ ∀u ∈ A ∃x ∈ Aψ ψ(x, u).

Fix a set a. Let the formula φ(x, y, a) assert that whenever x is a sequence

of some finite length n such that x0 = {a}, and xi+1 = xψi , then y = xψn−1.

By the above argument, this relation has no terminal nodes. Using the DCω-

scheme, the union of an ω-sequence of dependent choices along φ(x, y, a) is

a transitive set reflecting ∃xψ(x, u) and containing a. □

It is worth noting why the above argument does not also show that the

reflection principle implies the DCδ-scheme for uncountable cardinals. The
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issue is that the transitive set M need not be closed under infinite sequences

which are elements of W . Therefore, if we reflect our formula to some ar-

bitrary set M our attempt to externally choose the bα may fail because we

cannot ensure at limit stages that our collection of previous choices forms

a set in M .

Unfortunately, we do not know whether there is reformulation of the

DCδ-scheme for uncountable δ in terms of some reflecting principle. How-

ever, we do have the following weaker result.

Theorem 2.2. Suppose that W satisfies ZFC− and δ is a regular cardinal

in W such that γ<δ exists for every cardinal γ. Then in W , the DCδ-scheme

holds if and only if for every formula ψ(x⃗, a), there is a transitive set M

with a ∈M and M<δ ⊆M reflecting ψ(x⃗, a).

Proof. Suppose that W satisfies the reflection assertion. Fix a definable

relation φ(x, y, a) without terminal nodes and let M be a transitive set

with a ∈ M and M<δ ⊆ M which reflects φ(x, y, a) and the assertion that

this relation has no terminal nodes. We construct a sequence of δ-many

dependent choices as in the proof of Theorem 2.1, using the closure of M

to get through the limit stages in the construction.

Suppose next that the DCδ-scheme holds in W . We will say that a set

Aψ is a δ-transitive closure of a set A for a formula ψ if it is a transitive

set containing A which reflects ψ, is closed under existential witnesses for

ψ from W , and closed under <δ-sequences. We need the assumption that

γ<δ exists for every cardinal γ to ensure that every set can be closed under

<δ-sequences. From here the argument proceeds exactly as in the proof of

Theorem 2.1. □

2.B. Big classes. Given a cardinal δ, let us say that a class is δ-big if it

surjects onto δ. We will say that a class is simply big if it surjects onto

every cardinal. It is easy to see that proper classes don’t need to be big

in weak set theories. For example, consider the model LℵL
ω
, which satisfies

Kripke-Platek set theory, KP. The cardinals of LℵL
ω

is a proper class from

the point of view of this model, but this class obviously cannot surject onto

ℵL1 because externally we know that it is countable. We will see in Sections

Section 3 and Section 4 that proper classes do not need to be big in models

of ZFC− either. However, ZFC−+DC<Ord-scheme implies that every proper

class is big.
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Proposition 2.3. In a model of ZFC−, the DCδ-scheme implies that every

proper class is δ-big. It follows that over ZFC−, the DC<Ord-scheme implies

that every proper class is big.

Proof. Let W |= ZFC− + DCδ-scheme for some regular cardinal δ. Consider

a proper class A defined by a formula ψ(x, a). Let φ(x, y, a) be a formula

asserting that whenever x is a function on an ordinal ξ such that x(η) ∈ A
for all η < ξ, then y ∈ A and y ̸= x(η) for any η < ξ. Since A is a

proper class, the relation φ(x, y, a) has no terminal nodes. Thus, by the DCδ-

scheme, there is a function f on δ such that for all ξ < δ, φ(f ↾ ξ, f(ξ), a)

holds. The function f gives a subset of A of cardinality δ. □

The model constructed in [FGK19] to show that the DCω-scheme can fail

also shows that the converse to Proposition 2.3 does not hold. Recall that

the model is the Hω1 of a model W |= ZF + ACω. But ACω implies that

every set surjects onto ω, the largest cardinal of the model. Thus, in that

model, every class is big. In Section 5, we will strengthen this by showing

that the DCω-scheme can fail in a model of ZFC− with unboundedly many

cardinals in which every proper class is big. On the other hand, adding small

proper classes will be one of our main tools in this article for constructing

models of ZFC− with various violations of the DCδ-scheme.

Theorem 1.4 from the introduction was obtained by showing that when-

ever we have a model W |= ZFC−, in which every proper class is big and

j : W → M ⊆ W is an elementary embedding with a critical point, Vcrit(j)

exists in W [Mat22]. We will quickly reprove the theorem here to empha-

size the exact assumptions and demonstrate how big classes are used in the

proof.

Theorem 2.4. Suppose that W |= ZFC− and every proper class is big in

W . If j : W → M ⊆ W is an elementary embedding with critical point κ,

then Vκ exists in W .

Note that we are not assuming that W |= ZFC−
j or that j is cofinal.

Proof. First, observe that if α < κ and A ⊆ α, then j(A) = A. Next, let’s

argue that P(α) exists for every α < κ. Fix α < κ. Suppose towards a

contradiction that P(α) is a proper class. Then by our assumption that

every proper class is big, there is a surjection from P(α) onto κ. Applying

collection, we can obtain a set B ⊆ P(α) for which there is a surjection

h : B → κ. By elementarity, j(h) : j(B) → j(κ) is a surjection onto j(κ).

Observe that b ∈ B if and only if b = j(b) ∈ j(B), and hence B = j(B).
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Thus, j(h) : B → j(κ). Also, for every b ∈ B,

j(h)(b) = j(h)(j(b)) = j(h(b)) = h(b).

Thus, the range of j(h) is κ contradicting that j(h) is a surjection onto j(κ).

Now, a standard argument shows that |P(α)| < κ for every α < κ, and that

κ is regular.

Next, let’s argue that Vα exists for every α ≤ κ. Suppose inductively

that we have shown that Vα exists and |Vα| = β < κ. Then we can use a

bijection f : β → Vα and the previously shown fact that P(β) exists and

|P(β)| < κ to argue that Vα+1 exists and |Vα+1| < κ. We then use collection

to argue that Vλ exist for limit λ, and use the regularity of κ to argue that

|Vλ| < κ for λ < κ. □

2.C. Class forcing. In Section 5, we use class forcing to construct a model

of ZFC− with unboundedly many cardinals and all big proper classes in

which the DCω-scheme fails. Here, we briefly summarize the relevant prop-

erties of class forcing which we shall use in that argument.

Class forcing is best interpreted when working over a model of some

second-order set theory. Second-order set theory is formalized in a two-

sorted logic with separate sorts (variables and quantifiers) for sets and

classes. Thus, unlike in first-order set theory, in this setting classes are

actual elements of the model and not just objects of the meta-theory. Mod-

els of second-order set theory are triples W = ⟨W,∈, C⟩ where W is the

sets of the model, C is the classes, and ∈ is the membership relation be-

tween sets, as well as between sets and classes, letting us know of which

sets each of the classes is composed. Let GB− denote the second-order set

theory whose axioms for sets are ZF− and whose axioms for classes consist

of extensionality, the class collection axiom asserting that for every class

relation whose domain is restricted to a set, there is a set of witnesses of the

relation’s image, and the first-order comprehension scheme asserting that

every first-order definable collection of sets is a class. Furthermore, we let

GBc− be GB− plus the axiom of choice and GBC− be GB− with the global

well-order axiom, which asserts that there is a bijection between W and

Ord. By replacing ZF− with ZF or ZFC in the theory GB−, we obtain the

Gödel-Bernays set theories of GB and GBc respectively. Every model of

ZFC− with a definable global well-order is naturally a model of GBC− and

every model of ZFC with a definable global well-order is naturally a model of

GBC. By forcing with Add(Ord, 1), we can show that every model of ZFC

has a class forcing extension with the same sets and a global well-order.
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Thus, every model of ZFC has a class forcing extension with the same sets

that is a model of GBC. As explained in the introduction, the analogous

fact is true only for models ZFC− provided that the DC<Ord-scheme holds.

A class forcing notion in a model W = ⟨W,∈, C⟩ |= GB− is a partial

order P ∈ C. Suppose that W = ⟨W,∈, C⟩ |= GB− and P ∈ C is class forcing

notion. We say that G ⊆ P is W-generic if G meets every dense class D ⊆ P
from C. The forcing extension is W [G] = ⟨W [G],∈, C[G]⟩, where W [G] is

the collection of all interpretations of (the usual) P-names by G, and C[G]

is the collection of all interpretations of the class P-names by G, where a

class P-name is a class whose elements are pairs ⟨ẋ, p⟩ where ẋ is a P-name

and p ∈ P.

In a number of significant ways, class forcing does not behave as nicely

as set forcing. It is easy to see, for example by forcing with Coll(ω,Ord)

(conditions are finite functions from ω to the ordinals ordered by extension)

to collapse Ord to ω, that class forcing need not preserve replacement to the

forcing extension. The forcing relations for a class forcing notion need not be

definable (or more generally need not be a class). For example, a model of

GBC whose classes are definable collections, can have a class forcing notion

for which the forcing relation on atomic formulas is not definable [HKL+16].

However, there is a class of well-behaved class forcing notions, the pretame

forcings, which avoid these pathological behaviors.

Definition 2.5. Suppose that W = ⟨W,∈, C⟩ |= GB−. A notion of class

forcing P ∈ C is pretame if for every p ∈ P and any sequence of classes

⟨Di | i ∈ I⟩ ∈ C, with I ∈ W , such that each Di is dense below p, there is a

condition q ≤ p and a sequence ⟨di | i ∈ I⟩ ∈ W such that for every i ∈ I,

di ⊆ Di and di is predense below q.

Theorem 2.6.

(1) (Friedman [Fri00]) Pretame class forcing notions preserve GB− to

the forcing extension.

(2) (Stanley [HKS18]) Pretame class forcing notions have definable forc-

ing relations.

In the context of models of second-order set theory, let’s redefine the DCδ-

scheme to assert that we can make δ-many dependent choices over every

class (not just definable) relation without terminal nodes. In particular, all

our results will follow for models in which the only classes are the definable

collections. Although, we will not make use of the following proposition in

the rest of the article, the result fits into our analysis of the DC<Ord-scheme.
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However, this result will require that our class forcing satisfies an additional

assumption known as the Maximality Principle. By [HKS18], over GBC−,

this is known to be equivalent to the assumption that every anti-chain is a

set.

Definition 2.7. Suppose that W = ⟨W,∈, C⟩ |= GB−. A notion of class

forcing P ∈ C satisfies the Maximality Principle if whenever p ⊩ ∃xφ(x, ẏ, Γ̇)

for some p ∈ P and formula φ with class name parameter Γ̇ ∈ C and set name

parameter ẏ ∈ W P, then there exists some ȧ ∈ W P such that p ⊩ φ(ȧ, ẏ, Γ̇).

Proposition 2.8. Suppose that W = ⟨W,∈, C⟩ |= GB− + DCδ-scheme for

some regular cardinal δ. Then every pretame forcing extension of W which

satisfies the Maximality Principle and in which δ remains regular satisfies

the DCδ-scheme.

Proof. Suppose that P ∈ C is a pretame forcing notion. Let G ⊆ P be W-

generic. Let R ∈ C[G] be a class relation without terminal nodes. Let Ṙ

be a class P-name for R and let p ∈ P be a condition forcing that Ṙ does

not have terminal nodes. Given a sequence x of P-names of length some

ordinal ξ, let ẋ(ξ) denote the canonical P-name for a sequence of length

ξ whose η-th element, for η < ξ, is the interpretation of x(η). Using the

Maximality Principle, let φ(x, ẏ, p, Ṙ,P) be a formula asserting, over W ,

that whenever x is a sequence of P-names of some ordinal length ξ and p

forces that ẋ(η) Ṙ x(η), then ẏ is a P-name and p forces that ẋ(ξ) Ṙ ẏ. Since p

forces that Ṙ has no terminal nodes, the relation given by φ has no terminal

nodes either. Thus, by the DCδ-scheme, we can make δ-many choices along

the relation given by φ. Let f be the function with domain δ witnessing

this. Then ḟ
(δ)
G witnesses that we can make δ-many dependent choices over

the relation R. □

The next proposition gives a useful criterion for pretameness.

Proposition 2.9. Suppose that W = ⟨W,∈, C⟩ |= GB− + DCδ-scheme, for

a regular cardinal δ, and P ∈ C is a class forcing notion with the δ-cc. Then

P is pretame.

Proof. We will argue that every dense class D ⊆ P has a set maximal

antichain contained in it, these antichains will then witness pretameness.

Suppose towards a contradiction that there is no set maximal antichain

contained in D. Let φ(x, y,P, D) be a formula asserting, over W , that when-

ever x is a sequence of incompatible elements of D of some ordinal length

ξ, then y ∈ D and y is incompatible with all elements of the sequence x.
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Since there is no set maximal antichain contained in D, the relation given

by φ has no terminal nodes. Thus, we can make δ-many dependent choices

along it, which contradicts our assumption that P has the δ-cc. □

2.D. Jensen’s forcing. In any universe V |= ZFC + ♢ we can construct

a subposet J of Sacks forcing (elements are perfect trees ordered by the

subtree relation) with the following two key properties.

Theorem 2.10 (Jensen [Jen70]).

(1) The poset J has the ccc.

(2) Suppose that r is a V -generic real for J. Then in V [r], r is the unique

V -generic real for J.

Such a poset J was first constructed by Jensen in L [Jen70]. The choice of

the ♢-sequence can potentially yield different such posets J. In L, Jensen

used the canonical ♢-sequence (defined by taking the least counterexample

at each stage) to construct such a poset J with the additional property that

the unique L[G]-generic real added by J is a Π1
2-definable singleton [Jen70].

This is the lowest possible such complexity because Π1
2-definable singleton

reals must be constructible by Shoenfield’s absoluteness.

Before we proceed, let us introduce a general notation for the product

of µ many copies of a forcing with support of size less than δ, which we will

use throughout this article.

Definition 2.11. Let P be a forcing notion and let δ ≤ µ be regular cardi-

nals. Let
∏
µ

(δ)
P denote the product forcing of µ many copies of P with <δ

support.

Observe that we can treat conditions in
∏
µ

(δ)
P as functions f : µ→ P such

that {ξ ∈ µ | f(ξ) ̸= 1} < δ. Lyubetsky and Kanovei showed that the poset∏
ω

(ω)
J has the ccc and the following uniqueness of generics property.

Theorem 2.12 (Lyubetsky, Kanovei [KL17]). Suppose that V |= ZFC +♢.

(1) The poset
∏
ω

(ω)
J has the ccc.

(2) Suppose that G ⊆
∏
ω

(ω)
J is V -generic. Then in V [G], the V -generic

reals for J are precisely the ω-many reals coming from the slices of

G.
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In fact, an application of the ∆-system lemma shows that any length finite-

support product of J has these two properties.

We will say that a forcing iteration Pn, of length n, is an iteration of

subposets of Sacks forcing if every initial segment of Pn forces that the next

poset in the iteration is a subposet of the Sacks forcing of that extension.

In universes where J can be constructed, we can construct iterations Jn, for

any n < ω, of subposets of Sacks forcing with the following key properties

[FGK19].

(1) If m < n, then Jn ↾m = Jm.

(2) Jn has the ccc.

(3) Suppose that ⟨r1, . . . , rn⟩ is a V -generic sequence of reals for Jn. Then

in V [⟨r1, . . . , rn⟩], this is the unique V -generic sequence of reals for

Jn.

Let J⃗ = ⟨Jn | n < ω⟩. Let X be any set or class and consider the tree

X<ω of finite sequences from X ordered by extension. Let T ⊆ X<ω be

a sub-tree. Let P(⃗J, T ) be the (possibly class) poset whose elements are

functions fT on a finite subtree T of T such that for nodes s on level n of

T , fT (s) ∈ Jn and for nodes s < t in T , we have that fT (t) ↾ len(s) = fT (s).

The ordering is given by fT ≤ gS provided that T extends S and for every

node s ∈ S, we have that fT (s) ≤ gS(s). We call the poset P(⃗J, T ) , an

iteration of Jensen’s forcing along the tree T . It is proven in [FGK19] that

the analogue of the properties in Theorem 2.12 also hold for the tree version

of the forcing, which we state in GB to handle the possibility that X is a

class, which would imply that the resulting poset is a class forcing.

Theorem 2.13 ([FGK19]). Suppose that W = ⟨W,∈, C⟩ |= GBc + ♢ and

X is any set or class.

(1) The poset P(⃗J, X<ω) has the ccc.

(2) Suppose that G ⊆ P(⃗J, X<ω) is W-generic. Then the W-generic

sequences ⟨r1, . . . , rn⟩ for Jn in W [G] are precisely the sequences

added by nodes of X<ω on level n.

Proposition 2.14. Suppose that W = ⟨W,∈, C⟩ |= GBc + ♢ and X is any

set or class. Then the poset P(⃗J, X<ω) is pretame.

Proof. This follows by combining Theorem 2.13 with Proposition 2.9. □
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3. Zarach’s union models of ZFC−

In [Zar82], Zarach gave a general construction for producing interesting

models of ZFC− as unions of models of ZFC arising as transitive submodels

of a carefully chosen forcing extension. Because of the style in which it

was presented, we have decided to rewrite his construction using modern

notation.

Suppose that V |= ZFC. Let P ∈ V be a poset such that Q =
∏
ω

(ω)
P is

isomorphic to P. Let us call an automorphism π of Q coordinate-switching

if there is an automorphism π̃ of ω such that, for any condition p, π(p) = q,

where q is defined by q(i) = p(π̃−1(i)), namely π simply switches coordinates

according to π̃.

Let G ⊆ Q be V -generic. For n < ω, let

(1) Gn be the restriction of G to the first n coordinates,

(2) G{n} be the restriction of G to the n-th coordinate,

(3) Gn,tail be the tail of G after n (G = Gn ×Gn,tail).

Let V[n] = V [Gn]. Let W V
G =

⋃
n<ω V[n].

By uniform ground model definability ([Lav07], [Woo04]), W V
G is defin-

able in V [G] from the generic filter G, say by the formula φ(x,P, G). Thus,

to every formula ψ(x), there corresponds a formula ψW (x, y, z) such that

for every a ∈ W V
G , W V

G |= ψ(a) if and only if V [G] |= ψW (a,P, G). Observe

that if π is a coordinate-switching automorphism of Q, then φ(x,P, G) and

φ(x,P, π”G) both define W V
G in V [G]. Hence, for every formula ψ(x), we

have that for every a ∈ W V
G , V [G] satisfies ψW (a,P, G) if and only if V [G]

satisfies ψW (a,P, π”G). Let Ġ be the canonical Q-name for the generic filter.

Proposition 3.1. If p ⊩ ψW (ǎ, P̌, Ġ), then 1l ⊩ ψW (ǎ, P̌, Ġ).

Proof. Suppose for a contradiction p ⊩ ψW (ǎ, P̌, Ġ) and q ⊩ ¬ψW (ǎ, P̌, Ġ).

Let n be above the domains of p and q. Let π be a coordinate-switching

automorphism that switches the coordinates in the domain of p to some

coordinates above n. Then π(p) and q are clearly compatible, and π(p) ⊩

ψW (ǎ, P̌, π(Ġ)). Since π(Ġ)π”G = G (the image of π”G under the coordinate-

switching automorphism π−1), by our argument above, π(p) ⊩ ψW (ǎ, P̌, Ġ)

as well, which is the desired contradiction. □

In order to show that W V
G |= ZFC−, we shall prove that W V

G =
⋃
n<ωW[n]

where W[n] ≺ W V
G for each n < ω. To do this, we begin by fixing an

isomorphism h : P ∼= Q =
∏
ω

(ω)
P. Since each G{n} is V -generic for P,
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it follows that G(n) := h”G{n} is V -generic for Q. As before, given G(n),

for each m < ω we can obtain generics G
(n)
m , G

(n)
{m}, and G

(n)
m,tail. Now, for

n,m < ω, let

(V[n])[m]
= V [Gn][G(n)

m ] = V[n][G
(n)
m ]

and let W
V[n]

G(n) =
⋃
m<ω (V[n])[m]

. Thus, we have:

V[n] ⊆ (V[n])[1] ⊆ (V[n])[2] ⊆ · · · ⊆ (V[n])[m]
⊆ · · ·

⊆
⋃
m<ω

(V[n])[m]
= W

V[n]

G(n) ⊆ V[n+1].

For every m,n < ω, let H(n,m) be the (V[n])[m]
-generic filter for Q obtained

from G
(n)
m,tail via the isomorphism of Q with its tail after m. Thus, for every

m,n < ω, we have that

V[n+1] = V[n][G
(n)
m ×G

(n)
m,tail] = (V[n])[m]

[H(n,m)]

is a Q-forcing extension of (V[n])[m]
. Moreover, this yields W

V[n]

G(n) = W
(V[n])[m]

H(n,m)

in V[n+1].

We shall now argue that W
V[n]

G(n) ≺ W V
G for every n < ω. This extremely

powerful key lemma will yield many of our desired results.

Lemma 3.2. For every n < ω, W
V[n]

G(n) ≺ W V
G .

Proof. Fix a formula ψ(x) and a ∈ W
V[n]

G(n) such that W
V[n]

G(n) |= ψ(a). Since

W
V[n]

G(n) is the union of (V[n])[m]
for m < ω, let m be such that a ∈ (V[n])[m]

.

Thus, by Proposition 3.1, 1l ⊩ ψW (ǎ, P̌, Ġ) over (V[n])[m]
. By the above

argument, we have (V[n])[m]
[H(n,m)] = V[n+1], and thus

(V[n])[m]
[H(n,m)][Gn,tail] = V [G].

Via the obvious isomorphism of P×Q and Q, we can view H(n,m)∗Gn,tail as a

(V[n])[m]
-generic for Q with H(n,m) being the generic on the first coordinate.

Consider the model W
(V[n])[m]

H(n,m)∗Gn,tail
obtained from the generic H(n,m) ∗Gn,tail.

We have

W
(V[n])[m]

H(n,m)∗Gn,tail
= (V[n])[m]

[H(n,m)] ∪
⋃
i<ω

(V[n])[m]
[H(n,m)][Gn+1+i]

=
⋃
i<ω

V[n+i]

= W V
G .

But we already showed that (V[n])[m]
satisfies that 1l ⊩ ψW (ǎ, P̌, Ġ). Thus,

W V
G |= ψ(a). □
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Next, let us see what theory the model W V
G satisfies. Observe right away

that W V
G cannot be a model of the power set axiom because P(P) does not

exist in W V
G .

Theorem 3.3 (Zarach [Zar96]). W V
G |= ZFC−.

Proof. It is clear that W V
G satisfies extensionality, empty set, pairing, unions,

infinity, and the foundation scheme. Also, W V
G satisfies the well-ordering

principle because any set in W V
G is in some V[n] |= ZFC. So it remains to

argue that W V
G satisfies the separation and collection schemes. First, let’s

do separation. Fix a formula ψ(x, y) and some a, b ∈ W V
G . We need to argue

that

c =
{
x ∈ a | W V

G |= ψ(x, b)
}

is in W V
G . Let n be large enough so that a, b ∈ V[n]. By Lemma 3.2, W

V[n]

G(n) ≺
W V
G . Thus,

c =
{
x ∈ a | W V[n]

G(n) |= ψ(x, b)
}
.

But W
V[n]

G(n) is a definable submodel of V[n+1] ⊆ W V
G , and V[n+1] |= ZFC. Thus,

c ∈ V[n+1] by separation, and hence c ∈ W V
G .

Next, let’s do collection. Suppose that ψ(x, y, z) is a formula and a, b ∈
W V
G such that

W V
G |= ∀x ∈ a ∃y ψ(x, y, b).

Let n be large enough so that a, b ∈ V[n]. By Lemma 3.2, W
V[n]

G(n) ≺ W V
G , and

so W
V[n]

G(n) |= ∀x ∈ a ∃y ψ(x, y, b). It follows that V[n+1] has a collecting set for

ψ(x, y, b), and hence so does W V
G . □

Theorem 3.4 (Zarach [Zar96]). W V
G |= DCω-scheme.

Proof. Fix a formula ψ(x, y, a) defining over W V
G a relation without terminal

nodes. Let n be large enough so that a ∈ V[n]. By Lemma 3.2, W
V[n]

G(n) ≺
W V
G . It follows that ψ(x, y, a) defines a relation without terminal nodes over

W
V[n]

G(n) . Let ψ∗(x, y, a) be a relation defined over V[n+1] by

if x ∈ W
V[n]

G(n) , then y ∈ W
V[n]

G(n) and W
V[n]

G(n) |= ψ(x, y, a).

Clearly, ψ∗ is a relation without terminal nodes over V[n+1]. Thus, by the

DCω-scheme in V[n+1], there is in V[n+1] a function f on ω that is a sequence

of ω-many dependent choices over ψ∗(x, y, a). But clearly, since every initial

segment of f is in W
V[n]

G(n) , as it is closed under finite sequences, we have that

for all m < ω, W
V[n]

G(n) |= ψ(f ↾m, f(m), a). Thus, by elementarity, W V
G |=

ψ(f ↾m, f(m), a), for every m < ω, as well. □
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In order to prove the next theorem, we need the following result of Blass,

which appears as Theorem 3.6 in [Bla81].

Theorem 3.5. A forcing extension V [G] by Add(ω, 1) cannot have a se-

quence ⟨rα | α < ω1⟩ of Cohen reals such that for every α < ω1, rα is

V [⟨rξ | ξ < α⟩]-generic for Add(ω, 1).

The proof we give here is a slight modification of Blass’s proof that will

allow us to generalize the result in the next section.

Proof. Let B be the Boolean completion of Add(ω, 1). In particular, observe

that B has a dense subset of size ω. Now suppose towards a contradiction

that a forcing extension by B (equivalentely Add(ω, 1)) contains a sequence

⟨rα | α < ω1⟩ of Cohen reals such that for every α < ω1, rα is Cohen generic

over V [⟨rξ | ξ < α⟩]. The model V [⟨rξ | ξ < ω1⟩] is a forcing extension of V

by a complete subalgebra, D, of B by the Intermediate Model Theorem of

Solovay (see [Gri75]).

Let’s first argue that D also has a dense subset of size ω. Given a condition

p ∈ Add(ω, 1), let qp be the infima of b in D such that p ≤ b. Each qp is in

D by completeness and the conditions qp are dense in D.

Next, let Ṙ be a D-name such that it is forced by 1l that Ṙ is an ω1-

sequence of successively more generic Cohen reals and the extension by D is

equal to the extension V [Ṙ]. We claim that the Boolean values Jn ∈ Ṙ(α)K
for n < ω and α < ω1 must generate D. Suppose to the contrary that they

generates a proper subalgebra D′ of D. Let G be any V -generic filter for D.

Since n ∈ ṘG(α) if and only if Jn ∈ Ṙ(α)K ∈ G, we have that ṘG already

exists in V [G ∩ D′], which is a proper submodel of V [G] = V [ṘG].

Finally, observe that since D has a countable dense subset, there must

be some α < ω1 such that D is generated by the Boolean values Jn ∈ Ṙ(ξ)K
for n < ω and ξ < α. But this means that if V [G] is D-generic, then G can

be recovered from the sequence ⟨rξ | ξ < α⟩, which contradicts that rα+1 is

V [⟨rξ | ξ < α⟩]-generic. □

Theorem 3.6. Suppose that V |= CH and P = Add(ω, 1) is the Cohen

poset. Then

(1) W V
G |= ZFC− + DCω-scheme.

(2) W V
G has the same cardinals and cofinalities as V .

(3) P(ω) is not ω2-big in W V
G .

(4) The DCω2-scheme fails in W V
G .

(5) If additionally V = L, then the DCω1-scheme fails in W V
G .
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Proof. Clearly, Add(ω, 1) ∼=
∏
ω

(ω)
Add(ω, 1). Item (1) follows from the the-

orems of Zarach above. Since Add(ω, 1) has the ccc, V and V [G] have the

same cardinals and cofinalities, and hence so do V and W V
G ⊆ V [G]. Clearly,

by CH in V [G], W V
G cannot have a surjection from P(ω), a proper class in

W V
G , onto ω2. Thus, by Proposition 2.3, the DCω2-scheme fails in W V

G .

Now assume that V = L. The crucial observation is that this implies

that V is definable in W V
G . In W V

G , let φ(x, y) be a formula asserting that

whenever x is a sequence of L-generic Cohen reals of length some α < ω1,

then y is L[x]-generic for Add(ω, 1). The relation defined by φ(x, y) has

no terminal nodes because any sequence x of L-generic Cohen reals is an

element of some V [Gn], and so y given by G{n+1} works. Thus, if the DCω1-

scheme held in W V
G , we would get an ω1-sequence of L-generic Cohen reals,

which would contradict Theorem 3.5. □

4. Generalized union models

In this section, we will generalize Zarach’s construction using products

Q =
∏
µ

(δ)
P

for regular cardinals δ ≤ µ to obtain failures of the DCδ-scheme for larger

cardinals δ. The construction generalizes in a straightforward manner so we

will just summarize the results here.

Suppose that V |= ZFC. Let P ∈ V be a poset and let δ ≤ µ be regular

cardinals such that Q =
∏
µ

(δ)
P is isomorphic to P. Let us call an auto-

morphism π of Q coordinate-switching if, as before, it acts by switching

coordinates according to some automorphism π̃ of µ.

Let G ⊆ Q be V -generic. For ξ < µ, let

(1) Gξ be the restriction of G to the first ξ coordinates,

(2) G{ξ} be the restriction of G to the ξ-th coordinate,

(3) Gξ,tail be the tail of G after ξ (G = Gξ ×Gξ,tail).

Let V[ξ] = V [Gξ]. Let W V
G =

⋃
ξ<µ V[ξ].

Let W V
G be defined in V [G] by the formula φ(x, ⟨P, µ, δ⟩, G), and for

every formula ψ(x) and a ∈ W V
G , let the formula ψW (x, ⟨P, µ, δ⟩, G) be such

that W V
G |= ψ(x) if and only if V [G] |= ψW (a, ⟨P, µ, δ⟩, G). As before, if π is

a coordinate-switching automorphism of Q, then both φ(x, ⟨P, µ, δ⟩, G) and

φ(x, ⟨P, µ, δ⟩, π”G) defineW V
G in V [G]. Also, for every formula ψ(x), we have

that for every a ∈ W V
G , V [G] satisfies ψW (a, ⟨P, µ, δ⟩, G) if and only if V [G]
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satisfies ψW (a, ⟨P, µ, δ⟩, π”G). By an analogous automorphism argument as

before, we get that if some condition p ⊩ ψW (ǎ, ⟨P̌, µ̌, δ̌⟩, Ġ), where Ġ is the

canonical Q-name for the generic filter, then 1l ⊩ ψW (ǎ, ⟨P̌, µ̌, δ̌⟩, Ġ).

As before, we shall write W V
G as the union of a sequence of models

W
V[ξ]

G(ξ) , each of which is an elementary submodel of W V
G . To do this, fix

an isomorphism h : P ∼= Q =
∏
µ

(δ)
P. Define the V -generic filters G(ξ) =

h”G{ξ}, for ξ < µ. From G(ξ), for ν < µ, we obtain G
(ξ)
ν , G

(ξ)
{ν}, and G

(ξ)
ν,tail.

Let

(V[ξ])[ν] = V [Gξ][G
(ξ)
ν ] = V[ξ][G

(ξ)
ν ]

for ν < µ, and let

W
V[ξ]

G(ξ) =
⋃
ν<µ

(V[ξ])[ν].

Thus, we have:

V[ξ] ⊆ (V[ξ])[1] ⊆ (V[ξ])[2] ⊆ · · ·

⊆ (V[ξ])[ν] ⊆ · · · ⊆
⋃
ν<µ

(V[ξ])[ν] = W
V[ξ]

G(ξ) ⊆ V[ξ+1].

An analogous argument to the proof of Lemma 3.2 yields.

Lemma 4.1. For every ξ < µ, W
V[ξ]

G(ξ) ≺ W V
G .

Observe that W V
G cannot be a model of the power set axiom because P(P)

does not exist in W V
G . Lemma 4.1 gives:

Theorem 4.2. W V
G |= ZFC−.

Theorem 4.3. Suppose that P is <δ-closed. Then (W V
G )<δ ⊆ W V

G in V [G].

Proof. Since P is <δ-closed, the product Q is <δ-closed as well. Since µ ≥ δ

was regular in V , it follows that the cofinality of µ in V [G] is at least δ.

Suppose that f : γ → W V
G in V [G] for some γ < δ. Then there is some

ξ < µ such that the range of f is contained in V[ξ] = V [Gξ] by cofinality

considerations. But since the tail of the product after ξ is <δ-closed, it

follows that f ∈ V[ξ], and hence f ∈ W V
G . □

Theorem 4.4. Suppose that P is <δ-closed. Then W V
G |= DCδ-scheme.

Proof. Fix a formula ψ(x, y, a) defining over W V
G a relation without terminal

nodes. Let ξ be large enough so that a ∈ V[ξ]. By Lemma 4.1, W
V[ξ]

G(ξ) ≺ W V
G . It

follows that ψ(x, y, a) defines a relation without terminal nodes over W
V[ξ]

G(ξ) .

Let ψ∗(x, y, a) be a relation defined over V[ξ+1] by whenever x ∈ W
V[ξ]

G(ξ) ,

then y ∈ W
V[ξ]

G(ξ) and W
V[ξ]

G(ξ) |= ψ(x, y, a). Thus, by the DCδ-scheme in V[ξ+1],
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there is in V[ξ+1] a function f on δ that is a sequence of δ-many dependent

choices over ψ∗(x, y, a). Now we use the <δ-closure of W
V[ξ]

G(ξ) (Theorem 4.3)

to confirm that every initial segment of f is in W
V[ξ]

G(ξ) . Thus, for all ν < δ,

W
V[ξ]

G(ξ) |= ψ(f ↾ ν, f(ν), a). So now by elementarity, W V
G |= ψ(f ↾ ν, f(ν), a),

for every ν < δ, as well. □

Given a regular cardinal δ, let Add(δ, 1) be the generalized Cohen poset

adding a subset to δ with conditions of size less than δ. First, we state a

generalization of Theorem 3.5 from the previous section.

Theorem 4.5. Suppose δ is a regular cardinal with δ<δ = δ. A forcing

extension V [G] by Add(δ, 1) cannot have a sequence ⟨Aα | α < δ+⟩ of

Cohen subsets such that for every α < δ+, Aα is V [⟨Aξ | ξ < α⟩]-generic
for Add(δ, 1).

The proof is completely analogous to the proof of Theorem 3.5, using

the assumption δ<δ = δ to show that Add(δ, 1) has size δ.

Theorem 4.6. Suppose that V |= 2δ = δ+ for some regular cardinal δ and

let P = Add(δ, 1). Then

(1) W V
G |= ZFC− + DCδ-scheme.

(2) W V
G has the same cardinals and cofinalities as V , with the possible

exception of δ+.

(3) P(δ) is not δ++-big in W V
G .

(4) The DCδ++-scheme fails in W V
G .

(5) If additionally V = L, then the DCδ+-scheme fails in W V
G .

Proof. Clearly, Add(δ, 1) ∼=
∏
δ

(δ)
Add(δ, 1). Item (1) follows from the the-

orems above. Since Add(δ, 1) is <δ-closed and has at most δ++-cc (by

2δ = δ+), V and V [G] have the same cardinals and cofinalities with the

possible exception of δ+, and hence so do V and W V
G ⊆ V [G]. Clearly, since

2δ = δ+ holds in V [G], W V
G cannot have a surjection from P(δ), a proper

class in W V
G , onto δ++. Thus, by Proposition 2.3, the DCδ++-scheme fails in

W V
G . If V = L, then δ<δ = δ and the DCδ+-scheme fails by an application

of Theorem 4.5 as in the proof of Theorem 3.6. □

5. A large model where the DCω-scheme fails

In this section we shall provide a union model in the style of Zarach for

which the DCω-scheme fails. Unlike the small model of [FGK19], this model

will have unboundedly many cardinals.
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We work in the second-order model V = ⟨L,∈, C⟩, where C is the col-

lection of definable classes of L. We will force with the class tree itera-

tion P(⃗J,Ord<ω). Let G ⊆ P(⃗J,Ord<ω) be V-generic. By Proposition 2.14,

P(⃗J,Ord<ω) is pretame, and hence V [G] = ⟨L[G],∈, C[G]⟩ |= GBc−. Al-

though, we won’t make use of this fact, let’s also note that V [G] |= DC<Ord-

scheme by Proposition 2.8.

Extending our earlier terminology, we will call an automorphism π of

P(⃗J,Ord<ω) tree-switching if there is an automorphism π̃ of Ord<ω such that

for any condition p π(p) = q, where q(t) = p(π̃−1(t)), namely π switches the

nodes of Ord<ω according to π̃.

Fix a set tree T ⊆ Ord<ω. Let GT ⊆ G consist of all functions fT ∈
P(⃗J,Ord<ω) with T ⊆ T a finite subtree. Let’s argue that GT is L-generic

for P(⃗J, T ). It suffices to show that every maximal antichain A of P(⃗J, T )

remains maximal in P(⃗J,Ord<ω). Fix a maximal antichain A of P(⃗J, T ).

Take any fS ∈ P(⃗J,Ord<ω). Let S∗ = S ∩ T and let fS∗ = fS ↾S∗, so

that fS∗ ∈ P(⃗J, T ). By the maximality of A in P(⃗J, T ), there is fT ∈ A

compatible with fS∗ . But then clearly fT is compatible with fS as well.

Thus, GT is an L-generic for P(⃗J, T ) and therefore L[GT ] |= ZFC.

Let T consist of all infinite trees T ⊆ Ord<ω such that T does not

have a cofinal branch. Let W =
⋃

T ∈T L[GT ]. We will show below that

W |= ZFC−+¬DCω-scheme. But first we need some technical preliminaries.

Proposition 5.1. Suppose that S1 and S2 are subtrees of Ord<ω, and π is a

tree-switching automorphism of P(⃗J,Ord<ω) such that π̃”S1 = S2. Then

L[(π−1”G)S1 ] = L[GS2 ].

Proof. The automorphism π−1 restricts to an isomorphism from P(⃗J,S2) to

P(⃗J,S1) and the image of GS2 under this isomorphism is (π−1”G)S1 . Thus,

L[(π−1”G)S1 ]
∼= L[GS2 ],

and hence L[(π−1”G)S1 ] = L[GS2 ]. □

Observe that, since L is definable in L[G], there is a formula φ(x, J⃗, G)

defining W in L[G]. Thus, for every formula ψ(x), there is a corresponding

formula ψW (x, y, z) such that for every a ∈ W , W |= ψ(a) if and only

if L[G] |= ψW (a, J⃗, G). Next, let’s argue that if π is any tree-switching

automorphism of P(⃗J,Ord<ω), then φ(x, J⃗, π”G) also defines W in L[G]. Fix

T ∈ T. By Proposition 5.1, L[(π”G)π̃−1”T ] = L[GT ]. Thus,
⋃

T ∈T L[GT ] =⋃
T ∈T L[(π”G)T ]. Hence also, for every formula ψ(x), we have that for every

a ∈ W , W |= ψ(a) if and only if L[G] |= ψW (a, J⃗, π”G).
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Proposition 5.2. Suppose that for some formula ψ(x), p ⊩ ψW (ȧ), where

ȧ is a P(⃗J, T )-name, for some tree T ∈ T. Then p ↾ T ⊩ ψW (ȧ).

Proof. Suppose towards a contradiction that p ↾ T does not force ψW (ȧ).

Then there is a condition q ≤ p ↾ T such that q ⊩ ¬ψW (ȧ). Let π be a

tree-switching automorphism such that π̃ fixes T and moves the nodes in

dom(p) \ T so that

dom(q) ∩ dom(π(p)) = dom(p ↾ T ) ⊆ T .

We have π(p) ⊩ ψW (ȧ) because π(ȧ) = ȧ and tree-switching automorphisms

don’t affect W . But this is impossible because clearly π(p) and q are com-

patible. □

Theorem 5.3. W |= ZFC−.

Proof. It is clear that W satisfies extensionality, empty set, pairing, unions,

infinity, the foundation scheme, and the well-ordering principle. We will

be done if we can argue that W satisfies the replacement and collection

schemes (separation will then follow). We will verify collection because the

same argument will yield replacement as well.

Since W satisfies the well-ordering principle, it suffices to verify instances

of collection for ordinals. So suppose that

W |= ∀ξ < δ∃y ψ(ξ, y, a).

Let a ∈ L[GT ] for some T ∈ T, and let ȧ be a P(⃗J, T )-name for a. Let

p ⊩ θW (ȧ), where θ(ȧ) := ∀ξ < δ̌∃y ψ(ξ, y, ȧ). By Proposition 5.2, we can

assume without loss of generality that dom(p) ⊆ T . Given a tree S ∈ T, let

ĠS be the canonical P(⃗J,S)-name for the generic filter. Observe that if π is

a tree-switching automorphism, then π(ĠS) = Ġπ̃”S .

Before giving the details, we sketch the idea behind the argument: For

each ξ < δ there is some tree Sξ ∈ T such that W |= ∃y ∈ L[GSξ
]ψ(ξ, y, a).

The aim is to find some ground model tree R ∈ T such that, for each ξ ∈ δ,

W |= ∃y ∈ L[GR]ψ(ξ, y, a).

Since
⋃
ξ<δ Sξ may contain a cofinal branch, we want to find a sequence

of tree-switching automorphisms πξ such that W |= ∃y ∈ L[Gπξ”Sξ
]ψ(ξ, y, a)

and πξ”Sξ and πη”Sη are disjoint modulo T for any ξ, η < δ.

However, we are unable to determine these automorphisms in the ground

model and therefore it need not be the case that
⋃
ξ<δ πξ”Sξ ∈ T (in L). To

avoid this issue we shall use the ccc to recursively construct in L countable

sequences of trees ⟨S(α)
ξ | α < βξ⟩ for ξ < δ such that S

(α)
ξ and S

(γ)
η are
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pairwise disjoint module T for every α, ξ, γ and η. This will be done in such

a way that, for Tξ =
⋃
α<βξ

S
(α)
ξ ,

W |= ∀ξ < δ∃y ∈ L[GTξ ]ψ(ξ, y, a).

We will then be able to take R :=
⋃
ξ∈δ Tξ ∈ T as our witnessing tree. So

that this can be easily modified into a proof for replacement, we will also

explicitly construct names yξ for each ξ < δ.

In order to do this, for every ξ < δ, let Dξ be the dense class of conditions q

below p for which there is some S ∈ T such that T ⊆ S and a P(⃗J,S)-name

ẏ such that

q ⊩ ẏ ∈ L[ĠS ] ∧ ψW (ξ̌, ẏ, ȧ).

Choose any condition q
(0)
0 ∈ D0 (using global choice in L) and fix ẏ

(0)
0 and

S(0)
0 such that

q
(0)
0 ⊩ ẏ

(0)
0 ∈ L[ĠS(0)

0
] ∧ ψW (0̌, ẏ

(0)
0 , ȧ).

Next, assuming this is possible, choose any condition q∗1 ∈ D0 incompatible

with q
(0)
0 , and fix ẏ∗1 and S∗

1 such that

q∗1 ⊩ ẏ∗1 ∈ L[ĠS∗
1
] ∧ ψW (0̌, ẏ∗1, ȧ).

Let π1 be a tree-switching automorphism such that π̃1 fixes T and S(1)
0 :=

π̃1”S∗
1 satisfies S(1)

0 ∩ S(0)
0 ⊆ T . Now, we have that

π1(q
∗
1) ⊩ π1(ẏ

∗
1) ∈ L[ĠS(1)

0
] ∧ ψW (0̌, π1(ẏ

∗
1), ȧ).

Also, since dom(p) ⊆ T and π̃1 fixes T , π1(q
∗
1) ≤ p. Let q

(1)
0 = π1(q

∗
1) ∪ q∗1.

Thus, it is still case that q
(1)
0 ∈ D0 and q

(1)
0 is not compatible with q

(0)
0 . Let

ẏ
(1)
0 = π1(ẏ

∗
1). Continuing in this manner, we keep building a sequence of

mutually incompatible conditions q
(α)
0 ∈ D0 such that

q
(α)
0 ⊩ ẏ

(α)
0 ∈ L[ĠS(α)

0
] ∧ ψW (0̌, ẏ

(α)
0 , ȧ)

and S(α)
0 ∩

⋃
γ<α S

(γ)
0 ⊆ T . This process must terminate after β0-many steps

for a countable β0 because the poset P(⃗J,Ord<ω) has the ccc. Let A0 =

{q(α)0 | α < β0} be the resulting maximal antichain contained in D0. Let

T0 =
⋃
α<β0

S(α)
0 , and observe that by the disjointness of the S

(α)
0 modulo

T , we have that T0 cannot have an infinite branch and therefore T0 ∈ T.

Let ż0 be the mixed name of the names ẏ
(α)
0 over the antichain A0.

Namely,

ż0 =
⋃
α<β0

{
⟨ẋ, r⟩ | r ≤ q

(α)
0 , r ∈ P(⃗J,S(α)

0 ), r ⊩ ẋ ∈ ẏ
(α)
0 , ẋ ∈ dom(ẏ

(α)
0 )

}
.
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Note that we can include the condition r ∈ P(⃗J,S(α)
0 ) because if r ⊩ ẋ ∈ ẏ

(α)
0

for some ẋ ∈ dom(ẏ
(α)
0 ), then r ↾S(α)

0 also forces this by Proposition 5.2.

Finally, observe that ż0 is a P(⃗J, T0)-name and W |= (ż0)G ∈ L[GT0 ] ∧
ψ(0̌, (ż0)G, a).

Next, we repeat the process for D1, building a maximal antichain

A1 = {q(α)1 | α < β1}

contained in D1 and trees S(α)
1 such that

q
(α)
1 ⊩ ẏ

(α)
1 ∈ L[ĠS(α)

1
] ∧ ψW (1̌, ẏ

(α)
1 , ȧ).

At the same time, we ensure that for any α < β1, S(α)
1 ∩(

⋃
γ<α S

(γ)
1 ∪T0) ⊆ T .

Let T1 =
⋃
α<β1

S(α)
1 and observe that T0 ∪ T1 is in T. Let ż1 be the mixed

name of the names ẏ
(α)
1 over the antichain A1, and observe that ż1 is a

P(⃗J, T1)-name.

We continue the process for every Dξ, and let R =
⋃
ξ<δ Tξ, which is in

T by construction. Let ż be the canonical name for a sequence of length

δ obtained from the names żξ for ξ < δ. Then ż is a P(⃗J,R)-name. By

construction, for every ξ < δ, W |= ψ(ξ̌, żG(ξ), a), so żG witnesses this

instance of collection. □

Theorem 5.4. W |= ¬DCω-scheme.

Proof. Consider the definable class tree whose domain is

{r⃗ | r⃗ is L-generic for Jn for some n}

ordered by extension in W . Clearly, the tree relation has no terminal nodes.

Thus, if we can show that it doesn’t have an infinite branch, we will have a

violation of the DCω-scheme. So suppose that b ∈ W is an infinite branch

through this class tree. Then b ∈ L[GS ] for some tree S ∈ T. Since S does

not have an infinite branch by the definition of T, there must be some r⃗n,

the element of b on level n, which is L-generic for Jn but not in S. However,

this is impossible by Theorem 2.13 (2). □

The model W is also interesting because even though the DCω-scheme fails,

every proper class in W is big. Before we prove this we need the following

lemma.

Lemma 5.5. Suppose that S1,S2, T ∈ T are such that S1 ∩ S2 = T . Then

L[GS1 ] ∩ L[GS2 ] = L[GT ].



ZFC WITHOUT POWER SET II: REFLECTION STRIKES BACK 25

Proof. Since we are dealing with models of ZFC, it suffices to show that

every set of ordinals in L[GS1 ] ∩ L[GS2 ] is in L[GT ]. Suppose that A ∈
L[GS1 ] ∩ L[GS2 ] is a subset of an ordinal α. Let ẋ be a nice P(⃗J,S1)-name

for A, namely ẋ =
⋃
ξ<α{ξ̌} × Aξ, where the Aξ are antichains of P(⃗J,S1).

Similarly, let ẏ =
⋃
ξ<α{ξ̌}×Bξ be a nice P(⃗J,S2)-name for A. Fix a condi-

tion p ∈ P(⃗J,S1 ∪ S2) forcing that ẋ = ẏ. Let p = p1 ∪ p2, where p1 = p ↾S1

and p2 = p ↾S2. We will work below this condition p. By shrinking the set

A, we can assume without loss of generality that p does not decide ξ̌ ∈ ẋ

for any ξ < α. We can also assume that conditions in all Aξ are compatible

with p.

Next, let’s argue that if some condition q ≤ p1 in P(⃗J,S1) decides ξ̌ ∈ ẋ,

then p1 ∪ q ↾ T already decides ξ̌ ∈ ẋ. Suppose that q ⊩ ξ̌ ∈ ẋ (the case

q ⊩ ξ̌ ̸∈ ẋ will be the same). We will first show that p2 ∪ q ↾ T forces that

ξ̌ ∈ ẏ. So, suppose that this is not the case. Then fix r ≤ p2 ∪ q ↾ T in

P(⃗J,S2) such that r ⊩ ξ̌ /∈ ẏ. But then q ∪ r ≤ q in P(⃗J,S1 ∪ S2), and

q ∪ r ⊩ ξ̌ /∈ ẏ in P(⃗J,S1 ∪S2) (by absoluteness for atomic forcing formulas),

and also q ∪ r ⊩ ξ̌ ∈ ẋ in P(⃗J,S1 ∪ S2). But this is a contradiction because

q∪ r ≤ p1∪p2∪ q ↾ T ≤ p and so must force ẋ = ẏ. Thus, p2∪ q ↾ T ⊩ ξ̌ ∈ ẏ.

But now essentially the same argument on the S1-side with ẋ shows that

p1 ∪ q ↾ T ⊩ ξ̌ ∈ ẋ.

Let ẋ∗ =
⋃
ξ<α{ξ̌} × A∗

ξ , where A∗
ξ = {q ↾ T | q ∈ Aξ}, and note that

ẋ∗ is a P(⃗J, T )-name. We claim that ẋ∗G = ẋG. Suppose that ξ ∈ ẋG. Then

there is q ∈ G∩Aξ. Thus, q ↾ T ∈ G∩A∗
ξ , and hence ξ ∈ ẋ∗G. Next, suppose

that ξ /∈ ẋG. Then there is q ≤ p in G such that q ⊩ ξ̌ /∈ ẋ. By the

above argument, the condition p1∪ q ↾ T also forces ξ̌ /∈ ẋ. Thus, conditions

incompatible with some a ∈ Aξ are dense below p1 ∪ q ↾ T . But then, by

our assumption that p, and therefore p1, is compatible with all conditions

in every Aξ, it follows that conditions incompatible with some a ∈ A∗
ξ are

dense below q ↾ T . Thus, q ↾ T ⊩ ξ̌ ̸∈ ẋ∗. Since q ↾ T ∈ G, it follows that

ξ /∈ ẋ∗G. □

Theorem 5.6. Every proper class in W is big.

Proof. Suppose that a formula ψ(x, a) defines a proper class A in W and a ∈
L[GT ] for some T ∈ T. Fix a cardinal δ and recall that, since P(⃗J,Ord<ω)

has the ccc, all of our models have the same cardinals. We need to verify

that there is a surjection from A onto δ. First, suppose that A ∩ L[GT ]

is a proper class. In this case, there must be some ordinal α such that

A∩L[GT ]α has size at least δ in L[G]. Let A = A∩L[GT ]α, which exists in

W by separation. Since W can enumerate A by the well-ordering principle,
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let f : β → A for some ordinal β, and observe that by our assumption on

the size of A, β ≥ δ.

So let’s assume now that A ∩ L[GT ] is not a proper class. As in The-

orem 5.3, we begin by sketching the idea behind the argument. Since A
is a proper class in W , there will be some tree S0 extending T for which

W |= ∃x ∈ L[GS0 ] \ L[GT ]ψ(x, a). The aim is to find some sequence ⟨Sξ |
ξ ∈ δ⟩ each of which is isomorphic to S0, pairwise disjoint modulo T , and

such that

W |= ∃x ∈ L[GSξ
] \ L[GT ]ψ(x, a).

However, since these trees cannot be determined in the ground model we

will again use the ccc to recursively construct countable sequences of trees

⟨S(α)
ξ | α < βξ⟩ for ξ < δ such that S

(α)
ξ ∩ S

(γ)
η ⊆ T for each α, ξ, γ and η

and, for Tξ =
⋃
α<βξ

S
(α)
ξ ,

W |= ∃x ∈ L[GTξ ] \ L[GT ]ψ(x, a).

So, let ȧ be a P(⃗J, T )-name for a. Fix a condition

p ⊩ ∃x /∈ L[ĠT ]ψW (x, ȧ).

By Proposition 5.2, we can assume without loss of generality that p ∈
P(⃗J, T ). Let D be the dense class of conditions q below p forcing for some

tree S ∈ T that ∃x ∈ L[ĠS ]ψW (x, ȧ). Following the proof of Theorem 5.3,

build a maximal antichain A0 = {q(α)0 | α < β0} contained in D such that

q
(α)
0 ⊩ ∃x ∈ L[ĠS(α)

0
]ψW (x, ȧ),

where S(α)
0 ∩

⋃
γ<α S

(γ)
0 ⊆ T . Let T0 =

⋃
α<β0

S
(α)
0 . Next, we repeat the

process, constructing a maximal antichain A1 = {q(α)1 | α < β1} contained

in D such that

q
(α)
1 ⊩ ∃x ∈ L[ĠS(α)

1
]ψW (x, ȧ),

and we have S(α)
1 ∩ (

⋃
γ<α S

(γ)
1 ∪ T0) ⊆ T . We continue this process, con-

structing maximal antichains Aξ = {q(α)ξ | α < βξ} contained in D such

that

q
(α)
ξ ⊩ ∃x ∈ L[ĠS(α)

ξ
]ψW (x, ȧ),

maintaining the disjointness of the trees modulo T .

Let R =
⋃
ξ<δ Tξ which is in T by the the disjointness of the trees S

(α)
ξ

modulo T . Finally, by Lemma 5.5, for each ξ < δ

A ∩ L[GTξ ] \
⋃
η<ξ

A ∩ L[GTη ] ̸= ∅

and therefore the model L[GR] contains at least δ-many elements of A. □
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We should point out that the construction given above fails if we replace

Ord<ω with α<ω for some cardinal α. Indeed, the model W constructed

analogously in a forcing extension L[G] by an L-generic G ⊆ P(⃗J, α<ω)

fails to satisfy the following instance of collection. We analogously let T be

the collection of all subtrees of α<ω of size α which do not have an infinite

branch. In this case, T is a set from L, and hence in the union model W . The

model W satisfies that for every T ∈ T, there is a constellation of Jensen

reals along T . More formally, there is a map FT with domain T such that

nodes of length n get mapped to sequences of L-generic reals for Jn and the

sequences on longer nodes end-extend sequences on shorter nodes. Suppose

towards a contradiction that there is a collecting set C for this instance of

collection. C must then be in some L[GT ] with T ∈ T. Let S be a tree in

T of rank higher than T . This ensures that there is no tree isomorphism

between T and a subtree of S. But then by Theorem 2.13 (2), L[GT ] cannot

contain the map FS .

We should also note that instead of forcing over L, we could have forced

over HL
λ for some regular, uncountable λ. The model HL

λ |= ZFC− and for

it P(⃗J, λ<ω) is a pretame forcing. Thus, if G ⊆ P(⃗J, λ<ω) is Hλ-generic, then

Hλ[G] |= ZFC−. The rest of the arguments in this section then go through.

In Theorem 5.6, we proved that W is a model of ZFC− in which every

proper class is big. While this is a very desirable property for our model to

satisfy, we can make one final observation for this section. This is that, by

combining the construction with that of Section 4, it is possible to produce

a model of ZFC− in which the DCω-scheme fails and in which there are

proper classes that are not big.

Corollary 5.7. It is possible to produce a model of ZFC− with unboundedly

many cardinals in which the DCω-scheme fails and there is a proper class

that is not big.

Proof. We start with a model V of GBc+V = L to ensure that ♢ holds and

that we have ground model definability. Take a generic H ⊆ Add(ω1, 1) and

consider W V
H from Theorem 4.6. This is a model of GBc− +DCω1-scheme in

which P(ω1) does not surject onto ω3. By Proposition 2.9, since the DCω1-

scheme holds, any ccc class forcing over W V
H is pretame. Specifically, the

class tree iteration P(⃗J,Ord<ω) remains pretame in W V
H . Next, note that

H added no new subsets of ω, which in particular means that ♢ holds

in W V
H . Thus P(⃗J,Ord<ω) satisfies all the necessary properties mentioned

in Section 2.D and, for any generic G, W V
H is definble in W V

H [G]. So, let
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G ⊆ P(⃗J,Ord<ω) be generic and consider W =
⋃

T ∈TW
V
H [GT ] as before. By

the previous analysis, it is clear that W |= ZFC− + ¬DCω-scheme.

Finally, while P(ω1) is now a big proper class in W , P(ω1)∩W V
H is not.

This is because P(ω1)∩W V
H is a set of cardinality ω2 in L[H] and, since the

second forcing doesn’t collapse cardinals, this must still be true in L[H][G].

Therefore this class cannot possibly surject onto ω3 in W . Thus, W is our

desired model of ZFC− with a proper class that is not big. □

6. Embeddings with P(ω) a proper class

In this section, we show that there is a model of ZFC− having a definable

elementary embedding j with a critical point in which P(ω) does not exist.

Suppose that V |= ZFC and κ is a measurable cardinal in V with a

normal measure U . Let j : V → M be the ultrapower map by U . Let P =

Add(ω, 1), Q =
∏
ω

(ω)
P, and G ⊆ Q be V -generic. We construct W V

G in

V [G] as in Section 3.

A folklore result, known as the Lifting Criterion, states that given an

elementary embedding j : V →M , a poset P ∈ V , a V -generic filter G ⊆ P
and an M -generic filter H ⊆ j(P), we can lift (extend) the embedding j to

j : V [G] → M [H] if and only if j”G ⊆ H. In case we can lift, the lift j is

given by j(ẋG) = j(ẋ)H . Thus, by the Lifting Criterion, using that j(Q) = Q
and j”G = G, we can lift j to the embedding j : V [G] → M [G]. Moreover,

we can show that j is the ultrapower map by the measure Uω generated by

U , namely A ∈ Uω if and only if there is B ∈ U such that B ⊆ A. This

also shows that, for every n < ω, j lifts to jn : V[n] → M[n] (V[n] = V [Gn],

M[n] = M [Gn]), and is the ultrapower map by the measure Un generated by

U in V[n]. Thus,

U ⊆ U1 ⊆ U2 ⊆ · · · ⊆ Un ⊆ · · · ⊆ Uω.

By the definability of W V
G in V [G], we can restrict the lift j : V [G] →

M [G] to an elementary embedding

jW : W V
G → WM

G ,

where WM
G is constructed in M [G] analogously to W V

G .

Proposition 6.1. jW =
⋃
n<ω jn.

Proof. Observe that it suffices to show that for every n ∈ ω the lift

jn : V[n][Gn,tail] → M[n][Gn,tail] is the lift j : V [G] → M [G]. But this is clear

because, by our observation above, the lift of jn is the ultrapower map by

the measure generated by Un, which is clearly Uω. □
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Let E be the membership relation modulo Uω. Observe that Uω-equivalence

and E are both definable in W V
G from the set U ∈ W V

G . Fix a function

f : κ → W V
G in some V[n]. Since jW =

⋃
n<ω jn, we know that whenever

g : κ→ W V
G from W V

G is an E-member of f , then g is Uω-equivalent to some

g∗ : κ → V[n] with g∗ ∈ V[n]. Thus, V[n] has a set Xf consisting of functions

g : κ → V[n] that are E-members of f such that any function h : κ → W V
G

from W V
G that is an E-member of f is Uω-equivalent to a function in Xf .

Thus, in W V
G , given any function f : κ→ W V

G , we can associate to it the set

Xf .

Now let’s provide a definition of j in W V
G . Fix a function f : κ→ W V

G , and

let b ∈ V [G] be the image of [f ]Uω under the transitive collapse. Working in

W V
G , let Xf

0 = Xf . Now suppose inductively that we are given Xf
n , and let

Xf
n+1 =

⋃
g∈Xf

n
Xg. Let Xf

ω =
⋃
n<ωX

f
n . It should be clear that the transitive

collapse of ⟨Xf
ω ,E⟩ (modulo Uω) is the transitive closure of b, from which

we can compute b. Thus, W V
G can compute j(a) by computing Xca

ω , where

ca : κ→ {a} is the constant function.

Finally, recall that crucial property that led to the failure of the DCω1-

scheme in Theorem 3.6 was that the ground model (L) was definable in

W V
G . Therefore, if V = L[U ] then we will again have that the DCω1-scheme

fails in the resulting model.

Putting together all of the above, we obtain the following result.

Theorem 6.2.

(1) W V
G |= ZFC− + DCω-scheme.

(2) The DCω2-scheme fails in WL
G .

(3) P(ω) (and therefore Vα for α > ω) does not exist in W V
G .

(4) W V
G has a definable elementary embedding j with a critical point.

(5) If additionally V = L[U ], then the DCω1-scheme fails in WL
G .

We can also use the construction of Section 3 to produce other examples of

the limitations to Theorem 2.4. For instance, it is easy to produce a model

W |= ZFC− with a cofinal elementary embedding j : W → W having a

critical point (but W won’t satisfy ZFC−
j ).

Start with a transitive model M |= ZFC for which there is an elementary

embedding j : M → M with critical point some ordinal κ (the consistency

strength of this assumption is below 0#). Let P = Add(ω, 1) in M , force with

Q =
∏
ω

(ω)
P, and let G ⊆ Q be M -generic. First, we lift j to an elementary

embedding j : M [G] →M [G], and then restrict j to jW : WM
G → WM

G .
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We can also use the construction of Section 3 to produce a model W |=
ZFC−

j such that P(ω) is a proper class and where j : W → W is an elemen-

tary embedding with a critical point, but not cofinal.

Suppose that V |= ZFC + I1 and fix an elementary embedding

j : Vλ+1 → Vλ+1

with critical point κ < λ. Let

j+ : Hλ+ → Hλ+

be the elementary embedding obtained from j. Let P = Add(ω, 1), G ⊆
Q =

∏
ω

(ω)
P be V -generic, and W V

G be constructed in V [G] as in Section 3.

Let
j+ : Hλ+ [G] → Hλ+ [G]

be the lift of j+ given by j+(ẋG) = j+(ẋ)G. Let

NV
G =

⋃
n<ω

Hλ+ [Gn]

be the proper class of W V
G consisting of sets whose transitive closure has

size at most λ. Let

jN : NV
G → NV

G

be the restriction of j+ to NV
G . Then the embedding jN can be defined by

the formula φj(x, y,P, j, λ,G) asserting that:

• x ∈ W V
G has transitive closure of size at most λ,

• there is a Q-name ẋ ∈ HV
λ+ such that x = ẋG, and

• y = j+(ẋ)G.

Next, let’s argue that if π is any coordinate-switching automorphism of Q,

then φj(x, y,P, j, λ, π”G) also defines jN . Suppose that for some a ∈ NV
G ,

j+(a) = b. Let a = ẋG with ẋ ∈ HV
λ+ . Then b = j+(ẋ)G. Clearly, a =

(π(ẋ))π”G. Now,

j+(π(ẋ)) = j+(π)(j+(ẋ)) = π(j+(ẋ)).

Thus, j+(π(ẋ))π”G = j+(ẋ)G = b. Thus, using G or π”G both yield the same

embedding jN . From this we immediately get the following strengthening of

the key elementarity lemma from Section 3, where we let j+n : H
V[n]

λ+ → H
V[n]

λ+

be the lift of j+ in V[n] and jNn be its restriction to N
V[n]

G(n) .

Lemma 6.3. For every n < ω, ⟨W V[n]

G(n) , j
N
n ⟩ ≺ ⟨W V

G , j
N⟩.

Using the arguments from Section 3, Lemma 6.3 gives:

Theorem 6.4. W V
G |= ZFC−

jN , and hence NV
G |= ZFC−

jN .
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Proof. It follows from Lemma 6.3 that W V
G |= ZFC−

jN . It remains to observe

that any instance of collection for a set whose transitive closure has size at

most λ can also be assumed to have transitive closure of size at most λ. □
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