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Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic
@ Separate variables and quantifiers for numbers and sets of numbers.

@ Convention: lower-case letters for numbers, upper-case letters for sets.
o Notation:

> ):2 - first-order X ,-formula
> Y1 - p-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is # = (M, +, x,<,0,1,€,S).
@ M is the collection of numbers.
@ S is the collection of sets of numbers: if A€ S, then A C M.

Second-order axioms

@ Numbers: PA
@ Sets:

> Extensionality
> Induction axiom: VX ((0 € X AVn(ne€ X - n+ 1€ X)) = Vnn € X)
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Weak axiom systems

Arithmetical comprehension ACA,

Comprehension scheme for first-order formulas: for all n, ¥°-CAg
if ©(n, A) is a first-order formula, then {n | ¢(n, A)} is a set.

o If (M,+,x,<,0,1) = PA and S consists of definable subsets of M, then

M= (M, +,%,<,0,1,€,8) = ACA,.
o ACAy is conservative over PA.
Elementary Transfinite Recursion ATR
ACAy
Transfinite recursion: every first-order recursion on sets along a well-order has a solution.
@ A well-order is a linear order I whose every subset has a minimal element.

@ A solution to a recursion is a code of a function F : dom([') — S.
A code for Fis F = {(n, m) | n € dom(F,)m € F(n)}

o lterate Turing jump.

@ Build an internal constructible universe L.

o (Fujimoto) Equivalent (over ACAy) to existence of iterated truth predicates along
any well-order I'.
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N
Godel's L in ATRy

Godel’s constructible universe L

Suppose V | ZF.
o Lo=0
@ L,41 is the set of all subsets of L, definable over L.
o Ly =,y La for alimit A.
° L=U,com La-

Suppose # = (M, +, x,<,0,1,€,S) = ATRo and I' € S is a well-order.
@ ./ can construct the L-hierarchy along I'.

@ There is a set coding a sequence of La for A < T obeying the definition of L.
A model of ATRy has its own constructible universe L%
Definition: A well-order I € S is constructible if there is a well-order A such that
La =T is countable.

L;’f is the union of La for constructible well-orders A.
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The comprehension hierarchy

Increasing to the amount of comprehension to more complex second-order assertions
produces a hierarchy of second-order set theories

Y ._comprehension Z1-CA,

If (n, A) is a X;-formula, then {n | p(n, A)} is a set.
@ Y1-CAy is stronger than ATR.

culminating in:

Full second-order arithmetic Z»

For all n, ¥X-comprehension.
o If A |= 17, then L;,jf = ZFC™ zFc vithout powerset

Definition: Z, " is full comprehension without parameters.
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Equiconsistency of Z, and Z, "

Theorem: (H. Friedman) Z, and Z, " are equiconsistent.

Proof idea: Suppose .# = (M, +,x,<,0,1,€,8) E Z,°.
@ A modified L-construction can be carried out without parameters.
o LY =ZFC.

o Let S={AcS|Ac L} bethe “constructible reals” of ..
° (M7+7 X7<70717€7‘§) ': Z2'
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Quick review of forcing

Suppose V' |= ZFC and P is a forcing notion: partial order with largest element 1.
Dense sets and generic filters
D C P is dense if for every p € P, there is g € D with g < p. ,
G C Pis a filter:

e 1eG.

o (upward closure) If p € G and p’ > p, then p’ € G.

o (compability) If p, g € G, then r € G such that r < p, q.
A filter G C P is V-generic if it meets every dense set D € V of P: DN G # (.

Theorem: V has no V-generic filters for P.

The forcing extension V[G] is constructed from V together with an external V-generic
filter G.
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Quick review of forcing (continued)
P-names: names for elements of V[G].
Defined recursively so that a P-name o consists of pairs (7,p): p € P and 7 is a P-name.

Special P-names
o Givenac V, 3= {(h1) | be a}.
o G={(p,p) | peP}.
Forcing extension V[G]
Suppose G C P is V-generic and o is a P-name. The
interpretation of o by G: 06 = {76 | (T,p) € o and p € G}.

Defined recursively.

vie]

The forcing extension V[G] = {o¢ | o is a P-name in V}.
o VCVIG]: 3 = a.
e G e V[G]: Gc=G.
e V[G] = ZFC
Forcing relation p |- ©(o): whenever G is V-generic and p € G, then V[G] = ¢(o¢).

@ For a fixed first-order formula (x), the relation p I (o) is definable.
o If g < pandpl-y(c), then g - p(o).
o If V[G] = ¢(0¢), then there is p € G such that p IF (o).
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Cohen forcing

Add(w, 1) - adds a new real

Conditions: binary sequences p: D — 2 with D C w finite.

Order: g < p if g extends p. p=110 1

Suppose G C Add(w, 1) is V-generic. q=1110 11
o r=|JG is a new real

@ V[G] has continuum-many V-generic reals for Add(w, 1).

Add(w, k) - adds (at least) xk-many reals

Conditions: functions p : D — 2, where D is a finite subset of
w X K.

Order: g < p if g extends p.

Suppose G C Add(w, k) is V-generic.

J G gives k-many new reals.
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Sacks forcing

Sacks forcing S - adds a generic real

Conditions: Perfect trees T C 2<“: every node has a splitting node above it.
Order: S < T if Sis a subtree of T.
Suppose G C S is V-generic.

® There is a real b € V[G] such that T € G iff b is a branch of T.
@ The generic real b determines G.

ST TN ST TN
7N N » N
NN y 7\ y
RN 7 NN 7

0000 0001 0010 0011 0110 0111 1100 1101 0000 0001 0010 0011 1100 1101

Victoria Gitman Parameter-free comprehension CUNY 10 / 21



Jensen’s forcing

Jensen’s forcing J - adds a unique generic real
@ constructed using < in L (construction is technical)
eJCS

@ has ccc

adds a unique generic Mi-definable singleton real

used by Jensen to show that it is consistent to have a non-constructible M3-definable
singleton real.

Every X%—deﬁnable singleton real is in L by Shoenfield's Absoluteness.
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Products and iterations of forcing notions
Products

Suppose P, for a < /3 are forcing notions.

A product P = I, <P, is a natural forcing notion.

Conditions: (p, | @ < B) with p, € Pq.

@ Common supports: finite, bounded, full.

o Example: Add(w, ) = MNa<x Add(w, 1) with finite support.

@ Usage: adding several objects to a forcing extension.

Iterations

Suppose P is a forcing notion, G C P is V-generic, and Q is a forcing notion in V[G].
V has a P-name Q for Q. very element of V[G] has a B-name in V.

In V, we define a forcing notion P« () such that forcing with P % Q is the same as forcing
with PP followed by forcing with Q.

e Conditions: (p,§) with p € P and pIF- g € Q.
@ Order: (p,q) <(r,8)ifp<randpl-g<s.
@ n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: S xS, where S is the name for the Sacks forcing of the forcing extension.
Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.
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Automorphisms of forcing notions

Suppose P is a notion of forcing and 7 is an automorphism of P.
We apply 7 (recursively) to P-names: (7, p) € o if and only if (7(7), 7(p)) € 7(o).
o m(d) =143
The forcing relation respects automorphisms: p I (o) if and only if 7(p) IF p(7(0)).
If G CPis V-generic, then w" G is V-generic.

Examples

@ For any p, g € Add(w, 1), there is an automorphism 7 such that p and 7(q) are
compatible.

@ Every permutation of k gives rise to a coordinate-switching automorphism of
Add(w, k).

o For any p, g € Add(w, k), there is an automorphism 7 such that p and 7(q) are
compatible.

o Jensen's forcing J is rigid.
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A very bad model of Z, "

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model
M= (M, +,%x,<,0,1,€,8) E Z;” such that S is not closed under complements.

Proof: Let G C Add(w,w) be V-generic.

Let {a, | n < w} be the w-many generic reals from G.

Let S = PY(w)U{an | n < w}.

S is not closed under complements.

Let # = (w,+, X,<,0,1,€,85).

Let ./ be the canonical Add(w,w)-name for ..

Fix a second-order formula ¢(x).

Suppose, for n < w, p - . = (i), but q I .7 |= —p(#).

Let w be a coordinate-switching automorphism such that there is r < p, 7(q).
7(q) IF A = —p(i) since n(M) = M .

ri- = (i) (r < p)and rl- 4 = —p(it) (r < m(q)). Impossible!
If some p I .Z = (i), then all p IF . = o(i).

By definability of the forcing relation, {n < w | #Z |= p(n)} € V.

M =237 0
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A model of £3-CAqg + Z,"

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model of

¥3-CAo + Z, " in which X3-CA, fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks
forcing.

Theorem: (G.) It is consistent that there is a model of ¥3-CAq 4 Z, ” in which ¥3-CA,
fails.

The model is constructed in a forcing extension by a tree iteration of Jensen's forcing.
Work in progress: (Kanovei) It is consistent that there is a model of £1-CAq + Z,” in
which X7,,-CAy fails.

Proof idea: use a generalization of Jensen's forcing.

Victoria Gitman Parameter-free comprehension CUNY 15 /21



Finite iterations of Jensen's forcing

Theorem (Abraham) In L, for every n < w, there is an n-length iteration
Jo=Qo- Q1 Qs1 such that:

o Qo =1.
o If G C I, | iis L-generic, then in L[G]], @ = (Qi), has all properties of Jensen’s
forcing.

o If m> n, then I | n = J,.
@ J, has the ccc.

o J, adds a unique generic M3-definable n-length sequence of reals.

Let J = (Jn | n < w).
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Tree iteration of Jensen's forcing

The tree w<*

001 0n0 Onl On2

000

Onn

(n+1)0(n+1)1(n+1)2

P(J,w<*): iteration along the tree w<*

J, such that: (po, 41, f1)
o D, is a finite subtree of w<*,
o forall s € Dy, p(s) € Jien(s), (Po, P1)
o for s C tin Dp, p(s) = p(t) | len(s).

Order: q < p if Dg O D, and for all s € D,

q(s) < p(s)-

Conditions: p: D, — |

n<w
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Tree iteration of Jensen's forcing (continued)

The tree iteration P(J,w<*) adds a tree 7 (isomorphic to w<*) such that each node
on level n has an L-generic n-length sequence of reals for J,.

Theorem: (Friedman, G.) The tree iteration P(J,w<*) has the ccc.
Theorem: (Friedman, G.) Suppose G C P(J,w<*) is L-generic. In L[G]:

@ The only L-generic n-length sequence of reals for J, are those coming from the
nodes of 7°.

@ The collection of all L-generic n-length sequences of reals for J, (any n) is
M3-definable.

Proposition: Suppose
o G CP(J,w<)is L-generic.
o T is a finite subtree of w<¥.
e Gr=G|T.

Then the only L-generic n-length sequences of reals for J, in L[Gr] are those coming
from the nodes of T.
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Kanovei's tree
Suppose G C P(J,w<*) is L-generic. In L[G], define the tree S C T°.

S00001 510001 Sn0001

500000 5n0000

n+1

@ S, S forevery n<w Ser(1) = 100...
° Sy, forevery n.m<w $11(1) = 010...
0, is the sequence of n > 1-many zeroes S 1(1) — 111 L

® S5...1 €S whenever S5y (1)(m) =1
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A model of ¥3-CAq + Z5 " in which Z%—CAO fails

Let
o 7 ={T CS|T finite},
o S={Ac PN | T eI},
o M = (w,+,%,<,0,1,€,8),
o ./ be a canonical P(j,w<“)—name for A .
Every permutation f of w gives rise to an automorphism 7¢ of P(j,w“’) which permutes

the subtrees 7,° (sitting on node S,) of T, while preserving the rest of the tree
structure.

o (M) =M

e forany p,q € ]P’(JT,w<“), there is an automorphism 7¢ such that p and 7¢(q) are
compatible.
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A model of £3-CAq + Z, " in which £3-CAy fails (continued)

Theorem (G.): .# = (M, +,x,<,0,1,&,8) = X3-CAg + Z, ” + ~X3-CAo.
Proof:
o ./ = ¥3-CAg by Shoenfield’s Absoluteness.

o ./ | 7," because every parameter-free A € S is in L by the automorphism
argument.

@ The collection
{F| Anr'is an L-generic n-length sequence for J,} = {Ss|s € T for some T € T}
is n%—deﬁnable /4 (uses the construction of the Jp).

o Su(1) ¢ S.

o Spi1(1) is X3-definable in .#: m € Spi(1) if and only if there are two L-generic
m + 2-length sequences of reals for J,12 whose first coordinate is Sp. [J
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