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Abstract. Lyubetsky and Kanovei showed in [KL] that there is a second-

order arithmetic model of Z−p
2 , (comprehension for all second-order formulas

without parameters), in which Σ1
2-CA (comprehension for all Σ1

2-formulas with

parameters) holds, but Σ1
4-CA fails. They asked whether there is a model of

Z−p
2 +Σ1

2-CA with the optimal failure of Σ1
3-CA. We answer the question pos-

itively by constructing such a model in a forcing extension by a tree iteration

of Jensen’s forcing. Let Coll−p be the parameter-free collection scheme for

second-order formulas and let AC−p be the parameter-free choice scheme. We

show that there is a model of Z−p
2 + AC−p + Σ1

2-CA with a failure of Σ1
4-CA.

We also show that there is a model of Z−p
2 + Coll−p + Σ1

2-CA with a failure of

Σ1
4-CA and a failure of AC−p, so that, in particular, the schemes Coll−p and

AC−p are not equivalent over Z−p
2 .

1. Introduction

The strength of a second-order arithmetic theory depends mostly on the amount
of comprehension that the theory admits. A comprehension scheme specifies which
formulas give collections that turn out to be sets in the model. At the lower extreme,
the second-order theory ACA0 includes comprehension for all first-order formulas
and at the higher extreme, full second-order arithmetic Z2 includes comprehension
for all (second-order) formulas. In between, we have Σ1

n-comprehension schemes for
second-order formulas of complexity Σ1

n (n alternations of set quantifiers followed
by a first-order formula). A precise formulation of these comprehension schemes
should mention that the specified formulas are allowed to use set parameters from
the model. But how significant really are parameters in comprehension? What if
we formulate the comprehension schemes without parameters, do we get equivalent
theories, perhaps, equiconsistent theories?

Let Z−p2 be the version of full second-order arithmetic Z2, where we do not allow
parameters in the comprehension scheme. Friedman showed in [Fri81, Lemma 3.1.7]

that given a model of Z−p2 , we can appropriately restrict its sets to get a model of

Z2. Thus, the theories Z2 and Z−p2 are equiconsistent. In a recent work [KL],

Lyubetsky and Kanovei separated the theories Z2 and Z−p2 by constructing models

of Z−p2 with various failures of comprehension with parameters. They constructed

a model of Z−p2 in which the sets were not even closed under complement, showing
that comprehension without parameters does not even give comprehension with
parameters for Σ0

0-assertions. They next considered whether it was possible to

have a model of Z−p2 with enough comprehension with parameters to carry out
most standard constructions, but still have comprehension with parameters fail
somewhere above. They argued that a reasonable amount of comprehension with
parameters for general mathematical purposes is the Σ1

2-comprehension scheme and
1
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constructed a model of Z−p2 with the Σ1
2-comprehension scheme and a failure of Σ1

4-
comprehension. The model was constructed in a forcing extension by a (non-linear)
tree iteration of Sacks forcing. Lyubetsky and Kanovei asked whether the result
can be improved to obtain the optimal failure of Σ1

3-comprehension [KL, Problem
8.2].

In this article, I answer their question positively by constructing a model with
the required properties, similarly to how the model of [KL] was constructed, in
a forcing extension by a tree iteration of Jensen’s forcing. Jensen’s forcing is a
subposet of Sacks forcing constructed in L using the ♦-principle. Jensen’s forcing
has the ccc and adds a unique generic real whose singleton is Π1

2-definable.1 Jensen
originally introduced the forcing because it gives a forcing extension of L in which
there is a Π1

2-definable non-constructible singleton real [Jen70].

Theorem 1.1. It is consistent that there is a model of Z−p2 together with Σ1
2-

comprehension and a failure of Σ1
3-comprehension.

Theorem 1.1 is proved in Section 3.
If the first-order part of a second-order arithmetic model satisfies PA, then via

Gödel’s pairing function, we can view any set in the model as a collection of n-
tuples, for some n < ω, of elements of the model. Among these collections are
orderings of the first-order domain of the model, which the model believes are well-
orders. In a model of Z2, these well-orders are comparable in that given any two of
them, there is a set coding an isomorphism of one of them with an initial segment
of the other. Using coding, a model of Z2 can construct an initial segment of the
L-hierarchy along any of its well-orders, and these initial segments are similarly
coherent (for details of the construction, see [Sim09], Chapter VII). We will call
a real of a model of Z2 constructible if it appears in an initial segment of the L-
hierarchy of the model. Similarly, in a model of Z−p2 , we can show that any two
definable without parameters well-orders are comparable and we can construct an
initial segment of the L-hierarchy along any such well-order so that the resulting
structures are coherent. We will call a real of a model of Z−p2 constructible if
it appears in an initial segment of the L-hierarchy constructed along a definable
without parameters well-order.

The theory Z2 can be further strengthened by adding the choice scheme AC,
which is a set choice principle asserting for every second-order formula ϕ(n,X,A)
(with set parameter A) that if for every n, there is a set X such that ϕ(n,X,A)
holds, then there is a single set Y whose n-th slice Yn is a witness for n. It is not
difficult to see that the scheme AC actually implies Z2 over ACA0. The collection
of the constructible reals of a model of Z2 satisfies Z2 + AC (see [Sim09, Section
VII.6]), giving that the two theories are equiconsistent. Friedman’s sub-collection

of a model of Z−p2 , which he showed satisfies Z2, was precisely the constructible reals
of the model, as defined above, coming from the initial segments of the L-hierarchy
constructed along definable without parameters well-orders. His argument addi-
tionally showed that the collection of the constructible reals satisfies AC. Thus,
the theories Z−p2 and Z2 + AC are equiconsistent.

Let AC−p denote the parameter-free choice scheme. Because standard arguments
that the choice scheme AC implies comprehension over ACA0 require parameters,

1A similar forcing can be constructed in any universe in which the ♦-principle holds, not just
in L, and we retain its properties except for, possibly, Π1

2-definability of the generic singleton.



PARAMETER-FREE SCHEMES IN SECOND-ORDER ARITHMETIC 3

it is probably not the case that AC−p implies Z−p2 over ACA0. The reals of the
Feferman-Lévy model of ZF (a symmetric submodel of a forcing extension), in which
ωL1 is countable for every n < ω and ωLω is the first uncountable cardinal [Lév70],
is a model of Z2 in which AC−p fails. In this model (the code of) LωLn exists for

every n < ω, but (the code of) LωLω does not exist, because ωLω is uncountable
in the Feferman-Lévy model, and therefore cannot be coded by a real. Guzicki
constructed a model of ZF (again a symmetric submodel of a forcing extension)
whose reals are a model satisfying Z2 +AC−p in which AC fails [Guz76], separating
the two principles.2

Vladimir Kanovei suggested that I should try to construct a model of Z−p2 +AC−p

together with Σ1
2-comprehension in which there is a failure of Σ1

3-comprehension.
However, the best I was able to get is the following theorem.

Theorem 1.2. It is consistent that there is a model of Z−p2 + AC−p together with
Σ1

2-comprehension in which there is a failure of Σ1
4-comprehension.

Theorem 1.3 is proved in Section 5.
A set existence principle closely related to the choice scheme is the collection

scheme Coll, which asserts for every second-order formula ϕ(n,X,A) (with set
parameter A) that if for every n, there is a set X such that ϕ(n,X,A) holds, then
there is a set Y whose slices are a collecting set for the witnesses X. A slice of Y
may not be one of the witnesses and a witness for n may be on some slice m 6= n.
It is easy to see that over Z2, Coll is equivalent to AC. Over ACA0, Coll implies Z2,
and hence, over ACA0, Coll is equivalent to AC. Let Coll−p be the parameter-free
collection scheme. I separate the schemes Coll−p and AC−p over Z−p2 .

Theorem 1.3. It is consistent that there is a model of Z−p2 + Coll−p together with
Σ1

2-comprehension in which there is a failure of Σ1
4-comprehension and a failure of

AC−p.

Theorem 1.3 is proved in Section 5. Thus, we get:

Theorem 1.4. The schemes Coll−p and AC−p are not equivalent over Z−p
2 .

2. Preliminaries

2.1. Second-order arithmetic. Second-order arithmetic has two types of objects:
numbers and sets of numbers, which we think of as the reals of the model. It is
formalized in a two-sorted logic, which has two separate sorts of variables and
corresponding quantifiers. By convention, we use lower-case variables for numbers
and upper-case variables for sets. The language of second-order arithmetic consists
of the language of PA together with a membership relation ∈ used to determine
which numbers belong to which sets. A model of second-order arithmetic is a
structure M = 〈M,+,×, <, 0, 1,∈,S〉, where M is the universe of numbers and S
is the universe of sets. We associate each set A with a subset ofM consisting of those
a ∈ M such that a ∈ A. This interpretation is formalized by the extensionality
axiom for sets. The second-order arithmetic theories we consider include the PA
axioms for the first-order part together with the extensionality axiom for sets and
a single induction axiom

∀X ((0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀nn ∈ X)

2Recently Lyubetsky and Kanovei showed how to obtain these results involving AC−p starting

with a model of Z2 instead of ZFC [KL23].
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asserting that induction holds for every set. The theories then differ by which
sets are posited to exist. The most common set existence axioms are the com-
prehension schemes. The Σ1

n-comprehension scheme, Σ1
n-CA, asserts that every

Σ1
n-formula with parameters defines a set. Formally, Σ1

n-CA asserts for every
Σ1
n-formula ϕ(n,A), with set parameter A, that there is a set X ∈ S such that

X = {n | ϕ(n,A)}.3 One of the strongest second-order arithmetic theories is full
second-order arithmetic Z2, which includes the comprehension scheme asserting
that every second-order formula with parameters defines a set, namely Σ1

n-CA for
every n < ω. If we exclude parameters from the comprehension scheme, we get the
theory Z−p2 , which is the focus of this article.

Other common set existence principles are the set choice principles. The choice
scheme AC asserts for every second-order formula ϕ(n,X,A) that if ∀n∃X ϕ(n,X)
holds, then there is a set Y such that ∀nϕ(n, Yn, A) holds, where

Yn = {m | 〈m,n〉 ∈ Y }
is the n-th slice of Y . We will denote by AC−p the parameter-free choice scheme.
Closely, related to the choice scheme is the collection scheme, which asserts for every
second-order formula ϕ(n,X,A) that if ∀n∃X ϕ(n,X) holds, then there is a set Y
such that ∀n∃mϕ(n, Ym, A) holds. We will denote by Coll−p the parameter-free
collection scheme.

2.2. Tree iterations of Jensen’s forcing. Recall that a perfect tree is a subtree
of 2<ω in which every node has a splitting node above it. Also recall that given a
tree T and a node s ∈ T , we denote by Ts the subtree of T consisting of all nodes
compatible with s. If T and S are perfect trees whose intersection includes a perfect
tree, then there is a maximal such perfect tree, which we call the meet of T and S
and denote by T ∧ S. A perfect poset P is a collection of perfect trees ordered by
the subtree relation satisfying the following closure properties:

(1) (2<ω)s ∈ P for every s ∈ 2<ω,
(2) if T, S ∈ P, then T ∧ S ∈ P,
(3) finite unions of trees in P are in P.

Perfect posets are subposets of Sacks forcing and they share many of the properties
of Sacks forcing such as that the generic filter is determined by a single generic real
that is precisely the intersection of all the trees in the generic filter. While Sacks
forcing is the largest perfect poset, the smallest perfect poset, which I will denote
by Pmin, is the closure under finite unions of the collection of all trees (2<ω)s for
some s ∈ 2<ω (it is easy to see that this collection is closed under meets).

Given a perfect poset P, let Q(P) be the poset whose elements are pairs (T, n),
where T ∈ P and n < ω, ordered so that (S,m) ≤ (T, n) whenever S is a subtree
of T such that S and T agree up to level n and m ≥ n. Forcing with Q(P) adds a
generic perfect tree. Let Q(P)<ω be the finite-support ω-length product of the Q(P)
and let G ⊆ Q(P)<ω be V -generic. In the forcing extension V [G], let {Tn | n < ω}
be the ω-many generic perfect trees added by G. Finally, let P∗ be the closure of
P and {Tn | n < ω} under finite meets and unions. In V [G], the perfect poset P∗
has the following two key properties:

(1) {Tn | n < ω} is a maximal antichain,

3A single set parameter suffices since we can code finitely many sets by a single set using
Gödel’s pairing function.
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(2) every maximal antichain of P from V remains maximal in P∗

(see [FGK19] for details). Let us now work in the constructible universe L. Let
~D = 〈Dξ | ξ < ω1〉 be the canonical ♦-sequence obtained by letting Dα+1 be the
least counterexample if one exists. Let us call a countable level Lα of L suitable if

Lα |= ZFC− + P (ω) exists.

For example, the collapse of any countable elementary substructure of Lω2
is suit-

able. Observe also that, by canonicity of the ♦-sequence ~D, if Lα is suitable and

δ = (ω1)Lα , then ~D � δ ∈ Lα. We will use suitable models Lα handed to us by ~D
to construct Jensen’s forcing J in ω1-many steps as a continuous chain of length ω1

of countable perfect posets. Let P0 = Pmin. At limit ordinals, we will take unions.
So suppose we have constructed a countable perfect poset Pξ. We let Pξ+1 = Pξ
unless the following happens. Suppose that Dξ codes a suitable model Lαξ such

that Pξ ∈ Lαξ and (ω1)Lαξ = ξ. Then we let Gξ be the L-least Lαξ -generic filter for
Q(Pξ)<ω and let Pξ+1 = P∗ξ as constructed in Lαξ [Gξ]. Notice that by our observa-
tions above, we seal maximal antichains ensuring that the resulting union poset will
have the ccc. We let J =

⋃
ξ<ω1

Pξ. Jensen showed that the poset J has the ccc and

adds a unique generic real, whose singleton is Π1
2-definable [Jen70]. Products and

iterations of Jensen’s forcing also turned out to have “unique generics” properties.
Lyubetsky and Kanovei showed that in a forcing extension by a finite-support

α-length product of Jensen’s forcing the only L-generic reals for J are those explic-
itly added by the (α-many) slices of the generic filter [KL17].

As mentioned in footnote 1, a forcing with the same properties as J, minus the
low complexity of the generic singleton, can be constructed in any model of the
♦-principle. In particular, since ccc posets of size ω1 preserve the ♦-principle,
any forcing extension of L by J continues to satisfy the ♦-principle, and we can
construct a Jensen-like poset again in it. In this way, we can make sense of iterating
Jensen’s forcing and define finite n-length iterations Jn of J. The iterations Jn are
constructed, analogously to Jensen’s forcing, as a chain of length ω1 of iterations

Pξn = Qξ0 · Q̇
ξ
1 · · · Q̇

ξ
n−1 for ξ < ω1, where Pξ0 is a countable perfect poset, and for

i < n− 1,

1lPξn�i 
˙Qξi is a countable perfect poset.

We start with P0
n in which Q0

0 = Pmin and for i < n−1, Q̇0
i = P̌min. At stages ξ+ 1

at which the canonical ♦-sequence ~D codes a suitable model Lαξ , we construct

Pξ+1
n in a generic extension of Lαξ (by an n-length iteration which adds a generic

perfect tree to every iterate in Pξn). As in the case of the construction of Jensen’s
forcing J, every maximal antichain of Pξn remains maximal in Jn (see [FGK19] for
details). Abraham showed that the finite iterations Jn have the ccc and add a
unique n-length generic sequence of reals [Abr84, Lemma 2.3 and 2.4].

In [FGK19], together with Friedman and Kanovei, we studied the properties
of the (non-linear) tree iterations of J. Suppose that T is a tree of height at
most ω. We will call the following poset P(J, T ) the tree iteration of J along T .
Elements of P(J, T ) are functions p from a finite subtree Dp of T into

⋃
n<ω Jn

such that for every node s ∈ Dp, p(s) ∈ Jlen(s) and whenever s ⊆ t in Dp, then
p(s) = p(t) � len(s). In other words, a condition is a tree isomorphic to a finite
subtree of T whose level n nodes are elements of the n-length iteration Jn and
the assignment is coherent in the sense that conditions on the lower nodes are



6 VICTORIA GITMAN

restrictions of the conditions on the higher nodes. The elements are ordered so
that q ≤ p if Dp ⊆ Dq and for every node s ∈ Dp, q(s) ≤ p(s). A generic filter G
for P(J, T ) adds a tree T G isomorphic to T whose nodes on level n are mutually
generic sequences for Jn.

Theorem 2.1 ([FGK19]). Suppose that T = ω<ω or T = ω<ω1 . Then the tree
iteration P(J, T ) has the ccc.

The tree iterations of J also have a “uniqueness of generics” property generalizing
Lyubetsky and Kanovei’s result for finite-support products of J.

Theorem 2.2 ([FGK19]). Suppose that T = ω<ω or T = ω<ω1 and G ⊆ P(J, T ) is
L-generic. In L[G]:

(1) The only L-generic sequences of reals for Jn are those coming from the
nodes of T G on level n.

(2) The collection of all L-generic n-length sequences of reals for Jn is Π1
2-

definable.

The following two technical propositions will be very useful in later argument.

Proposition 2.3. Conditions p, q ∈ P(J, T ) are incompatible if and only if there
is a node s ∈ Dp ∩Dq such that p(s) and q(s) are incompatible in Jlen(s).

Proof. Clearly, if there is a node s ∈ Dp ∩Dq such that q(s) is incompatible with
p(s), then q and p are incompatible. So suppose that for every node s ∈ Dp ∩Dq,
p(s) and q(s) are compatible. Let D = Dp ∪ Dq. Let p′ ≤ p be the following
condition with domain D. If s ∈ Dp, then p′(s) = p(s). If s /∈ Dp, let i be largest
such that s � i ∈ Dp and let p′(s) be s � i concatenated with the trivial tail.
Similarly, we can define the condition q′ ≤ q with domain D. Note that p′ and q′

have the property that for every s ∈ D, p′(s) and q′(s) are compatible. Notice that
since a condition in P(J, T ) is a finite tree, it is determined by its top nodes. For
every top node s ∈ D, let rs ≤ p′(s), q′(s). Let r be the condition with domain D
such that r(s) = rs for every top node s. Clearly, r ≤ p′, q′, and hence r ≤ p, q. �

Suppose that G ⊆ P(J, T ) is L-generic. Given a subtree T of T , let GT consist
of all conditions p ∈ G with domain Dp ⊆ T .

Proposition 2.4. Suppose that T is a subtree of T . Then GT is L-generic for
P(J, T ).

Proof. Suppose that p ∈ GT and q ≥ p in P(J, T ). Then q ≥ p in P(J, T ), and
hence q ∈ GT . Next, suppose that p, q ∈ GT . Since p, q ∈ G, there is r ∈ G such
that r ≤ p, q. Let r′ be the restriction of r to Dp ∪Dq. Then r is compatible with
every condition in G by Proposition 2.3. Thus, r ∈ G, and hence r ∈ GT . Finally,
suppose that A is a maximal antichain of P(J, T ). Let’s argue that A is also a
maximal antichain of P(J, T ). Let p ∈ P(J, T ) and let p′ be the restriction of p to
nodes contained in T . Then there is a ∈ A that is compatible with p′, but then
a is also compatible with p by Proposition 2.3. Thus, there is p ∈ G ∩ A. This
completes the argument that GT is L-generic for P(J, T ). �

2.3. Automorphisms of forcing notions. Suppose that P is a partial order, π
is an automorphism of P, and G ⊆ P is V -generic. We can apply π recursively
to any P-name σ to obtain the P-name π(σ) defined by 〈τ, p〉 ∈ σ if and only if
〈π(τ), π(p)〉 ∈ π(σ). Standard arguments then show that for a condition p ∈ P,
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p  ϕ(σ) if and only if π(p)  ϕ(π(σ)). It is also easy to see that π "G is V -generic.
We will use the following standard proposition later, and we include the proof here
for completeness.

Proposition 2.5. Suppose that σ is a P-name. Then π(σ)G = σπ−1"G.

Proof. We can assume recursively that we already showed the conclusion for all
P-names τ of rank less than σ. Suppose that b ∈ σπ−1"G. Then there is a P-

name ḃ such that b = ḃπ−1"G, 〈ḃ, p〉 ∈ σ, and p ∈ π−1 " G. Let π−1(p̄) = p. Then

〈π(ḃ), p̄〉 ∈ π(σ) and p̄ ∈ G. Thus, π(ḃ)G ∈ π(σ)G, and by our recursive assumption,

since ḃ has rank less than σ, π(ḃ)G = ḃπ−1"G, and so, b ∈ π(σ)G. Reversing the
steps of this argument shows that if b ∈ π(σ)G, then b ∈ σπ−1"G, verifying the
equality. �

3. A model of Z−p2 + Σ1
2-CA+¬Σ1

3-CA

Let G ⊆ P(J, ω<ω) be L-generic. We work in L[G]. Let ϕ̇ be the canonical name
for the isomorphism between ω<ω and the tree, added by G, whose nodes on level
n are mutually generic sequences of reals for Jn.

Observe that any automorphism π of the tree ω<ω gives rise to the obvious
corresponding automorphism π∗ of the poset P(J, ω<ω).

Theorem 3.1. Suppose that T is a finite subtree of ω<ω. Then the only L-generic
sequences for Jn in L[GT ] are the sequences ϕ̇G(s) for s ∈ T .

Proof. Let r ∈ L[GT ] be an n-length sequence of reals L-generic for Jn. Then by
Theorem 2.2 (1), r = ϕ̇G(s) for some node s on level n of ω<ω. Suppose towards
a contradiction that s /∈ T . Let i ≥ 1 be least such that s � i /∈ T . Let ṙ be
a P(J, T )-name for r. Let p ∈ G be such that p  ṙ = ϕ̇(š). Fix any condition
q ≤ p. Let t ∈ ω<ω be a node on the same level as s such that t � i− 1 = s � i− 1
and t /∈ Dq ∪ T ∪ {s}. Many such nodes t must exist since Dq and T are both
finite. Let π be an automorphism of ω<ω which maps (ω<ω)s onto (ω<ω)t, while
fixing everything outside these subtrees. In particular, π fixes T and π(s) = t.
Let Dq̄ = Dq ∪ π " Dq and let q̄ be the condition defined so that for a ∈ Dq,
q̄(a) = q̄(π(a)) = q(a). In other words, conditions on nodes in Dq ∩ (ω<ω)s are
copied over to (ω<ω)t. This means, in particular, that π∗(q̄) = q̄. We have just
argued that such conditions q̄ are dense below p, and so some such q̄ ∈ G. Let
H = π∗ " G, which is also L-generic for P(J, ω<ω), and note that π∗(q̄) = q̄ ∈ H.
Observe that ṙH = ṙG = r since the name ṙ only mentioned conditions with domain
contained in T , and π fixes T . Since p ≥ q̄, p ∈ H. So it must be the case that
r = ϕ̇H(s). But this is impossible because ϕ̇H(s) = ϕ̇G(t) and, by genericity,
ϕ̇G(s) 6= ϕ̇G(t). �

It is not clear how to make the argument above work for infinite subtrees T ∈ L,
and I suspect that the result will turn out to be false for these.

We now follow the ideas in [KL] to define the following subtree T of ω<ω in L[G].

For 1 ≤ m < ω, let ~0m denote the m-length sequence of zeroes. We have for every
n < ω and 1 ≤ m < ω:

(1) 〈n〉 ∈ T ,

(2) 〈n〉_~0m ∈ T ,

(3) 〈n〉_~0m+1
_〈1〉 ∈ T if and only if ϕ̇G(〈n, 1〉)(1)(m) = 1.
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Condition (1) puts all level 1 nodes of ω<ω into T . Condition (2) puts all left-most
branches of ω<ω above level 1 nodes into T . Condition (3) says that a node on
level m+ 1 of the left-most branch above 〈n〉 splits in T if and only if the m-th bit
of the second real in the pair of reals ϕ̇G(〈n, 1〉) is 1. Condition (3) is coding the

reals ϕ̇G(〈n, 1〉)(1) into the tree T . Let Ṫ be the canonical P(J, ω<ω)-name for T .
Let

S = {A ∈ PL[GT ](ω) | T ⊆ T is a finite tree},
and let

M = 〈M,+,×, <, 0, 1 ∈,S〉
be a model of second-order arithmetic in L[G]. We will argue that the model M
has all the required properties.

Proposition 3.2. S = {A ∈ PL[{ϕ̇G(s)|s∈X}](ω) | X ⊆ T is finite}.

Proof. Suppose that A ∈ PL[{ϕ̇G(s)|s∈X}](ω) for some finite X ⊆ T . Let X ⊆ T ,
where T is a finite subtree of T . Then A ∈ L[{ϕ̇G(s) | s ∈ X}] ⊆ L[GT ]. Next,
suppose that A ∈ L[GT ] for some finite subtree T of T . The generic GT is clearly
inter-definable with the collection {ϕ̇G(s) | s ∈ T}, which means that A ∈ L[GT ] =
L[{ϕ̇G(s) | s ∈ T}]. �

In other words, S depends only on the collection T̄ = {ϕ̇G(s) | s ∈ T }. Let Ṡ
be the canonical P(J, ω<ω)-name for S. Since, via coding, we can view L-generic
sequences for Jn as subsets of ω, we can talk about these sequences internally to
the model M. In particular, clearly T̄ ⊆ S.

Lemma 3.3. For every n-length sequence of reals r ∈ S, we have that r is L-generic
for Jn for some n < ω if and only if r ∈ T̄ . Hence ϕ̇G(〈0, 1〉) /∈ S.

Proof. Suppose that r ∈ S is an n-length sequence L-generic for Jn. Then r ∈ L[GT ]
for some finite tree T ⊆ T . But then, by Theorem 3.1, r = ϕ̇G(s) for some s ∈ T .
Since 〈0, 1〉 /∈ T , it follows that ϕ̇G(〈0, 1〉) /∈ S. �

Observe that any permutation f ∈ L of ω gives rise to the automorphism πf
of the tree ω<ω which correspondingly permutes the trees (ω<ω)〈n〉 for n < ω.
More precisely πf (〈n0, n1, . . . , nlen(s)−1〉) = 〈f(n0), n1, . . . , nlen(s)−1〉). Given any
two conditions p, q ∈ P(J, ω<ω), there is a permutation f ∈ L of ω such that p
and π∗f (q) are compatible, namely, let f be any permutation such that for every

〈n〉 ∈ Dp ∩Dq, f(n) = m for some m such that 〈m〉 /∈ Dp. We will argue that the
collection T̄ is not affected by applying automorphisms π∗f to the generic filter G,
and hence neither is the collection S.

Lemma 3.4. For any permutation f ∈ L of ω, if π∗f " G = H, then ϕ̇G " T =

ϕ̇H " ṪH , and hence S = ṠH .

Proof. Suppose that s = 〈n〉 for some n < ω and let r = ϕ̇G(s). Then r =

ϕ̇H(〈f(n)〉) by the definition of πf , and hence r ∈ ϕ̇H " ṪH . Next, suppose

that s = 〈n〉_~0m for some n < ω and 1 ≤ m < ω, and r = ϕ̇G(s). Then

r = ϕ̇H(〈f(n)〉_~0m) by the definition of πf , and hence r ∈ ϕ̇H"ṪH . Finally, suppose

that s = 〈n〉_~0m+1
_〈1〉 ∈ T for some n < ω and 1 ≤ m < ω, and r = ϕ̇G(s). Then

ϕ̇G(〈n, 1〉)(1)(m) = 1 by the definition of T , and hence ϕ̇H(〈f(n), 1〉)(1)(m) = 1 by

the definition of πf . Thus, r = ϕ̇G(〈n〉_~0m+1
_〈1〉) = ϕ̇H(〈f(n)〉_~0m+1

_〈1〉) ∈ ṪH



PARAMETER-FREE SCHEMES IN SECOND-ORDER ARITHMETIC 9

by the definition of Ṫ . Since f−1 is also a permutation of ω, the same argument
shows that ϕ̇H " ṪH ⊆ ϕ̇G " T . Since S depends only on ϕ̇G " T , it follows imme-
diately that S = ṠH . �

Corollary 3.5. For any permutation f ∈ L of ω, 1lP(J,ω<ω) Ṡ = π∗f (Ṡ).

Proof. We need to show that for any L-generic filter Ḡ for P(J, ω<ω), ṠḠ = π∗f (Ṡ)Ḡ.

By Lemma 3.4, we know that ṠḠ = Ṡπ∗
f−1"Ḡ

. Since, clearly, πf−1 = π−1
f , we have

ṠḠ = Ṡπ∗−1
f "Ḡ. By Proposition 2.5, we have ṠḠ = Ṡπ∗−1

f "Ḡ = π∗f (Ṡ)Ḡ. �

Lemma 3.6. The model M = 〈ω,+,×, <, 0, 1,S〉 |= Z−p2 .

Proof. Suppose that ψ(x) is a second-order arithmetic formula. We need to argue
that

A = {n ∈ ω | M |= ψ(x)} ∈ S.
Indeed, we will argue that A ∈ L by showing that if M |= ψ(n) for some n < ω,
then

1lP(J,ω<ω)  〈ω,+,×, <, 0, 1, Ṡ〉 |= ψ(n).

Suppose toward a contradiction that p, q ∈ P(J, ω<ω) and n < ω such that

p  〈ω,+,×, <, 0, 1, Ṡ〉 |= ψ(n)

and
q  〈ω,+,×, <, 0, 1, Ṡ〉 6|= ψ(n).

Let f ∈ L be a permutation of ω such that p and π∗f (q) are compatible. We have

π∗f (q)  〈ω,+,×, <, 0, 1, π∗f (Ṡ)〉 6|= ψ(n).

But since by Corollary 3.5, 1lP(J,ω<ω)  Ṡ = π∗f (Ṡ),

π∗f (q)  〈ω,+,×, <, 0, 1, Ṡ〉 6|= ψ(n).

Let r ≤ p, π∗f (q). Then

r  〈ω,+,×, <, 0, 1, Ṡ〉 |= ψ(n)

and
r  〈ω,+,×, <, 0, 1, Ṡ〉 6|= ψ(n),

which is the desired contradiction. �

Lemma 3.7. The collection T̄ = {ϕ̇G(s) | s ∈ T } is definable in M by a Π1
2-

formula.

Proof. By Lemma 3.3, for every n-length sequence r ∈ S, r ∈ T̄ if and only if r is
an n-length sequence of reals L-generic for some Jn. Thus, it suffices to argue that
M can recognize in a Π1

2-way whether an n-length sequence of reals is L-generic
for Jn. Recall, from Section 2.2, that the iteration Jn is constructed as the union
of the ω1-length chain of iterations Pξn for ξ < ω1, and every maximal antichain of
Pξn remains maximal in Jn (for the precise result, see Lemma 6.11 (4) in [FGK19]).
Thus, any n-length L-generic sequence of reals for Jn is also Lαξ -generic for Pξn,
where ξ + 1 is a non-trivial stage in the construction of Jn. Since each iteration
Jn has the ccc, the converse holds as well: if an n-length sequence of reals is Lαξ -

generic for Pξn for all non-trivial stages ξ + 1 in the construction of Jn, then it is
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fully L-generic for Jn. Next, observe that whether an n-length sequence of reals r
is Lαξ -generic for Pξn can be verified in any Lα[r] |= ZFC− with α > ξ. Notice also

that any Lα |= ZFC− can verify whether ξ + 1 < α is a non-trivial stage in the
construction of Jn. Putting it all together, we get that an n-length sequence r of
reals is L-generic for Jn if and only if for every α < ω1 such that Lα[r] |= ZFC−,
if ξ < α is such that ξ + 1 is a non-trivial stage in the construction of Jn, then
Lα[r] satisfies that r is Lαξ -generic for Pξn. Because S is the union powersets of
ω for models of the form L[A], given any r ∈ S, S has (a code for) Lα[r] for any
countable α and r ∈ S. Thus, an n-length sequence r ∈ S of reals is L-generic for
Jn if and only if M satisfies that for every class X, Y , Z, if X is a well-order and
Y codes LX [r] and Z is a truth predicate for LX [r] and LX [r] |= ZFC− (according
to Z), then r is Lαξ -generic for Pξn for every non-trivial successor stage ξ+1 in LX .

The formula is Π1
2 because being a well-order is Π1

1. �

Lemma 3.8. ϕ̇G(〈0, 1〉) is definable in M from the parameter ϕ̇G(〈0〉) by a Σ1
3-

formula. Thus, Σ1
3-CA fails in M.

Proof. We have that m ∈ ϕ̇G(〈0, 1〉)(1) if and only if there are two L-generic m+1-
length sequences of reals generic for Jm whose first coordinate is ϕ̇G(〈0〉). By
Lemma 3.7, this is a Σ1

3-formula with parameter ϕ̇G(〈0〉). Since ϕ̇G(〈0, 1〉) /∈ S,
Σ1

3-CA fails in M. �

Lemma 3.9. Σ1
2-CA holds in M.

Proof. Let A ∈ S and fix a formula ψ(x,A) := ∃X∀Y ϕ(x,X, Y,A), where ϕ is a
first-order formula. We will argue that

{n ∈ ω | L[A] |= ψ(n,A)} = {n ∈ ω | M |= ψ(n,A)}.

This suffices since if A ∈ S, then A ∈ L[GT ] for some finite subtree T of T , and
hence the set {n ∈ ω | L[A] |= ψ(n,A)} is in L[GT ] as well.

Suppose L[A] |= ψ(n,A) for some n < ω. Let C ∈ S. By Shoenfield’s ab-
soluteness, L[A,C] |= ψ(n,A). Thus, there is B ∈ L[A,C] such that L[A,C] |=
ϕ(n,C,B,A). Since A,C ∈ S, PL[A,C](ω) ⊆ S, and so B ∈ S. Thus, M |=
ϕ(n,C,B,A). Since C ∈ S was arbitrary, M |= ψ(n,A). Next, suppose that
M |= ψ(n,A). Fix C ∈ L[A]. Then M |= ∃Y ϕ(n,C, Y,A). Fix B ∈ S such
that M |= ϕ(n,C,B,A). Then L[A,C,B] |= ϕ(n,C,B,A), and so L[A,C,B] |=
∃Y ϕ(n,C, Y,A). But then by Shoenfield’s absoluteness, L[A] |= ∃Y ϕ(n,C, Y,A).
Since C ∈ L[A] was arbitrary, L[A] |= ψ(n,A). �

This finishes the argument that M |= Z−p2 + Σ1
2-CA+¬Σ1

3-CA. Finally, let’s
observe that the parameter-free collection scheme fails in M.

Proposition 3.10. Coll−p fails in M.

Proof. The model M satisfies that for every n, there is an n-length L-generic se-
quence of reals for Jn. But there cannot be a single set X ∈ S collecting on its
slices n-length L-generic sequences of reals for Jn for every n < ω because X has
to come from some L[GT ], where T is a finite tree. Since T is finite, by the unique-
ness Theorem 3.1, there is some n < ω such that L[GT ] cannot have an L-generic
sequence of reals for Jn. �
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4. A model of Z−p2 + Coll−p with Σ1
2-CA and a failure of Σ1

4-CA and AC

In this section, we will do a more complicated version of the construction in
Section 3 using a forcing extension of L by P(J, ω<ω1 ) instead of P(J, ω<ω).

Let G ⊆ P(J, ω<ω1 ) be L-generic. We work in L[G]. Let ϕ̇ be the canonical name
for the isomorphism between ω<ω1 and the tree, added by G, whose nodes on level
n are mutually generic sequences of reals for Jn.

We start with the following generalization of Theorem 3.1.

Theorem 4.1. Suppose that T ∈ L that is a countable subtree of ω<ω1 . Then the
only L-generic sequences for Jn in L[GT ] are the sequences ϕ̇G(s) for s ∈ T .

The proof is analogous to the proof of Theorem 3.1, using that ω<ω1 is uncount-
able and the tree T is countable to have enough room to find the required node t
for the automorphism.

We define the following subtree T of ω<ω1 in L[G]. We have for every ξ < ω1,
1 ≤ m < ω, n < ω:

(1) 〈ξ〉 ∈ T ,

(2) 〈ξ〉_~0m ∈ T ,

(3) 〈ξ〉_~0m+1
_〈n〉 ∈ T

(4) 〈ξ〉_~0m+1
_〈η〉 ∈ T for all η < ω1 if and only if ϕ̇G(〈ξ, 1〉)(1)(m) = 1.

Conditions (3) and (4) say that whether a node 〈ξ〉_~0m+1 of a left-most branch
above a level 1 node splits into ω-many or ω1-many nodes depends on whether
ϕ̇G(〈ξ, 1〉)(1)(m) = 1.

Let

S = {A ∈ PL[GT ](ω) | T ⊆ T is a countable tree and T ∈ L},
and let

M = 〈M,+,×, <, 0, 1 ∈,S〉.
We will argue that the model M has all the required properties.

As before, let T̄ = {ϕ̇G(s) | s ∈ T } and let Ṡ be the canonical P(J, ω<ω1 )-name
for S. Using Theorem 4.1, we show:

Lemma 4.2. For every n-length sequence of reals r ∈ S, we have that r is an
n-length sequence of reals L-generic for Jn for some n < ω if and only if r ∈ T̄ .
Hence ϕ̇G(〈0, 1〉) /∈ S.

Observe that any permutation f ∈ L of ω1 gives rise to the automorphism πf of
the tree ω<ω1 which correspondingly permutes the trees (ω<ω1 )〈ξ〉 for ξ < ω1. More
precisely πf (〈ξ0, ξ1, . . . , ξlen(s)−1〉) = 〈f(ξ0), ξ1, . . . , ξlen(s)−1〉). As before, given any

two conditions p, q ∈ P(J, ω<ω1 ), there is a permutation f ∈ L of ω1 such that p
and π∗f (q) are compatible. We will argue that the collection S is not affected by
applying automorphisms π∗f to the generic filter G.

Lemma 4.3. For any permutation f ∈ L of ω1, we have S = Ṡπ∗f"G. Thus,

1lP(J,ω<ω1 )  Ṡ = π∗f (Ṡ).

Proof. Suppose that T ∈ L is a countable subtree of T . Let T ′ = πf "T . Let’s argue

that T ′ ⊆ ṪH . It suffices to focus on nodes s = 〈ξ〉_~0m+1
_〈η〉, where η /∈ ω. So

suppose s ∈ T . It follows that ϕ̇G(〈ξ, 1〉)(1)(m) = 1, and so ϕ̇H(〈f(ξ), 1〉)(m) = 1,

which means that πf (s) = 〈f(ξ)〉_~0m+1
_〈η〉 ∈ ṪH . Since f−1 is also a permutation
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of ω1, we have that if T ′ ∈ L is a countable subtree of ṪH , then πf−1 " T ′ = T
is a subtree of T . Next, observe that given such trees T and T ′, we have that
L[GT ] = L[HT ′ ] because the trees T and T ′ are isomorphic by πf , making the
posets P(J, T ) and P(J, T ′) isomorphic by π∗f , and the isomorphism takes GT to

HT ′ . It follows that S = Ṡπ∗f"G. �

Analogues of Lemma 3.6 and Lemma 3.9 in Section 3 give that M satisfies
Z−p2 + Σ1

2-CA.

Lemma 4.4. ϕ̇G(〈0, 1〉) is definable in M from the parameter ϕ̇G(〈0〉) by a Π1
4-

formula. Thus, Σ1
4-CA fails in M.

Proof. Recall that for m < ω, ϕ̇G(〈0, 1〉)(1)(m) = 1 if and only if T splits ω1-many

times above the node 〈0〉_~0m. In this case, S does not have a maximal set of L-
generic sequences for Jm+1 whose first coordinate is ϕ̇G(〈0〉). More formally, there
is no set A ∈ S such that each slice An is an L-generic m + 1-length sequence
for Jm+1 whose first coordinate is ϕ̇G(〈0〉) and whenever R is an L-generic m+ 1-
length sequence for Jm+1 whose first coordinate is ϕ̇G(〈0〉), then R = An for some
n < ω. The assertion that each slice An is an L-generic m+ 1-length sequence for
Jm+1 whose first coordinate is ϕ̇G(〈0〉) is Π1

2 and the assertion that every L-generic
m+1-length sequence R for Jm+1, whose first coordinate is ϕ̇G(〈0〉), is An for some
n < ω is Π1

3. Thus, the assertion that A is maximal as above is Π1
3, and therefore,

the assertion that there is no such A is Π1
4. �

Next, we verify that M |= Coll−p.
Given a condition p ∈ P(J, ω<ω1 ) and a subtree T of ω<ω1 , let p � T be the

restriction of p to the domain Dp ∩ T . We will call a countable subtree T ∈ L

of T full if whenever it contains a node 〈ξ〉, then it contains all nodes 〈ξ〉_~0m for

1 ≤ m < ω and all nodes 〈ξ〉_~0m+1
_〈n〉 for n < ω and 1 ≤ m < ω. We will call a

countable tree T ∈ L undecided if the only nodes in T are of the form 〈ξ〉 for some

ξ < ω1 or 〈ξ〉_~0m for some m < ω or 〈ξ〉_~0m+1
_〈n〉 for some n < ω and 1 ≤ m < ω.

Observe that every undecided tree T is automatically contained in T . As the name
suggests, we cannot tell from an undecided tree whether ϕ̇G(〈ξ, 1〉)(1)(m) = 1 for
any ξ < ω1 and m < ω.

Lemma 4.5. Suppose that T ∈ L is a full countable subtree of T , ϕ(x,X) is a
second-order formula, and there is A ∈ L[GT ] such that M |= ϕ(n,A). Then there
is a full undecided countable tree T̄ ∈ L and Ā ∈ L[GT̄ ] such that M |= ϕ(n, Ā).

Proof. Let p ∈ G be such that

p  ∃X ∈ L[ĠT ] 〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n,X).

Let’s argue that there can only be finitely many ξ < ω1 such that 〈ξ〉_~0m+1
_〈η〉 ∈ T

for some η /∈ ω. Since T ⊆ T , there is some condition q ∈ G such that q  T ⊆ Ṫ .
Thus, for every node 〈ξ〉_~0m+1

_〈η〉 ∈ T with η /∈ ω,

q  ϕ̇G(〈ξ, 1〉)(1)(m) = 1.

But this is clearly only possible for ξ such that 〈ξ〉 ∈ Dq, and Dq is finite. So let

{ξ0, . . . , ξn−1} be a finite set such that if 〈ξ〉_~0m+1
_〈η〉 ∈ T with η /∈ ω, then ξ = ξi

for some i < n. By strengthening the condition p, we can assume that

(1) {〈ξi〉 | i < n} are exactly the level 1 nodes in Dp,
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(2) for i < n, 〈ξi, 1〉 ∈ Dp,

(3) for every 〈ξi〉_~0m+1
_〈η〉 ∈ T with η /∈ ω, p(〈ξi〉)  p(〈ξi, 1〉)(1)(m) = 1.

Fix some ~η = {ηi | i < n} such that for i < n, 〈ηi〉 /∈ T ∪ {〈ξi〉 | i < n}, which is
possible since T is countable. Let f : ω1 → ω1 such that f(ξi) = ηi, f(ηi) = ξi for
i < n and f(ξ) = ξ otherwise. For each i < n and 1 ≤ m < ω, let fi,m : ω1 → ω1

be a bijection which maps the set

{η < ω1 | 〈ξi〉_~0m+1
_〈η〉 ∈ T}

onto ω. Let π~η be the following automorphism of ω<ω1 . If t = 〈α0, α1 . . . , αn〉
does not end-extend a node s = 〈α〉_~0m+1

_〈η〉 with α = ξi or α = ηi for some

i < n, then π~η(t) = 〈f(α0), α1, . . . , αn〉. Suppose s = 〈α〉_~0m+1
_〈η〉, where α = ξi

or α = ηi. If α = ξi, then π~η(s) = 〈f(α)〉_~0m+1
_〈fi,m(η)〉 and if α = ηi, then

π~η(s) = 〈f(α)〉_~0m+1
_〈f−1

i,m(η)〉. To summarize, π~η switches the tree (ω<ω1 )ξi with

the tree (ω<ω1 )ηi for i < n, keeping everything the same other than mapping nodes

of the form s = 〈ξi〉_~0m+1
_〈η〉 to nodes of the form t = 〈ηi〉_~0m+1

_〈η̄〉 such that
if s ∈ T , then η̄ < ω. This ensures that the image of T under π~η is an undecided
tree.

By density, we can find such a set of nodes ~η and a condition q ∈ G with
Dq = Dp ∪ π~η " Dp such that for nodes s ∈ Dp, q(s) = p(s) and q(π~η(s)) = p(s).
In particular, q ≤ p. By the definition of π~η, this means that π∗~η(q) = q. Let

π∗~η " G = H. It is easy to see that if S is a subtree of T , then S′ = π~η " S is a

subtree of ṪH . So let’s argue that if S′ is a subtree of ṪH , then S = π−1
~η " S′ is a

subtree of T . The main concern is to show that if ϕ̇H(〈ηi, 1〉)(m)(1) = 0, then for

every t = 〈ηi〉_~0m+1
_〈n〉 ∈ S′ with n < ω, π~η(t) = 〈ξi〉_~0m+1

_〈k〉 with k < ω.
But this is true because, according to π~η, the only situation in which k might end
up outside of ω is when π~η(t) ∈ T , and in this case, by our assumption on p,
q(〈ηi〉) = p(〈ξi〉)  p(〈ξi, 1〉)(1)(m) = 1, and p(〈ξi, 1〉) = q(〈ηi, 1〉), which means
that ϕ̇G(〈ηi, 1〉)(1)(m) = 1.

Thus, by our usual arguments, the automorphism π∗~η does not affect S. Next,

observe that π∗~η " T = T ′ is a full undecided subtree of ṪH . Since q ≤ p,

q  ∃X ∈ L[ĠT ] 〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n,X).

Since q = π∗~η(q) ∈ H and π∗~η does not affect S, there is A ∈ L[HT ] such that

M |= ϕ(n,A). But now since T is isomorphic to T ′ via π~η, the posets P(J, T ) and
P(J, T ′) are isomorphic via π∗~η , which means that L[HT ] = L[GT ′ ]. Since T ′ is
undecidable, we have proved what we promised. �

Lemma 4.6. M |= Coll−p.

Proof. Suppose thatM |= ∀n∃X ϕ(n,X) for some second-order arithmetic formula
ϕ(n,X). Given n < ω, by Lemma 4.5, there is a full undecided countable subtree
Tn ∈ L and X ∈ L[GTn ] such that M |= ϕ(n,X). By extending Tn to a larger
tree, if necessary, we can assume that {ξ < ω1 | 〈ξ〉 ∈ Tn} is an ordinal αn. Let
α =

⋃
n<ω αn and let T be the full undecided tree whose level 1 nodes are precisely

〈ξ〉 for ξ < α. Then each Tn is contained in T . Thus, for every n < ω, there is
some X ∈ L[GT ] such that M |= ϕ(n,X).

Since P(J, ω<ω1 ) has the ccc by Theorem 2.1, all P(J, ω<ω1 )-nice names for reals
are in Lω1

. Thus, there is a countable ordinal β such that Lβ already has, for
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every n < ω, a P(J, T )-name Ẋn such that M |= ϕ(n, (Ẋn)G). It follows that

{ẊGT | Ẋ ∈ Lβ is a P(J, T )-name} is a countable set of reals in L[GT ] having a
witness to M |= ϕ(n,X) for every n < ω, and this set is in S. �

This finishes the argument that M |= Z−p2 + Coll−p + Σ1
2-CA+¬Σ1

4-CA.
Finally, let’s observe that AC−p fails in M.

Lemma 4.7. AC−p fails in M

Proof. The model M satisfies that for every n < ω, there is an L-generic real Y
for J and s ∈ 2n such that for i < n, s(i) = 1 if and only if for every set coding
ω-many m+ 1-length L-generic sequences for Jm+1 with Y as the first coordinate,
there is another m+ 1-length L-generic sequence for Jm+1 not in the set. In other
words, if Y = ϕ̇G(〈ξ〉), then s = ϕ̇G(〈ξ, 1〉) � n.

Suppose that M |= AC−p. Then S has a set A such that An codes Yn and
sn witnessing the statement above. Let T ∈ L be a countable subtree of T such
that A ∈ L[GT ]. First, let’s observe that there cannot be cofinally many n < ω
such that An codes the same real Y because if this was the case and Y = ϕ̇G(〈ξ〉),
then using Σ1

2-CA, we could argue that ϕ̇G(〈ξ, 1〉) ∈ S. Thus, there are countably
many different reals Y coded on the slices of A. Next, we fix a condition p and a
P(J, T )-name Ȧ such that p forces that for all n < ω, Ȧn codes, for some ξ < ω1,
ϕ̇(〈ξ〉) and ϕ̇(〈ξ, 1〉) � n. Choose some Yn = ϕ̇G(〈α〉) with 〈α〉 /∈ Dp, which is
possible since there are infinitely many different Y and p is finite. Next choose
some η < ω1 such that 〈α, η〉 /∈ Dp and ϕ̇G(〈α, η〉) � n 6= ϕ̇G(〈α, 1〉) � n, which
must exist by density. Let π be an automorphism of ω<ω1 which switches the trees
(ω<ω1 )〈α,1〉 and (ω<ω1 )〈α,η〉, while preserving everything else, and note that π fixes
T and p by our choice of α and η. Let H = π∗ "G, and note that π∗(p) = p ∈ H.

Also, π∗(p) = p forces that for all n < ω, π∗(Ȧ)n = Ȧn codes, for some ξ < ω1,

ϕ̇(〈ξ〉) and ϕ̇(〈ξ, 1〉) � n. Now we have that ȦG = ȦH , but ϕ̇H(〈α, 1〉) = ϕ̇G(〈α, η〉),
and, by construction, ϕ̇G(〈α, 1〉) � n 6= ϕ̇G(〈α, η〉) � n. Thus, we have reached a
contradiction, showing that such a set A cannot exist. �

Corollary 4.8. The schemes AC−p and Coll−p are not equivalent over Z−p
2 or

even over Z−p
2 + Σ1

2-CA.

5. A model of Z−p2 + AC−p with Σ1
2-CA and a failure of Σ1

4-CA

In this section, we will again be working in a forcing extension of L by P(J, ω<ω1 ),
but we are going to change the tree T to code in a different set to witness the failure
of comprehension with parameters in our model.

Let G ⊆ P(J, ω<ω1 ) be L-generic. We work in L[G]. Let ϕ̇ be the canonical name
for the isomorphism between ω<ω1 and the tree, added by G, whose nodes on level
n are mutually generic sequences of reals for Jn.

In this construction, we are going to define a tree T similarly to how we de-
fined it in the previous sections, but instead of coding, for every ξ < ω1, the sets
ϕ̇G(〈ξ, 1〉)(1) into T , we are going to code in, for every ξ < ω1, the finite fragments
ϕ̇G(〈ξ, n〉)(1) � n for n < ω. Let pn, for n < ω, denote the n-th prime. For n < ω,
we will code the n-length fragment ϕ̇G(〈ξ, n〉)(1) � n so that ϕ̇G(〈ξ, n〉)(1)(m) = 1

if and only if the node 〈ξ〉_~0pmn splits ω1-many times in T .

We define the following subtree T of ω<ω1 in L[G]. We have for every ξ < ω1,
1 ≤ m < ω, n < ω:
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(1) 〈ξ〉 ∈ T ,

(2) 〈ξ〉_~0m ∈ T ,

(3) 〈ξ〉_~0m+1
_〈n〉 ∈ T

(4) 〈ξ〉_~0pmn
_〈η〉 ∈ T for all η < ω1 if and only if ϕ̇G(〈ξ, n〉)(1)(m) = 1 and

m < n.

Let
S = {A ∈ PL[GT ](ω) | T ⊆ T is a countable tree and T ∈ L},

and let
M = 〈M,+,×, <, 0, 1 ∈,S〉.

We will argue that the model M has all the required properties.
As before, let Ṡ be the canonical P(J, ω<ω1 )-name for S. An analogous proof to

the proof of Lemma 4.3 gives:

Lemma 5.1. For any permutation f ∈ L of ω1, we have S = Ṡπ∗f"G. Thus,

1lP(J,ω<ω1 )  Ṡ = π∗f (Ṡ).

Analogues of Lemma 3.6 and Lemma 3.9 in Section 3 give that M satisfies
Z−p2 + Σ1

2-CA.
Let

C = {〈n, i〉 | i < n, ϕ̇G(〈0, n〉)(m) = i}.
It is easy to see using the proof of Lemma 4.4 that C is Π1

4-definable in M from
the parameter ϕ̇G(〈0〉).

Lemma 5.2. The set C /∈ S.

Proof. Suppose towards a contradiction that C ∈ S, and fix a countable subtree
T ∈ L of T such that C ∈ L[GT ]. Let Ċ be a P(J, T )-name such that ĊG = C and
fix a condition

p  Ċ = {〈n, i〉 | i < n, ϕ̇(〈0, n〉)(m) = i}.
Fix some k < ω such that 〈0, k〉 /∈ Dp, which is possible since Dp is finite. Fix
some η < ω1 such that ϕ̇G(〈0, η〉) � k 6= ϕ̇G(〈0, k〉) � k, which must exist by density.
Let π be an automorphism of the tree ω<ω1 which switches the trees (ω<ω1 )〈0,k〉 and

(ω<ω1 )〈0,η〉 and fixes everything else. Observe that π fixes every node in the tree

T . By construction, π∗(p) = p, and since π fixes the tree T , π∗(Ċ) = Ċ. Let
H = π∗ "G. Since π∗(p) = p, p ∈ H. Thus,

C = ĊG = ĊH = {〈n, i〉 | i < n, ϕ̇H(〈0, n〉)(m) = i}
because of the statement forced by p. But, we have

Ck = (ĊG)k = ϕ̇G(〈0, k〉) � k,
while

(ĊH)k = ϕ̇H(〈0, k〉) � k = ϕ̇G(〈0, η〉) � k,
which is impossible by our choice of η. Thus, we have reached the desired contra-
diction showing that C /∈ S. �

Combining our observation about the complexity of the definition of the set C
in the model M with the fact that C 6∈ S, we obtain the following lemma.

Lemma 5.3. The set C is definable in M from the parameter ϕ̇G(〈0〉) by a Π1
4-

formula. Thus, Σ1
4-CA fails in M.
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It remains to verify that AC−p holds in M.
We will use the definitions of a full and undecided tree from Section 4 verbatim.

An analogous proof to that of Lemma 4.5 gives:

Lemma 5.4. Suppose that T ∈ L is a full countable subtree of T , ϕ(x,X) is a
second-order formula, and there is A ∈ L[GT ] such that M |= ϕ(n,A). Then there
is a full undecided countable tree T̄ ∈ L and Ā ∈ L[GT̄ ] such that M |= ϕ(n, Ā).

Lemma 5.5. Suppose that T ∈ L is a full undecided countable subtree of T and
p, q ∈ P(J, ω<ω1 ) are such that q ≤ p � T . Then there is an automorphism π of ω<ω1

fixing all nodes in T such that p is compatible with π∗(q) and S = Ṡπ∗"G. Thus,

1lP(J,ω<ω1 )  Ṡ = π∗(Ṡ).

Proof. We define the automorphism π as follows. Suppose that s ∈ Dp ∩ Dq and
s /∈ T . We first handle nodes of the form s = 〈ξ〉. In this case, π switches the tree
(ω<ω1 )〈ξ〉 with a tree (ω<ω1 )〈η〉 for some η < ω1 such that 〈η〉 /∈ T ∪Dp ∪Dq. Next,
we handle nodes of the form s = 〈ξ, n〉, which weren’t handled in the previous case
(this must have been because 〈ξ〉 ∈ T ). In this case, π switches the tree (ω<ω1 )s
with a tree (ω<ω1 )t, where t = 〈ξ, β〉 /∈ T ∪Dp ∪Dq, β ≥ ω and

ϕ̇G(〈ξ, n〉)(1) � n = ϕ̇G(〈ξ, β〉) � n.
Note that such a node t must exist by density. Finally, if a node s = 〈α0, . . . , αn〉
was not handled by one of the above cases, then π switches the tree (ω<ω1 )s with a
tree (ω<ω1 )t, where t = 〈α0, . . . , β〉 /∈ T ∪Dp ∪Dq was not yet placed in the image
of π by the above cases. All other nodes are fixed by π. In particular, all nodes in
T are fixed by π.

Suppose that H = π∗ " G. Then it should be clear that T ∈ L is a countable
subtree of T if and only if π∗ " T is a countable subtree of ṪH , which implies that
S = Ṡπ∗"G. �

Lemma 5.6. M |= AC−p.

Proof. Suppose thatM |= ∀n∃X ϕ(n,X) for some second-order arithmetic formula
ϕ(n,X). Given n < ω, by Lemma 5.4, there is a full undecided countable subtree
Tn ∈ L and X ∈ L[GTn ] such that M |= ϕ(n,X). By extending Tn to a larger
tree, if necessary, we can assume that {ξ < ω1 | 〈ξ〉 ∈ Tn} is an ordinal αn. Let
α =

⋃
n<ω αn and let T be the full undecided tree whose level 1 nodes are precisely

〈ξ〉 for ξ < α. Then each Tn is contained in T . Thus, for every n < ω, there is
some X ∈ L[GT ] such that M |= ϕ(n,X).

Fix a condition

p  ψ(ĠT , Ṡ) := ∀n∃X ∈ L[ĠT ] 〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n,X).

Let’s argue that this statement is already forced by p � T . Suppose towards a
contradiction that this is not the case. Then there is a condition q ≤ p � T such that
q  ¬ψ(ĠT , Ṡ). By Lemma 5.5, there is an automorphism π of ω<ω1 fixing all nodes

in T such that p is compatible with π∗(q) and 1lP(J,ω<ω1 )  Ṡ = π∗(Ṡ). Observe that

the condition π∗(q)  ϕ(ĠT , Ṡ) because π∗ fixes ĠT and 1lP(J,ω<ω1 )  Ṡ = π∗f (Ṡ).

Thus, we have reached the desired contradiction showing that p � T  ψ(ĠT , Ṡ).
We can now assume without loss of generality that Dp ⊆ T .

Fix n < ω. We will construct a mixed P(J, T )-name Ẋn such that

p  〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n, Ẋn).
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For every r ≤ p, there is a condition q and a P(J, T )-name Ẋq
n such that

q  〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n, Ẋq
n).

An analogous automorphism argument to above shows that actually

q � T  〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n, Ẋq
n),

and so we can assume without loss of generality that Dq ⊆ T . Thus, we can
construct a maximal antichain An of such conditions q with Dq ⊆ T below p. By
Proposition 2.3, it easy to see that An is a maximal antichain of P(J, ω<ω1 ) below
p.

Let

Ẋn =
⋃
q∈An

{(τ, r) | r ≤ q,Dr ⊆ T, r  τ ∈ Ẋq
n, τ ∈ dom(Ẋq

n)}.

Clearly, Ẋn is a P(J, T )-name. Since An is an antichain, if (τ, r) ∈ Ẋn, then there is
a unique q ∈ An such that r ≤ q. Fix an L-generic filter Ḡ for P(J, ω<ω1 ) with p ∈ Ḡ.

Let q ∈ Ḡ ∩ An. We will argue that (Ẋn)Ḡ = (Ẋq
n)Ḡ. Suppose that a ∈ (Ẋn)Ḡ.

Then (τ, r) ∈ Ẋn such that τG = a and r ∈ Ḡ. It follows that r is compatible

with q, which, since An is an antichain, means that r ≤ q. By definition of Ẋn,
r  τ ∈ Ẋq

n, which implies that a ∈ (Ẋq
n)Ḡ. Next, suppose that a ∈ (Ẋq

n)Ḡ. Then

(τ, r) ∈ Ẋq
n such that a = τḠ and r ∈ G. Let r′ ∈ Ḡ such that r′ ≤ r, q. Observe

that r′ � T ≤ r, q and r′ � T ∈ Ḡ because it is above r′. Thus, we can assume
without loss of generality that Dr′ ⊆ T . Also, since r′ ≤ r, r′  τ ∈ Ẋq

n. Thus,

(τ, r′) ∈ Ẋn, and so a ∈ (Ẋn)Ḡ. Since An was a maximal antichain below p, it

follows that p  〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n, Ẋn). Now, let Ẏ be a P(J, T )-name for

the set whose n-th slice is Ẋn. Then clearly,

p  ∀n < ω 〈ω,+,×, <, 0, 1, Ṡ〉 |= ϕ(n, Ẏn),

and ẎG ∈ L[GT ], and hence in S. �

6. Questions

In Sections 3 and 4, we obtained models Z−p2 + Σ1
2-CA with a failure of Σ1

4-CA
in which Coll−p and AC−p holds respectively. Is it possible to obtain such models
with an optimal failure of Σ1

3-CA?

Question 6.1. Can we obtain a model of Z−p2 +Coll−p+Σ1
2-CA in which, optimally,

Σ1
3-CA-fails?

Question 6.2. Can we obtain a model of Z−p2 +AC−p+Σ1
2-CA in which, optimally,

Σ1
3-CA-fails?

Since standard arguments showing that AC implies Z2 over ACA0 rely on pa-
rameters, it is most likely not the case that AC−p implies Z−p2 over ACA0.

Question 6.3. Can we obtain a model ACA0 + AC−p in which Z−p2 fails?

This is not directly relevant to the results in this article, but for the complete
understanding of forcing extensions by P(J, ω<ω), it is interesting to know whether
the uniqueness result of Theorem 3.1 holds for countable trees and an analogous
question applies to the forcing P(J, ω<ω1 ).
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Question 6.4. Suppose that G ⊆ P(J, ω<ω) is L-generic and that T ∈ L is a
countable subtree of ω<ω. Is it true that the only L-generic sequences for Jn in
L[GT ] are the sequences ϕ̇G(s) for s ∈ T? What about an analogous question for
uncountable subtrees and the forcing extension P(J, ω<ω1 )?
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