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Axioms and applications

Intuitive axiomatization: remove powerset from ZFC.

Start with ZF.

ZF−:

Remove powerset.

Replace the Replacement scheme with the Collection scheme.

ZFC−:

Replace AC with the Well-Ordering Principle: every set can be well-ordered.

Models

Hκ+ : collection of all sets with transitive closure of size ≤κ for a cardinal κ

A forcing extension of a model of ZFC by pretame class forcing.
I Πξ∈Ord Add(ω, 1).
I Πα∈CardCol(ω, α).

A first-order model bi-interpretable with a model of Kelley-Morse Set Theory with
the Choice Scheme
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The choice of axioms

Theorem: (Szczepaniak) There is a model of ZF− in which AC holds (every family of
sets has a choice function), but the Well-Ordering Principle fails.

Open Question: Are Zorn’s Lemma and AC equivalent over ZF−?

Consider the following theory.

ZFC−:

Remove powerset

Replace AC with the Well-Ordering Principle.

Theorem: (Zarach) ZFC− does not imply the Collection scheme.

In ZFC, the proof that Replacement implies Collection replies on the existence of the von Neumann Vα-hierarchy.

Theorem: (G., Hamkins, Johnstone) It is consistent that there are models of ZFC− in
which:

ω1 is singular,

every set of reals is countable, but ω1 exists,

 Loś-Theorem fails for ultrapowers.

Although the above pathological behaviors are eliminated by replacing ZFC− with ZFC−,
we will see later that ZFC− is still not as robust as desired.
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Second-order set theory

In first-order set theory, classes are definable collections of sets (objects in the
meta-theory).

Second-order set theory has two sorts of objects: sets and classes.

Syntax: Two-sorted logic

Separate variables and quantifiers for sets and classes

Convention: upper-case letters for classes, lower-case letters for sets

Notation:
I Σ0

n - first-order Σn-formula
I Σ1

n - n-alternations of class quantifiers followed by a first-order formula

Semantics: A model is a triple V = 〈V ,∈, C〉.
V consists of the sets.

C consists of the classes.

Every set is a class: V ⊆ C.

C ⊆ V for every C ∈ C.
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Second-order axioms

Sets: ZFC

Classes:
I Extensionality
I Replacement: If F is a function and a is a set, then F � a is a set.
I Global well-order: There is a class bijection between Ord and V .

Gödel-Bernays set theory GBC:

Comprehension scheme for first-order formulas:

If ϕ(x ,A) is a first-order formula, then {x | ϕ(x ,A)} is a class.

Kelley-Morse set theory KM:

Full comprehension:
If ϕ(x ,A) is a second-order formula, then {x | ϕ(x ,A)} is a class.
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Choice principles for classes (continued)

Choice scheme (CC): Given a second-order formula ϕ(x ,X ,A), if for every set x , there
is a class X witnessing ϕ(x ,X ,A), then there is a class Y collecting witnesses for every x
on its slices Yx = {y | 〈y , x〉 ∈ Y } so that ϕ(x ,Yx ,A) holds. (“AC for classes”)

Theorem: (G., Hamkins) It is consistent that there is a model of KM in which the
Choice scheme fails ω-many choices for a first-order formula.

Theorem: (G., Hamkins) The  Loś-Theorem for second-order ultrapowers is equivalent to
the Choice scheme for set-many choices.

Proposition: The Choice scheme implies that every formula is equivalent to a
Σ1

n-formula for some n.

Theorem: (G., Hamkins) KM fails to prove that every formula of the form ∀xϕ(x),
where ϕ(x) is Σ1

1, is equivalent to a Σ1
1-formula.

Suppose δ is a regular cardinal or δ = Ord.

Dependent Choice scheme DCδ: Given a second-order formula ϕ(X ,Y ,A), if for every
class X , there is a class Y such that ϕ(X ,Y ,A) holds, then there is a class Z such that
for every ξ < δ, ϕ(Z � ξ,Zξ,A) holds (“DC for classes”).

“We can make δ-many dependent choices over any definable relation on classes
without terminal nodes.”
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Models of KM + CC

Proposition: Suppose V |= ZFC and κ is an inaccessible cardinal. Then
〈Vκ,∈,Vκ+1〉 |= KM + CC + DCOrd.

Consider the following theory.

ZFC−I :

ZFC−

There is the largest cardinal κ.

κ is inaccessible: κ is regular and for all α < κ, 2α exists and 2α < κ.
I Vκ exists.
I Vκ |= ZFC.

Proposition: Suppose M |= ZFC−I with the largest cardinal κ, then
〈Vκ,∈,P(Vκ)〉 |= KM + CC.
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Bi-interpretability of KM + CC and ZFC−I

Theorem: (Marek) The theory KM+CC is bi-interpretable with the theory ZFC−I .

Suppose V = 〈V ,∈, C〉 |= KM+CC.

View each extensional well-founded class relation R ∈ C as coding a transitive set.
I Ord + Ord, Ord · ω
I V ∪ {V }

Define a membership relation E on the collection of all such relations R (modulo
isomorphism).

Let 〈MV ,E〉, the companion model of V , be the resulting first-order structure.
I MV has the largest cardinal κ ∼= OrdV .
I V

MV
κ
∼= V .

I P(Vκ)MV ∼= C.
I 〈MV ,E〉 |= ZFC−I .

Suppose M |= ZFC−I with the largest cardinal κ.

V = VM
κ

C = {X ∈ M | X ⊆ VM
κ }

V = 〈V ,∈, C〉 |= KM+CC

MV
∼= M is the companion model of V .

V = V
MV
κ

κ+κ
κ·ω
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First-order Dependent Choice Scheme

Dependent Choice Scheme: DCδ-scheme (δ regular)
Given a formula ϕ(x , y , a), if for every b, there is a c such that ϕ(b, c, a) holds, then
there is a function f with domain δ such that for all ξ < δ, ϕ(f � ξ, f (ξ), a) holds.

DC<Ord-scheme: the DCδ-scheme for every regular δ.

Proposition: In ZFC, the DC<Ord-scheme holds.

Proof: Fix a regular δ and a relation ϕ(x , y , a) without terminal nodes.

Fix a Vγ , with cof(γ) ≥ δ, such that Vγ reflects ϕ(x , y , a) and ∀x∃yϕ(x , y , a).

V<δ
γ ⊆ Vγ .

Use a well-ordering of Vγ together with closure to construct f . �

Models

Hκ+ .

Pretame forcing extensions of ZFC-models
pretame forcing preserves DC<Ord-scheme.

A model V = 〈V ,∈, C〉 |= KM + CC + DCδ if and only if its companion model
MV |= ZFC−I + DCδ-scheme.
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Dependent Choice scheme without powerset

Theorem: (Friedman, G., Kanovei) There is a model M |= ZFC− in which the
DCω-scheme fails.

Force with a tree iteration of Jensen’s forcing along the tree ω<ω1 .

N is a symmetric submodel of the forcing extension.

M = HN
ω1

(ω is the largest cardinal in M)

Theorem: (G., Friedman) It is consistent that there is a model of ZFC−I in which the
DCω-scheme fails.

Use a generalization of Jensen’s forcing to an inaccessible κ.

Force with a tree iteration of generalized Jensen’s forcing along the tree (κ+)<ω.

Corollary: It is consistent that there is a model of KM + CC in which DCω fails.

Work in progress: (G.) It is consistent that there are models of ZFC−I with the largest
cardinal κ in which:

DCω-scheme holds, but the DCω1 -scheme fails.

DCω1 -scheme holds, but the DCω2 -scheme fails.

DCα-scheme holds for every regular α < κ, but the DCκ-scheme fails.
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Dependent Choice scheme as a reflection principle

Proposition: (G., Hamkins, Johnstone) In ZFC−, TFAE.

DCω-scheme

Every formula ϕ(x , a) reflects to a transitive set model.

More generally, the following holds under a weak powerset existence assumption:

Proposition: (G.) In ZFC−, TFAE for a regular δ such that γ<δ exists for every γ.

DCδ-scheme

Every formula ϕ(x , a) reflects to a transitive model m such that m<δ ⊆ m.

Corollary: In ZFC−I , the DCδ-scheme holds if and only if every formula reflects to a
transitive set model closed under <δ-sequences.
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Other applications of the Dependent Choice scheme

Theorem: (Folklore) In ZFC−, TFAE.

DC<Ord-scheme

The partial order Add(Ord, 1) is Ord-distributive.

Global well-order can be forced without adding sets.

Proposition: In ZFC− + DCδ-scheme, every class surjects onto δ.

Proposition: In ZFC− + DC<Ord-scheme, every class is big: surjects onto every ordinal.
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ZFC− and the Intermediate Model Theorem

Intermediate Model Theorem: (Solovay)

If V |= ZFC, V [G ] is a set forcing extension, and W |= ZFC such that
V ⊆W ⊆ V [G ], then W = V [H] is a set forcing extension.

If V |= ZF, V [G ] is a set forcing extension, and V [a] |= ZF such that a ⊆ V and
V [a] ⊆ V [G ], then V [a] is a set forcing extension.

Theorem: (Antos, G., Friedman) If M |= ZFC−, M[G ] is a set forcing extension, and
M[a] |= ZFC− such that a ⊆ M and M[a] ⊆ M[G ], then M[a] = M[H] is a set forcing
extension.

Proof Sketch: Every poset P ∈ M densely embeds into a class complete Boolean
algebra. �.
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Failure of the Intermediate Model Theorem

Theorem: (Antos, G., Friedman) If M |= ZFC−I with the largest cardinal κ and
G ⊆ Add(κ, 1) is M-generic, then there is a model N |= ZFC− such that:

M ⊆ N ⊆ M[G ],

N is not a set forcing extension,

if M |= DCκ-scheme, then N |= DCκ-scheme.

Proof Sketch:

G ⊆ Add(κ, κ) ∼= Add(κ, 1)

Gξ = G � ξ is the restriction of G to the first ξ-many coordinates of the product.

N =
⋃
ξ<κM[Gξ]

Use an automorphism argument to show that N satisfies Collection. �
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ZFC− and ground model definability

Theorem: (Laver, Woodin) A model V |= ZFC is uniformly definable with parameters
from V in all its set forcing forcing extensions.

Theorem: (G., Johnstone) If M |= ZFC−I with the largest cardinal κ, then M is
uniformly definable in its forcing extensions by any poset in Vκ.

Theorem: (G., Johnstone)

Suppose κ > ω is regular and W = V [G ] is a forcing extension by Add(ω, κ+).
Then M = HW

κ+ is not definable in its forcing extensions by Add(ω, 1).
I P(ω) is a proper class in M.

Suppose κ is inaccessible and W = V [G ] is a forcing extension by Add(κ, κ+).
Then M = HW

κ+ is not definable in its forcing extensions by Add(κ, 1).

I M |= ZFC−I .

Theorem: (Woodin) If there is an elementary embedding j : L(Vλ+1)→ L(Vλ+1) with
crit(j) < λ (I0), then M = Hλ+ is not definable in its forcing extension by Add(ω, 1).

P(ω) ∈ M.

Open Question: What is the consistency strength of having a model M |= ZFC− which
is not definable in a forcing extension by P ∈ M with P(P) ∈ M?
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ZFC− and HOD

Theorem: The inner model HOD (hereditarily ordinal definable sets) is definable in any
model V |= ZFC.

Proof: A set a is in HOD if and only if there is α such that a is ordinal definable over
Vα. �

Open Questions: Is HOD definable in

models of ZFC−?

models of ZFC−I ?

models of ZFC− + DC<Ord-scheme?

Hκ+ ?
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Strange models of ZFC−

Set-up

P = Add(ω, ω) ∼= Add(ω, 1).

G ⊆ Add(ω, ω) is V -generic.

Gn = G � n is the restriction of G to the first n-many coordinates of the product.

N =
⋃

n<ω V [Gn].

Theorem: (Zarach)

N |= ZFC− automorphism argument

V and N have the same cardinals and cofinalities forcing is ccc

N |= DCω-scheme not obvious

P(ω) is a proper class in N

P(ω) is a small class in N: P(ω) does not surject onto γ = (2ω)+

N |= ¬DCγ-scheme if 2ω = ω1, then γ = ω2

Does the DCω1 -scheme hold in N?

Victoria Gitman Working in set theory without powerset Arctic 17 / 21



Strange models of ZFC− (continued)

Does the DCω1 -scheme hold in N?

ϕ(x , y) := x is a sequence of Cohen reals and y is Cohen generic over V [x ].

In N, ϕ(x , y) is a relation without terminal nodes.

If N |= DCω1 -scheme, then there is a sequence of length ω1 of dependent choices
over ϕ.

But. . .

Theorem: (Blass) A forcing extension by Add(ω, 1) cannot have a sequence of Cohen
reals 〈rξ | ξ < ω1〉 such that for every α < ω1, rα is Cohen generic over V [〈rξ | ξ < α〉].

So N |= ¬DCω1 -scheme.

A modification of Blass’s proof gives:

Theorem: Suppose κ is regular and κ<κ = κ. A forcing extension by Add(κ, 1) cannot
have a sequence of Cohen generic subsets 〈Aξ | ξ < κ+〉 of κ such that for every α < κ+,
Aα is Cohen generic over V [〈Aξ | ξ < α〉].
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Generalizing Zarach’s construction

Set-up

P = Add(δ, δ) ∼= Add(δ, 1).

G ⊆ Add(δ, δ) is V -generic.

Gξ = G � ξ is the restriction of G to the first ξ-many coordinates of the product.

N =
⋃
ξ<δ V [Gξ].

Theorem: (G., Matthews)

N |= ZFC− automorphism argument

V and N have almost the same cardinals and cofinalities

N |= DCδ-scheme (uses N<δ ⊆ N in V [G ])

P(δ) is a proper class in N

P(δ) is a small class in N: P(δ) does not surject onto γ = ((2δ)+)V [G ]

N |= ¬DCγ-scheme

If δ<δ = δ, then N |= ¬DCδ+ - scheme.

Victoria Gitman Working in set theory without powerset Arctic 19 / 21



Jensen’s forcing and generalization to inaccessible κ

J: (Jensen)

subposet of Sacks forcing: perfect trees ordered by ⊆
constructed using ♦
ccc

adds a unique generic real

Theorem: (Lyubetsky, Kanovei, Abraham, G., Friedman) Products and iterations of J
have “unique generics” properties.

Suppose κ is inaccessible.

J(κ) (G., Friedman)

perfect κ-trees ordered by ⊆
constructed using ♦κ+ (cof(κ))

<κ-closed

κ+-cc

adds a unique generic subset of κ

Theorem: (G., Friedman) Products and iterations of J(κ) have “unique generics”
properties.
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A different model of ZFC− + ¬DCω-scheme

Theorem: (G., Matthews) There is a model of N |= ZFC− such that:

P(ω) is a proper class.

Every class is big.

There are unboundedly many cardinals.

DCω-scheme fails.

Proof Sketch: Force with the tree iteration P of Jensen’s forcing along the tree Ord<ω.
Let G ⊆ P be V -generic.

P has the ccc, and hence is pretame.

V [G ] |= ZFC− + DC<Ord-scheme.

N =
⋃

L[GT ], where T is a certain set subtree of Ord<ω, PT is the restriction of P
to T , and GT is the restriction of G to PT . �
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