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Axioms and applications

Intuitive axiomatization: remove powerset from ZFC.

Start with ZF.
ZF~:
@ Remove powerset.
@ Replace the Replacement scheme with the Collection scheme.
ZFC™:
o Replace AC with the Well-Ordering Principle: every set can be well-ordered.

Models

@ H,+: collection of all sets with transitive closure of size <k for a cardinal s

@ A forcing extension of a model of ZFC by pretame class forcing.
> négord Add(w, 1)
> naECardCOI(w7 a)'

@ A first-order model bi-interpretable with a model of Kelley-Morse Set Theory with
the Choice Scheme
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The choice of axioms
Theorem: (Szczepaniak) There is a model of ZF~ in which AC holds (every family of
sets has a choice function), but the Well-Ordering Principle fails.
Open Question: Are Zorn's Lemma and AC equivalent over ZF~7?
Consider the following theory.
ZFC—:
@ Remove powerset
@ Replace AC with the Well-Ordering Principle.
Theorem: (Zarach) ZFC- does not imply the Collection scheme.
In ZFC, the proof that Replacement implies Collection replies on the existence of the von Neumann Vi, -hierarchy.

Theorem: (G., Hamkins, Johnstone) It is consistent that there are models of ZFC- in
which:

@ wj is singular,
@ every set of reals is countable, but w; exists,

@ tos-Theorem fails for ultrapowers.

Although the above pathological behaviors are eliminated by replacing ZFC— with ZFC™,
we will see later that ZFC™ is still not as robust as desired.
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Second-order set theory

In first-order set theory, classes are definable collections of sets (objects in the
meta-theory).

Second-order set theory has two sorts of objects: sets and classes.
Syntax: Two-sorted logic
@ Separate variables and quantifiers for sets and classes

o Convention: upper-case letters for classes, lower-case letters for sets
o Notation:
> Y0 - first-order ¥ ,-formula

» YL . p-alternations of class quantifiers followed by a first-order formula
Semantics: A model is a triple ¥ = (V, €,C).
@ V consists of the sets.
@ C consists of the classes.
@ Every setis aclass: V CC.
@ CC V forevery C €C.
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Second-order axioms

@ Sets: ZFC

o Classes:

> Extensionality
> Replacement: If F is a function and a is a set, then F | a is a set.
> Global well-order: There is a class bijection between Ord and V.

Godel-Bernays set theory GBC:

Comprehension scheme for first-order formulas:

If (x,A) is a first-order formula, then {x | p(x, A)} is a class.
Kelley-Morse set theory KM:

Full comprehension:
If o(x,A) is a second-order formula, then {x | ¢(x,A)} is a class.
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Choice principles for classes (continued)

Choice scheme (CC): Given a second-order formula ¢(x, X, A), if for every set x, there
is a class X witnessing ¢(x, X, A), then there is a class Y collecting witnesses for every x
on its slices Yy = {y | {y,x) € Y} so that ¢(x, Yk, A) holds. (“AC for classes”)

Theorem: (G., Hamkins) It is consistent that there is a model of KM in which the
Choice scheme fails w-many choices for a first-order formula.

Theorem: (G., Hamkins) The tos-Theorem for second-order ultrapowers is equivalent to
the Choice scheme for set-many choices.

Proposition: The Choice scheme implies that every formula is equivalent to a
Y1 formula for some n.

Theorem: (G., Hamkins) KM fails to prove that every formula of the form Vxy(x),
where ¢(x) is X1, is equivalent to a ¥}-formula.

Suppose 9 is a regular cardinal or § = Ord.

Dependent Choice scheme DCs: Given a second-order formula ¢(X, Y, A), if for every
class X, there is a class Y such that ¢(X, Y, A) holds, then there is a class Z such that
for every £ < 8, o(Z | €, Z¢, A) holds (“DC for classes”).

“We can make 5-many dependent choices over any definable relation on classes
without terminal nodes.”
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Models of KM + CC

Proposition: Suppose V = ZFC and & is an inaccessible cardinal. Then
(Vie, € Vier1) |F KM + CC + DCopra.

Consider the following theory.
ZFC;:
e ZFC™

@ There is the largest cardinal k.

@ k is inaccessible: k is regular and for all a < k, 2% exists and 2% < k.

> V. exists.
> V. = ZFC.

Proposition: Suppose M |= ZFC[ with the largest cardinal x, then
(Vi, €, P(Vi)) E KM + CC.
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Bi-interpretability of KM + CC and ZFC;

Theorem: (Marek) The theory KM+CC is bi-interpretable with the theory ZFC; .
Suppose ¥ = (V, €,C) = KM+CC.

@ View each extensional well-founded class relation R € C as coding a transitive set.
» Ord + Ord, Ord - w
» Vu{Vv}

o Define a membership relation E on the collection of all such relations R (modulo
isomorphism).
o Let (My,E), the companion model of ¥, be the resulting first-order structure.

> M~ has the largest cardinal xk = ord” .
vMy ~ vy

P(Vi)Mr = .

(My ,E) = ZFCy .

Suppose M |= ZFC; with the largest cardinal . I
o V=yM -
e C={XeM|XCVM}
o ¥V =(V,g,C) E KM+CC

o My = M is the companion model of ¥.

vYyy
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First-order Dependent Choice Scheme

Dependent Choice Scheme: DCs-scheme (4§ regular)
Given a formula ¢(x, y, a), if for every b, there is a ¢ such that (b, c, a) holds, then
there is a function f with domain § such that for all £ < 4, o(f [ &, (), a) holds.

DC<ora-scheme: the DCs-scheme for every regular §.

Proposition: In ZFC, the DC_.q-scheme holds.

Proof: Fix a regular ¢ and a relation ¢(x, y, a) without terminal nodes.

Fix a V,, with cof(y) > 4, such that V,, reflects p(x, y, a) and Vx3yp(x,y, a).
°o VO C V.
o Use a well-ordering of V., together with closure to construct f. [J

Models

] HN+.

@ Pretame forcing extensions of ZFC-models

pretame forcing preserves DC<Ord—scheme.

o A model ¥ = (V,€,C) = KM + CC + DC;s if and only if its companion model
My |= ZFC{ + DCjs-scheme.
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Dependent Choice scheme without powerset

Theorem: (Friedman, G., Kanovei) There is a model M = ZFC™ in which the
DC,,-scheme fails.

@ Force with a tree iteration of Jensen's forcing along the tree w;~*.
o N is a symmetric submodel of the forcing extension.

o M = H[ (wis the largest cardinal in M)

Theorem: (G., Friedman) It is consistent that there is a model of ZFC| in which the
DC,,-scheme fails.

@ Use a generalization of Jensen's forcing to an inaccessible «.
@ Force with a tree iteration of generalized Jensen’s forcing along the tree (x7)<%.

Corollary: It is consistent that there is a model of KM + CC in which DC,, fails.

Work in progress: (G.) It is consistent that there are models of ZFC; with the largest
cardinal x in which:

o DC,-scheme holds, but the DC,,,-scheme fails.
o DC.,-scheme holds, but the DC.,,,-scheme fails.

@ DC,-scheme holds for every regular a < &, but the DC,-scheme fails.
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Dependent Choice scheme as a reflection principle

Proposition: (G., Hamkins, Johnstone) In ZFC™, TFAE.
o DC,-scheme
o Every formula ¢(x, a) reflects to a transitive set model.
More generally, the following holds under a weak powerset existence assumption:
Proposition: (G.) In ZFC~, TFAE for a regular § such that v<° exists for every ~.
o DCjs-scheme

o Every formula o(x, a) reflects to a transitive model m such that m<% C m.

Corollary: In ZFC; , the DCs-scheme holds if and only if every formula reflects to a
transitive set model closed under <J-sequences.
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Other applications of the Dependent Choice scheme

Theorem: (Folklore) In ZFC~, TFAE.
@ DC_.org-scheme
@ The partial order Add(Ord, 1) is Ord-distributive.

@ Global well-order can be forced without adding sets.
Proposition: In ZFC™ + DCs-scheme, every class surjects onto 4.

Proposition: In ZFC™ + DC.orq-scheme, every class is big: surjects onto every ordinal.
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ZFC~ and the Intermediate Model Theorem

Intermediate Model Theorem: (Solovay)
o If V |=ZFC, V[G] is a set forcing extension, and W = ZFC such that
V C W C V[G], then W = V[H] is a set forcing extension.

e If V EZF, V[G] is a set forcing extension, and V[a] = ZF such that a C V and
V[a] C V[G], then V[a] is a set forcing extension.

Theorem: (Antos, G., Friedman) If M |= ZFC~, M[G] is a set forcing extension, and
Ml[a] &= ZFC~ such that a C M and M[a] C M[G], then M[a] = M[H] is a set forcing
extension.

Proof Sketch: Every poset P € M densely embeds into a class complete Boolean
algebra. .
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Failure of the Intermediate Model Theorem

Theorem: (Antos, G., Friedman) If M |= ZFC; with the largest cardinal x and
G C Add(k,1) is M-generic, then there is a model N = ZFC™ such that:

e M C N C M[G],

@ N is not a set forcing extension,

o if M = DCy-scheme, then N |= DC,-scheme.
Proof Sketch:
G C Add(k, k) = Add(k, 1)

Ge = G | € is the restriction of G to the first &-many coordinates of the product.

°
° N = U§<m M[G§]
@ Use an automorphism argument to show that N satisfies Collection. [

Victoria Gitman Working in set theory without powerset Arctic 14 /21



|
ZFC™ and ground model definability

Theorem: (Laver, Woodin) A model V = ZFC is uniformly definable with parameters
from V in all its set forcing forcing extensions.

Theorem: (G., Johnstone) If M |= ZFC; with the largest cardinal , then M is
uniformly definable in its forcing extensions by any poset in V.
Theorem: (G., Johnstone)

@ Suppose k > w is regular and W = V[G] is a forcing extension by Add(w, x").
Then M = H is not definable in its forcing extensions by Add(w, 1).
> P(w) is a proper class in M.

@ Suppose k is inaccessible and W = V[G] is a forcing extension by Add(x,x").
Then M = H:ﬁ is not definable in its forcing extensions by Add(k, 1).
> Mk ZFC; .

Theorem: (Woodin) If there is an elementary embedding j : L(Va41) — L(Va41) with
crit(j) < A (), then M = H,+ is not definable in its forcing extension by Add(w,1).

® P(w) e M.
Open Question: What is the consistency strength of having a model M = ZFC™ which
is not definable in a forcing extension by P € M with P(P) € M?
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ZFC~ and HOD

Theorem: The inner model HOD (hereditarily ordinal definable sets) is definable in any
model V = ZFC.

Proof: A set ais in HOD if and only if there is « such that a is ordinal definable over
V.. O
Open Questions: Is HOD definable in
@ models of ZFC™7?
models of ZFC; 7
models of ZFC™ + DC.orq-scheme?
o H.+7?
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Strange models of ZFC™

Set-up
P = Add(w,w) = Add(w, 1).
G C Add(w,w) is V-generic.
G, = G | nis the restriction of G to the first n-many coordinates of the product.
N = Un<w V[Gﬂ]-
Theorem: (Zarach)
@ N = ZFC™ automorphism argument
V' and N have the same cardinals and cofinalities forcing is ccc
N |= DC,,;-scheme not obvious

P(w) is a proper class in N

P(w) is a small class in N: P(w) does not surject onto v = (2*)"

- - if 2% = wq, then v = w
N DC,-scheme if2« = w, 2

Does the DC,,,-scheme hold in N?
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Strange models of ZFC™ (continued)

Does the DC,,,-scheme hold in N7

@ ©(x,y) := x is a sequence of Cohen reals and y is Cohen generic over V[x].
e In N, p(x,y) is a relation without terminal nodes.

o If N = DC.,-scheme, then there is a sequence of length wy of dependent choices
over .

o But...
Theorem: (Blass) A forcing extension by Add(w, 1) cannot have a sequence of Cohen
reals (re | € < w1) such that for every o < wi, ro is Cohen generic over V[{re | £ < )]

So N = =DC,,-scheme.

A modification of Blass's proof gives:

Theorem: Suppose « is regular and k<" = k. A forcing extension by Add(x,1) cannot
have a sequence of Cohen generic subsets (A¢ | € < k) of k such that for every a < k¥,
Aq is Cohen generic over V[{A¢ | € < a)].
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Generalizing Zarach's construction

Set-up
P = Add(4,9) = Add(4,1).
G C Add(9,9) is V-generic.
G: = G | £ is the restriction of G to the first &-many coordinates of the product.
N = U§<5 V[GE]-
Theorem: (G., Matthews)
@ N |EZFC™ automorphism argument
V and N have almost the same cardinals and cofinalities
N |= DCs-scheme (uses N<° C N in V[G])
P(9) is a proper class in N
P(6) is a small class in N: P() does not surject onto v = ((2°)%)"1¢
N |= =DC,-scheme
If 6<% =6, then N }= —=DCj+- scheme.
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Jensen’s forcing and generalization to inaccessible k
J: (Jensen)

@ subposet of Sacks forcing: perfect trees ordered by C

@ constructed using <

@ ccc

@ adds a unique generic real

Theorem: (Lyubetsky, Kanovei, Abraham, G., Friedman) Products and iterations of J
have “unique generics" properties.

Suppose k is inaccessible.
J(k) (G., Friedman)
@ perfect x-trees ordered by C
o constructed using .+ (cof(x))
o <r-closed
e kh-cc
@ adds a unique generic subset of

Theorem: (G., Friedman) Products and iterations of J(x) have “unique generics”
properties.
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A different model of ZFC~ + =DC,,-scheme

Theorem: (G., Matthews) There is a model of N = ZFC™ such that:
@ P(w) is a proper class.
@ Every class is big.
@ There are unboundedly many cardinals.
@ DC,-scheme fails.

Proof Sketch: Force with the tree iteration P of Jensen's forcing along the tree Ord<%.
Let G C P be V-generic.

@ P has the ccc, and hence is pretame.
o V[G] = ZFC™ + DC<ora-scheme.

o N = JL[G7], where T is a certain set subtree of Ord<“, Pr is the restriction of P
to T, and Gt is the restriction of G to Pr. O
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