A model of second-order arithmetic with the choice scheme in which Π_2^1 -dependent choice fails

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

> KGRC Logic Seminar May 18, 2017

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

This is joint work with Sy-David Friedman

2

◆□ > ◆□ > ◆臣 > ◆臣 >

Class choice principles for Kelley-Morse set theory

Kelley-Morse set theory: (KM)

- First-order: **ZFC**
- Second-order:
 - Replacement
 - full second-order comprehension
 - Global Choice

Class choice scheme: $(\Sigma^{1}_{\infty}$ -AC) For every second-order formula $\varphi(x, X, A)$,

 $\forall x \exists X \varphi(x, X, A) \longrightarrow \exists Y \forall x \varphi(x, Y_x, A),$

where $Y_X = \{y \mid \langle x, y \rangle \in Y\}.$

Class choice scheme over sets: (Set- Σ^1_{∞} -AC) For every second-order formula $\varphi(x, X, A)$ and set *a*,

$$\forall x \in a \exists X \varphi(x, X, A) \longrightarrow \exists Y \forall x \in a \varphi(x, Y_x, A).$$

Class dependent choice scheme: $(\Sigma^1_{\infty}$ -DC) For every second-order formula $\varphi(X, Y, A)$,

 $\forall X \exists Y \varphi(X, Y, A) \longrightarrow \exists Z \forall n \varphi(Z \upharpoonright n, Z_n, A).$

Applications of class choice schemes

Theorem: (Marek, Mostowski) The theory $KM + \Sigma_{\infty}^{1} - AC$ is bi-interpretable with the theory ZFC_{l}^{-} :

- $\rm ZFC^-$,
- there is a largest cardinal κ ,
- κ is strongly inaccessible.

Theorem: (G., Hamkins, Johnstone) Over KM, Set- Σ^1_{∞} -AC is equivalent to the Łoś Theorem for second-order ultrapowers.

Theorem: (G., Hamkins, Johnstone) Over $\text{KM} + \sum_{\infty}^{1} -\text{AC}$, $\sum_{\infty}^{1} -\text{DC}$ is equivalent to second-order reflection. For every second-order formula $\varphi(X)$, there is a class A whose slices $\{A_{\xi} \mid \xi \in \text{Ord}\}$ reflect $\varphi(X)$.

(Antos, Friedman) In $\mathrm{KM} + \Sigma_{\infty}^{1} - \mathrm{AC} + \Sigma_{\infty}^{1} - \mathrm{DC}$ we can formalize hyperclass forcing.

Theorem: The "L" of a model of KM satisfies $KM + \Sigma^1_{\infty}-AC + \Sigma^1_{\infty}-DC$.

A class is constructible if it is an element of L_{Γ} for a meta-ordinal $\Gamma.$

Independence of class choice schemes

Theorem: (G., Hamkins, Johnstone) It is relatively consistent that:

- There is a model of KM in which Set- Σ_1^0 -AC fails.
- There is a model of ${\rm KM}$ in which Set- $\Sigma^1_\infty\text{-}{\rm AC}$ holds, but $\Sigma^0_1\text{-}{\rm AC}$ fails.

Question: Does Σ^1_{∞} -AC imply Σ^1_{∞} -DC over KM?

Conjecture: It is relatively consistent that there is a model of KM in which Σ^1_{∞} -AC holds, but Σ^1_{∞} -DC fails.

Strategy: Prove an analogous result for models of second-order arithmetic and generalize.

イロト 不得下 イヨト イヨト

Choice principles for models of second-order arithmetic

Full second-order arithmetic: (Z_2)

- Analogue of KM.
- First-order: PA
- Second-order:
 - Induction
 - full second-order comprehension

Choice scheme: $(\Sigma^{1}_{\infty}$ -AC) For every second-order formula $\varphi(n, X, A)$,

 $\forall n \exists X \varphi(n, X, A) \longrightarrow \exists Y \forall n \varphi(n, Y_n, A).$

Dependent choice scheme: (Σ^1_{∞} -DC) For every second-order formula $\varphi(X, Y, A)$,

 $\forall X \exists Y \varphi(X, Y, A) \longrightarrow \exists Z \forall n \varphi(Z \upharpoonright n, Z_n, A).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Independence of the choice scheme over Z_2

Lemma: Z_2 proves Σ_2^1 -AC.

Proof: Suppose $\mathcal{M} \models \mathbb{Z}_2$ and $\mathcal{M} \models \forall n \exists X \varphi(n, X)$, where φ is Σ_2^1 .

(We ignore parameters for simplicity.)

- If α is an ordinal coded by a set in \mathcal{M} , then \mathcal{M} has a set coding L_{α} .
- \mathcal{M} has its own constructible universe $L^{\mathcal{M}}$!
- \mathcal{M} satisfies Shoenfield Absoluteness: If ψ is a Σ_2^1 -assertion, then

 $\mathcal{M} \models \psi$ iff $L^{\mathcal{M}} \models \psi$.

In $\mathcal{L}^{\mathcal{M}}$, ψ is interpreted as an assertion about numbers and sets of numbers.

- $L^{\mathcal{M}}$ has a witness to every Σ_2^1 -assertion $\exists X \varphi(n, X)$.
- Choose the $L^{\mathcal{M}}$ -least X and use comprehension to collect! \Box

Theorem: (Feferman-Lévy) It is relatively consistent that there is a model of Z_2 in which Π_2^1 -AC fails.

The symmetric model argument

The Feferman-Lévy model: $N \models \mathbb{ZF}$ is a symmetric submodel of a forcing extension of L by the finite-support product $\prod_{n < \omega} \operatorname{Coll}(\omega, \aleph_n)$. In N:

- Each \aleph_n^L is countable.
- $\aleph_{\omega}^{L} = \aleph_{1}^{N}$ is the first uncountable cardinal.

Proof: Let $\mathcal{M} \models \mathbb{Z}_2$ with second-order part $\mathcal{P}^{N}(\omega)$.

- Every L_{\aleph_n} is coded in \mathcal{M} , but L_{\aleph_ω} is not coded in \mathcal{M} .
- We cannot collect the (codes of) L_{\aleph_n} .
- The assertion

$$\forall n \exists X = L_{\aleph_n} \to \exists Z \forall n \, Z_n = L_{\aleph_n}$$

fails in \mathcal{M} .

• The assertion $X = L_{\aleph_n}$ is Π_2^1 (The assertion that a set of numbers codes an ordinal is Π_1^1).

Theorem: (Mansfield, Simpson) \mathbb{Z}_2 implies $\Sigma_2^{1-}DC$.

Independence of the dependent choice scheme over $\mathrm{Z}_2 + \Sigma^1_\infty\text{-}\mathrm{AC}$

Theorem: (Friedman, G.) It is relatively consistent that there is a model of $Z_2 + \Sigma_{\infty}^1$ -AC in which \prod_{2}^{1} -DC fails.

History: Simpson claimed to have proved the result in 1973, but his proof is lost.

Strategy:

- Construct a symmetric submodel N of some forcing extension such that in N:
 - ► AC_ω holds,
 - DC fails for a Π_2^1 -definable relation on the reals.
- Let $\mathcal{M} \models \mathbb{Z}_2$ with second-order part $P(\omega)^N$.

Classical model of $AC_{\omega} + \neg DC$ (Jensen)

The forcing \mathbb{P}

- Adds a collection of Cohen subsets of ω_1 indexed by nodes of the tree ${}^{<\omega}\omega_1$.
- Conditions: $p: D_p \to 2$ for some countable $D_p \subseteq {}^{<\omega}\omega_1 \times \omega_1$.
- Order: $p \leq q$ if $D_p \supseteq D_q$ and for all $s \in D_q$, $p(s) \leq q(s)$.
- \mathbb{P} is countably closed.

Automorphisms of \mathbb{P}

- Every automorphism π of the tree ${}^{<\omega}\omega_1$ extends to an automorphism π^* of \mathbb{P} .
- $H = \{\pi^* \mid \pi \text{ is an automorphism of } ^{<\omega}\omega_1\}$ is a group automorphisms of \mathbb{P} .

The symmetric model N

- A countable tree $T \subseteq {}^{<\omega}\omega_1$ is good if it has no infinite branch.
- Given a good tree T, let H_T be the group of all π^* with π point-wise fixing T.
- Given a \mathbb{P} -name σ , let sym (σ) be the group of all π^* fixing σ .
- A \mathbb{P} -name σ is symmetric if sym $(\sigma) \supseteq H_T$ for some good tree T.
- $\bullet~\mathrm{HS}$ is the collection of all hereditarily symmetric $\mathbb P\text{-names}.$
- Let $G \subseteq \mathbb{P}$ be V-generic.
- $N = \{\sigma_G \mid \sigma \in HS\}$ is an inner model of V[G] satisfying ZF.

Classical model of $AC_{\omega} + \neg DC$ (continued)

Preliminaries

- Let $\dot{\mathscr{T}}$ be the canonical \mathbb{P} -name for the tree of Cohen subsets of ω_1 added by \mathbb{P} .
- $\hat{\mathscr{T}}$ is hereditarily symmetric, and hence $\mathscr{T} = (\hat{\mathscr{T}})_{\mathsf{G}} \in \mathsf{N}$.

Lemma: DC fails in N.

Proof sketch:

- Suppose that $b \in N$ is an infinite branch through \mathcal{T} .
- Let $\sigma \in HS$ be a \mathbb{P} -name for *b*, witnessed by a good tree *T*.
- Use that eventually b lies outside of T to derive a contradiction. \Box

Lemma: AC_{ω} holds in *N*.

Proof sketch:

- Let $F = \{F_n \mid n < \omega\} \in N$ be a family of non-empty sets.
- Let $\sigma \in HS$ be a \mathbb{P} -name for F, witnessed by a good tree S.
- Build a descending sequence of conditions $p_0 \ge p_1 \ge \cdots \ge p_i \ge \cdots$ such that:
 - ▶ $p_i \Vdash \tau_i \in \sigma(i)$ for some $\tau_i \in HS$, witnessed by a good tree T_i .
 - For i < j, $T_i \cap T_j = S$.
- Let $\tau \in HS$ be a \mathbb{P} -name for the sequence of the τ_i , as witnessed by $T = \bigcup_{i < \omega} T_i$.
- Let $p \leq p_i$ for all $i < \omega$.
- $p \Vdash$ " τ is a choice function for σ ". \Box

Obstacle: \mathscr{T} is not a tree of reals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A variation on the classical model (Friedman, G.)

The forcing \mathbb{P}

- Adds a collection of Cohen subsets of ω indexed by nodes of the tree ${}^{<\omega}\omega_1$.
- Conditions: $p: D_p \to 2$ for some finite $D_p \subseteq {}^{<\omega}\omega_1 \times \omega$.
- Order: $p \leq q$ if $D_p \supseteq D_q$ and for all $s \in D_q$, $p(s) \leq q(s)$.
- \mathbb{P} has the ccc.

The symmetric model N

- Constructed analogously.
- DC fails in N.
- AC_{ω} holds in *N* (use ccc instead of countable closure).

Obstacle: Why is \mathscr{T} definable over $P^{N}(\omega)$?

- odomain
- order

3

Strategy

The forcing $\ensuremath{\mathbb{P}}$

- Let $\langle \mathbb{P}_n \mid n < \omega \rangle$ be a sequence of forcing iterations such that:
 - \mathbb{P}_n is an iteration of length n,
 - ▶ a generic filter for \mathbb{P}_n is determined by an *n*-length sequence of reals,
 - for m > n, $\mathbb{P}_m \upharpoonright n = \mathbb{P}_n$,
 - The collection of all generic *n*-length sequences of reals for \mathbb{P}_n is Π_2^1 -definable.
- Conditions: $p: D_p \to \bigcup_{n < \omega} \mathbb{P}_n$ such that:
 - D_p is a finite subtree of ${}^{<\omega}\omega_1$,
 - for all $s \in D_p$, $p(s) \in \mathbb{P}_{len(s)}$,
 - for $s \subseteq t$ in D_p , $p(s) = p(t) \upharpoonright \operatorname{len}(s)$.
- Order: $p \le q$ if $D_p \supseteq D_q$ and for all $s \in D_q$, $p(s) \le q(s)$.
- \mathbb{P} is an "iteration along the tree ${}^{<\omega}\omega_1$ ".
- Suppose $G \subseteq \mathbb{P}$ is *V*-generic.
- An *n*-length sequence of reals in V[G] is
 V-generic for P_n if and only if it comes from a node of the tree added by G.
- \mathbb{P} has the ccc.

Strategy (continued)

The symmetric model N

- Constructed analogously.
- DC fails in N.
- Using that \mathbb{P} has the ccc, it follows that AC_{ω} holds in N.

The tree \mathcal{T}

- Domain: Π_2^1 -definable.
- Order: extension.

Obstacle: Find $\langle \mathbb{P}_n \mid n < \omega \rangle$ with desired properties.

Jensen's poset \mathbb{P} : overview

Properties

- $\mathbb{P} \in L$.
- Subposet of Sacks forcing.
- \mathbb{P} has the ccc.
- Adds a unique generic real over L.
- In any model V, the collection of all L-generic reals for \mathbb{P} is Π_2^1 -definable.

Finite-support products

Let $\mathbb{P}^{<\omega}$ be the finite-support ω -length product of \mathbb{P} .

Theorem: (Lyubetsky, Kanovei) If $G \subseteq \mathbb{P}^{<\omega}$ is *L*-generic, then the only *L*-generic reals for \mathbb{P} in L[G] are those on the coordinates of *G*.

Perfect posets

Perfect trees

- A tree $T \subseteq {}^{<\omega}2$ is perfect if every node in T has a splitting node above it.
- The meet $T \wedge S$ of perfect trees T and S:
 - the largest perfect tree contained in $T \cap S$, if T and S are compatible.
 - Ø otherwise.

Perfect posets

A perfect poset \mathbb{P} has the following properties:

- \mathbb{P} is a subposet of Sacks forcing.
- $({}^{<\omega}2)_s \in \mathbb{P}$ for every $s \in {}^{<\omega}2$.
- If $T, S \in \mathbb{P}$ are compatible, then $T \land S \in \mathbb{P}$ (closed under meets).
- If $T, S \in \mathbb{P}$, then $T \cup S \in \mathbb{P}$ (closed under unions).

We associate to \mathbb{P} , the fusion poset $\mathbb{Q}(\mathbb{P})$:

- Conditions: (T, n) with $T \in \mathbb{P}$ and $n \in \omega$.
- Order: $(S, m) \leq (T, n)$ if $S \subseteq T$, $m \geq n$, and $T \cap {}^{n}2 = S \cap {}^{n}2$.
- If $G \subseteq \mathbb{Q}(\mathbb{P})$ is V-generic, then $\mathcal{T} = \bigcup_{(\mathcal{T},n) \in G} \mathcal{T} \cap {}^{n}2$ is a perfect tree.

- 12

Growing perfect posets

Preliminaries

- A countable transitive model *M* is suitable if
 - $M = L_{\alpha}$,
 - $M \models$ "ZFC⁻ + $P(\omega)$ exists".
- Suppose $\mathbb{P} \in M$ is a perfect poset.
- Let $\mathbb{Q}(\mathbb{P})^{<\omega}$ be the finite-support ω -length product of $\mathbb{Q}(\mathbb{P})$.
- Let $\langle \dot{\mathcal{T}}_n \mid n < \omega \rangle$ be the canonical names for the perfect trees added by $\mathbb{Q}(\mathbb{P})^{<\omega}$.
- Let $G \subseteq \mathbb{Q}(\mathbb{P})^{<\omega}$ be *M*-generic and let $\mathcal{T}_n = (\dot{\mathcal{T}}_n)_G$.

Inside M[G]

- Let $\mathbb{U} = \{\mathcal{T}_n \land S \mid S \in \mathbb{P} \text{ and } \mathcal{T}_n \land S \neq \emptyset\}.$
- $\bullet~$ Let \mathbb{P}^* be the closure under unions of $\mathbb P$ and $\mathbb U.$

Lemma:

- (1) \mathbb{P}^* is a perfect poset.
- (2) $\langle \mathcal{T}_n \mid n < \omega \rangle$ is a maximal antichain of \mathbb{P}^* .
- (3) Every maximal antichain of \mathbb{P} from M remains maximal in \mathbb{P}^* .
- (4) Every maximal antichain of $\mathbb{P}^{<\omega}$ from *M* remains maximal in $\mathbb{P}^{*<\omega}$.

Proof: (1) Easy. (2)

- By density, if $n \neq m$, then $\mathcal{T}_n \cap \mathcal{T}_m$ is finite.
- By density, for every $T \in \mathbb{P}$, there is *n* such that $\mathcal{T}_n \leq \underline{T}$, $\overline{T}_n \leq \overline{T}_n$

3

Growing perfect posets (continued) **Proof of (3)**:

- Fix a maximal antichain $\mathcal{A} \in M$ of \mathbb{P} .
- Fix a condition $\mathcal{T}_n \wedge S \in \mathbb{U}$ and let $p \in G$ force $\dot{\mathcal{T}}_n \wedge \check{S} \neq \emptyset$.
- The set of conditions $\langle (T_i, m_i) | i < \omega \rangle$ with a node s on level m_n such that $(T_n)_s \leq A, S$ for some $A \in \mathcal{A}$ is dense below p.
- Fix a condition $\langle (T'_i, m_i) | i < \omega \rangle$ below p.

- There is a node s on level m_n of T'_n such that $S' = (T'_n)_s \land S \neq \emptyset$.
- There is $A \in \mathcal{A}$ such that $A' = S' \land A \neq \emptyset$.
- Let T_n be the result of thinning out $(T'_n)_s$ to A'.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Jensen's poset \mathbb{P} : definition

Preliminaries

• Fix a canonical \diamondsuit -sequence $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$.

Construction: \mathbb{P} will be the union of an increasing sequence of countable perfect posets

 $\mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \cdots \subseteq \mathbb{P}_\alpha \subseteq \cdots$

of length ω_1 .

Stage 0: \mathbb{P}_0 is the smallest perfect poset.

```
Stage limit \lambda: \mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}.
```

Stage $\alpha + 1$:

- Suppose S_{α} codes a well-founded binary relation $E \subseteq \alpha \times \alpha$ and $E \cong M_{\alpha}$ such that:
 - M_{α} is suitable,
 - $\omega_1^{M_\alpha} = \alpha$,
 - $\blacktriangleright \mathbb{P}_{\alpha}^{-} \in M_{\alpha}.$

Then

- Let G_{α} be the *L*-least M_{α} -generic filter for $\mathbb{Q}(\mathbb{P}_{\alpha})^{<\omega}$.
- Let $\mathbb{P}_{\alpha+1} = (\mathbb{P}_{\alpha}^*)^{M_{\alpha}[G_{\alpha}]}$.
- Otherwise, $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha}$.

Jensen's poset \mathbb{P} : properties

Preliminaries

- The models M_{α} form an increasing sequence. If $\alpha < \beta$, then $s_{\alpha} \in M_{\beta}$.
- If $\mathcal{A} \in M_{\alpha}$ is a maximal antichain of \mathbb{P}_{α} , then \mathcal{A} remains maximal in \mathbb{P} .
- **Lemma**: \mathbb{P} (and $\mathbb{P}^{<\omega}$) have the ccc.

Proof: Fix a maximal antichain \mathcal{A} of \mathbb{P} .

• Let $X \prec L_{\omega_2}$ such that $|X| = \omega_1$ and $\mathcal{A} \in X$.

Let

$$X_0 \prec X_1 \prec \cdots \prec X_{\xi} \prec \cdots \prec X$$

be a continuous increasing chain of length ω_1 .

- By properties of \diamondsuit , there is α such that
 - S_{α} codes X_{α} ,
 - $X_{\alpha} \cap \omega_1 = \alpha$,
 - $\mathcal{A} \in X_{\alpha}$.
- $\pi: M_{\alpha} \cong X_{\alpha}, \ \pi(\mathbb{P}) = \mathbb{P}_{\alpha}, \ \pi(\mathcal{A}) = \bar{\mathcal{A}}.$
- $\mathbb{P}_{\alpha+1} = (\mathbb{P}^*_{\alpha})^{M_{\alpha}[G_{\alpha}]}$.
- $\bar{\mathcal{A}}$ remains maximal in \mathbb{P} .
- $\bar{\mathcal{A}} = \mathcal{A}$ is countable. \Box

イロト 不得下 イヨト イヨト

Jensen's poset \mathbb{P} : properties (continued)

Preliminaries

- *M* is a suitable model, $\overline{\mathbb{P}} \in M$ is a perfect poset, $\overline{G} \subseteq \mathbb{Q}(\overline{\mathbb{P}})^{<\omega}$ is *M*-generic.
- \dot{x}_i is the canonical name for the *i*-th generic real added by $\bar{\mathbb{P}}^{<\omega}$.

Uniqueness Lemma: (Lyubetsky, Kanovei) Suppose \dot{r} is a $\mathbb{P}^{<\omega}$ -name for a real such that

for all $i < \omega$, $\mathbb{1}_{\mathbb{P}^{<\omega}} \Vdash \dot{r} \neq \dot{x}_i$.

Then for every *n*, conditions forcing that $\dot{r} \notin [\check{\mathcal{T}}_n]$ are dense in $\mathbb{P}^{* < \omega}$.

Theorem: (Lyubetsky, Kanovei) Suppose $G \subseteq \mathbb{P}^{<\omega}$ is *L*-generic. If $r \in L[G]$ is *L*-generic for \mathbb{P} , then $r = (\dot{x}_i)_G$ for some $i < \omega$.

Proof: Suppose $r \in L[G]$ and $r \neq (\dot{x}_i)_G$ for any $i < \omega$.

- Let \dot{r} be a nice $\mathbb{P}^{<\omega}$ -name for r such that for all $i < \omega$, $\mathbb{1}_{\mathbb{P}^{<\omega}} \Vdash \dot{r} \neq \dot{x}_i$.
- Let $X \prec L_{\omega_2}$ such that $|X| = \omega_1$ and $\dot{r} \in X$.
- Let $X_0 \prec X_1 \prec \cdots \prec X_{\xi} \prec \cdots \prec X$ be a continuous increasing chain of length ω_1 .
- By properties of \Diamond , there is α such that S_{α} codes X_{α} , $X_{\alpha} \cap \omega_1 = \alpha$, $\dot{r} \in X_{\alpha}$.
- $\pi: M_{\alpha} \cong X_{\alpha}, \ \pi(\mathbb{P}) = \mathbb{P}_{\alpha}, \ \pi(\dot{r}) = \dot{r}.$
- $\mathbb{P}_{\alpha+1} = (\mathbb{P}^*_{\alpha})^{M_{\alpha}[G_{\alpha}]}.$
- $\langle \mathcal{T}_n \mid n < \omega \rangle \in M_{\alpha}[\mathcal{G}_{\alpha}]$ remains maximal in $\mathbb{P}^{<\omega}$.
- For every $n < \omega$, $\mathbb{P}_{\alpha+1}$ has a maximal antichain \mathcal{A}_n of conditions forcing $\dot{r} \notin \check{\mathcal{T}}_n$.
- Each \mathcal{A}_n remains maximal in $\mathbb{P}^{<\omega}$, so $r \notin [\mathcal{T}_n]$. \Box

Iterations of perfect posets (Abraham)

- $\mathbb{P}_n = \mathbb{Q}_0 * \dot{\mathbb{Q}}_1 * \cdots * \dot{\mathbb{Q}}_{n-1}$ is an *n*-length iteration of perfect posets:
 - Q₀ is a perfect poset,
 - for $1 \le i < n$, $\mathbb{P}_i \Vdash \dot{\mathbb{Q}}_i$ is a perfect poset.
- $\vec{P} = \langle \mathbb{P}_i \mid 1 \leq i < \omega \rangle$ is an ω -iteration of perfect posets:
 - ▶ for all $i < \omega$, \mathbb{P}_i is an *i*-length iteration of perfect posets,
 - for i < j, $\mathbb{P}_j \upharpoonright i = \mathbb{P}_i$.

We associate to \mathbb{P}_n , the fusion poset $\mathbb{Q}(\mathbb{P}_n)$:

- Conditions: (p, F) with $p \in \mathbb{P}_n$ and $F : n \to \omega$.
- Order: $(p', F') \leq (p, F)$ if $p' \leq p$ and for all i < n,
 - $F'(i) \geq F(i)$,
 - ▶ $p' \upharpoonright i \Vdash p'(i) \cap {}^{F(i)}2 = p(i) \cap {}^{F(i)}2.$
- $\mathbb{Q}(\mathbb{P}_n)$ is not an iteration!

Tree iterations of perfect posets

Suppose $\vec{P} = \langle \mathbb{P}_i \mid 1 \leq i < \omega \rangle$ is an ω -iteration of perfect posets.

Growing iterations of perfect posets

Preliminaries

- *M* is a suitable model.
- $\vec{P} = \langle \mathbb{P}_i \mid 1 \leq i < \omega \rangle \in M$ is an ω -iteration of perfect posets.
- $G \subseteq \mathbb{Q}(\vec{P}, {}^{<\omega}\omega)$ is *M*-generic.

Growing iterations of perfect posets (continued)

The perfect poset \mathbb{Q}_0^\ast

- The finite-support product $\prod_{i < \omega} G_{\langle i \rangle}$ of the $G_{\langle i \rangle}$ is *M*-generic for $\mathbb{Q}(\mathbb{Q}_0)^{<\omega}$.
- For $i < \omega$, let \mathcal{T}_i^0 be the perfect tree constructed from $G_{\langle i \rangle}$.
- \mathbb{Q}_0^* is constructed from \mathbb{Q}_0 and $\langle \mathcal{T}_i^0 \mid i < \omega \rangle$.
- $\langle \mathcal{T}_i^0 \mid i < \omega \rangle$ is a maximal antichain of \mathbb{Q}_0^* .
- Every maximal antichain of \mathbb{Q}_0 from *M* remains maximal in \mathbb{Q}_0^* .

The \mathbb{Q}_0^* -name $\dot{\mathbb{Q}}_1^*$ for a perfect poset

- Fix a node $\langle i \rangle \in {}^{<\omega}\omega$.
- Suppose $H^* \subseteq \mathbb{Q}_0^*$ is V-generic. Inside $V[H^*]$:
 - Let $\mathbb{Q}_1 = (\mathbb{Q}_1)_{H^*}$.
 - ► Let $G_{i,j} = \{(p(1)_{H^*}, F(1)) \mid (p, F) \in G_{\langle ij \rangle}\} \subseteq \mathbb{Q}(\mathbb{Q}_1).$
 - Let G_{i,j} be the canonical name for G_{i,j}.
- Theorem: (Abraham) If there is $p \in \mathbb{Q}_0^*$ such that

 $p \leq q(0)$ for all $(q,F) \in G_{\langle ij
angle}$,

then

 $p \Vdash$ "The finite-support product $\prod_{j < \omega} \dot{G}_{i,j}$ is $M[\dot{H}]$ -generic for $\mathbb{Q}(\dot{\mathbb{Q}}_1)^{<\omega}$.", where \dot{H} is the restriction of \dot{H}^* to \mathbb{Q}_0 .

Growing iterations of perfect posets (continued)

- The \mathbb{Q}_0^* -name $\dot{\mathbb{Q}}_1^*$ for a perfect poset (continued)
 - $\mathcal{T}_i^0 \leq q(0)$ for every $(q, F) \in G_{\langle ij \rangle}$.
 - $\mathcal{T}_i^0 \Vdash$ "The finite-support product $\prod_{j < \omega} \dot{G}_{i,j}$ is $M[\dot{H}]$ -generic for $\mathbb{Q}(\dot{\mathbb{Q}}_1)^{<\omega}$."
 - By mixing over the antichain $\langle \mathcal{T}_i^0 \mid i < \omega \rangle$:
 - Let $\dot{\mathcal{T}}_i^1$ for $j < \omega$ be names for perfect trees added by $\dot{\mathcal{G}}_{i,j}$.
 - Let $\dot{\mathbb{Q}}_1^*$ be a \mathbb{Q}_0^* -name for the perfect poset constructed from $\dot{\mathbb{Q}}_1$ and $\langle \dot{\mathcal{T}}_i^1 | j < \omega \rangle$.
 - $\{\langle \mathcal{T}_i^0, \dot{\mathcal{T}}_j^1 \rangle \mid i, j < \omega\}$ is a maximal antichain of \mathbb{P}_2^* .
 - Every maximal antichain of \mathbb{P}_2 from *M* remains maximal in \mathbb{P}_2^* .

The \mathbb{P}_n^* -name $\dot{\mathbb{Q}}_{n+1}^*$ for a perfect poset

- Fix a node $s \in {}^{<\omega}\omega$.
- Suppose $H^* \subseteq \mathbb{P}_n^*$ is V-generic. Inside $V[H^*]$:
 - Let $\mathbb{Q}_n = (\dot{\mathbb{Q}}_n)_{H^*}$.
 - ▶ Let $G_{s,j} = \{(p(n)_{H^*}, F(n)) \mid (p, F) \in G_{s^{\frown}j}\}.$
- $\langle T^0_{\mathfrak{s}(0)}, \mathcal{T}^1_{\mathfrak{s}(1)}, \dots, \mathcal{T}^0_{\mathfrak{s}(n-1)} \rangle \leq q \restriction n \text{ for every } (q, F) \in G_{\mathfrak{s} \frown j}.$
- $\langle T_{s(0)}^0, T_{s(1)}^1, \dots, T_{s(n-1)}^0 \rangle \Vdash$ "The finite-support product $\prod_{j < \omega} \dot{G}_{s,j}$ is $M[\dot{H}]$ -generic for $\mathbb{Q}(\dot{\mathbb{Q}}_n)^{<\omega}$."
- etc.

The ω -iteration \vec{P} : definition

Preliminaries

• Fix a canonical \diamondsuit -sequence $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$.

Construction: Completed in ω_1 -many steps.

Stage 0: $\vec{P}_0 = \langle \mathbb{P}^0_i \mid 1 \leq i < \omega \rangle$

- \mathbb{Q}_0^0 is the smallest perfect poset.
- $\dot{\mathbb{Q}}_i^0 = \check{\mathbb{Q}}_0^0$.

Stage limit λ : $\vec{P}_{\lambda} = \langle P_i^{\lambda} \mid 1 \leq i < \omega \rangle$.

• $\mathbb{Q}_0^{\lambda} = \bigcup_{\xi < \lambda} \mathbb{Q}_0^{\xi}$.

• $\dot{\mathbb{Q}}_{i}^{\lambda}$ is the name for the union of $\dot{\mathbb{Q}}_{i}^{\xi}$ for $\xi < \lambda$.

Stage $\alpha + 1$:

- Suppose S_{α} codes a well-founded binary relation $E \subseteq \alpha \times \alpha$ and $E \cong M_{\alpha}$ such that:
 - M_{α} is suitable,
 - $\omega_1^{M_\alpha} = \alpha$,
 - $\vec{P}_{\alpha} \in M_{\alpha}$.

Then

- Let G_{α} be the *L*-least M_{α} -generic filter for $\mathbb{Q}(\vec{P}_{\alpha}, {}^{<\omega}\omega)$.
- Let $\vec{P}_{\alpha+1} = (\vec{P}_{\alpha}^*)^{M_{\alpha}[G_{\alpha}]}$.
- Otherwise, $\vec{P}_{\alpha+1} = \vec{P}_{\alpha}$.

イロト 不得下 イヨト イヨト

Wrapping up

Preliminaries

- *M* is a suitable model, $\vec{P}_{\alpha} \in M$ is an ω -iteration of perfect posets, $\vec{G} \subseteq \mathbb{Q}(\vec{P}_{\alpha}, {}^{<\omega}\omega)$ is *M*-generic.
- \dot{x}_s is the canonical name for the sequence of generic reals added on node s of \bar{G} .

Uniqueness Lemma: (Friedman, G.) Suppose that \dot{r} is a $\mathbb{P}(\vec{P}_{\alpha}, {}^{<\omega}\omega)$ -name for an *n*-length sequence of reals such that for all *s* on level *n* of ${}^{<\omega}\omega$,

$$\mathbf{1}\Vdash_{\mathbb{P}(\vec{P}_{\alpha},<\omega_{\omega})}\dot{r}\neq\dot{x}_{s}.$$

Then for every s on level n of ${}^{<\omega}\omega$, conditions forcing that for some i < n, $\dot{r}(i) \notin [\dot{\mathcal{T}}^i_{s(i)}]$ are dense in $\mathbb{P}(\vec{P}^*_{\alpha}, {}^{<\omega}\omega)$.

Theorem: (Friedman, G.,) $\mathbb{P}(\vec{P}, {}^{<\omega}\omega)$ has the ccc.

Theorem (Friedman, G.) Suppose $G \subseteq \mathbb{P}(\vec{P}, {}^{<\omega}\omega)$ is *L*-generic. If an *n*-length sequence of reals $r \in L[G]$ is *L*-generic for \mathbb{P}_n , then $r = (\dot{x}_s)_G$ for some node *s* on level *n* of ${}^{<\omega}\omega$.

Corollary: All results carry over to the tree iteration $\mathbb{P}(\vec{P}, {}^{<\omega}\omega_1)$ over ${}^{<\omega}\omega_1$.

Thank you!

2

▲□→ ▲圖→ ▲温→ ▲温→