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Class choice principles in second-order set theory

Class choice principles for Kelley-Morse set theory

Kelley-Morse set theory: (KM)

o First-order: ZFC
@ Second-order:

> Replacement

» full second-order comprehension
> Global Choice

Class choice scheme: (X..-AC) For every second-order formula ¢(x, X, A),
Vx3X o(x, X, A) — IYVx ¢(x, Y, A),
where Yy = {y | (x,y) € Y}.

Class choice scheme over sets: (Set-X. -AC) For every second-order formula
o(x, X, A) and set a,

Vx € a3X ¢o(x, X, A) — IYVx € ap(x, Yi, A).

Class dependent choice scheme: (X.,-DC) For every second-order formula (X, Y, A),

vYX3Y o(X, Y, A) — 3Z¥no(Z | n, Zy, A).
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Class choice principles in second-order set theory

Applications of class choice schemes

Theorem: (Marek, Mostowski) The theory KM+X. -AC is bi-interpretable with the
theory ZFC; :

e ZFC™,
@ there is a largest cardinal k,

@ k is strongly inaccessible.

Theorem: (G., Hamkins, Johnstone) Over KM, Set-YX1,-AC is equivalent to the Lo$
Theorem for second-order ultrapowers.

Theorem: (G., Hamkins, Johnstone) Over KM + X1 -AC, 1 -DC is equivalent to

second-order reflection. For every second-order formula (o(), there is a class A whose slices {Ag | & € Ord} reflect (X).
(Antos, Friedman) In KM+XL -AC+XL,-DC we can formalize hyperclass forcing.

Theorem: The “L" of a model of KM satisfies KM + Zéo—AC—i—):},o—DC.

A class is constructible if it is an element of L for a meta-ordinal I'.
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Class choice principles in second-order set theory

Independence of class choice schemes

Theorem: (G., Hamkins, Johnstone) It is relatively consistent that:
o There is a model of KM in which Set-X3-AC fails.
@ There is a model of KM in which Set-X1_-AC holds, but £°-AC fails.

Question: Does Y. -AC imply X..-DC over KM?

Conjecture: It is relatively consistent that there is a model of KM in which X1 -AC
holds, but X1 -DC fails.

Strategy: Prove an analogous result for models of second-order arithmetic and generalize.
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Class choice principles in second-order set theory

Choice principles for models of second-order arithmetic

Full second-order arithmetic: (Z:)
@ Analogue of KM.

o First-order: PA
@ Second-order:

> Induction
> full second-order comprehension

Choice scheme: (X} ,-AC) For every second-order formula ¢(n, X, A),

VnaX ¢(n, X, A) — 3YVnp(n, Ya, A).

Dependent choice scheme: (X1.-DC) For every second-order formula (X, Y, A),

YX3Y o(X, Y, A) — 3ZYno(Z | n, Zn, A).
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Class choice principles in second-order set theory

Independence of the choice scheme over Zo

Lemma: Z, proves Y3-AC.

Proof: Suppose M = Z; and M |= ¥Yn3Xp(n, X), where ¢ is 3.

(We ignore parameters for simplicity.)
o If o is an ordinal coded by a set in M, then M has a set coding L.
o M has its own constructible universe [

@ M satisfies Shoenfield Absoluteness:
If 4 is a ¥3-assertion, then

M= iff LM =9,

In LM, 2 is interpreted as an assertion about numbers and sets of numbers.

o L™ has a witness to every Y3-assertion 3Xp(n, X).

Choose the [™-least X and use comprehension to collect! O]

Theorem: (Feferman-Lévy) It is relatively consistent that there is a model of Z, in which
M3-AC fails.
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Class choice principles in second-order set theory

The symmetric model argument

The Feferman-Lévy model: N |=ZF is a symmetric submodel of a forcing extension of
L by the finite-support product My« Coll(w, Ry). In N:

e Each Rt is countable.

o RL =V is the first uncountable cardinal.

Proof: Let M |= Z, with second-order part P"(w).
@ Every Ly, is coded in M, but Ly, is not coded in M.
@ We cannot collect the (codes of) Ly, .
@ The assertion
VnaX = Ly, — 3ZVYn Z, = Ly,
fails in M.

@ The assertion X = LNn is rlé (The assertion that a set of numbers codes an ordinal is I'I%) O

Theorem: (Mansfield, Simpson) Z implies ¥3-DC.
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Class choice principles in second-order set theory

Independence of the dependent choice scheme over Z, + X% -AC

Theorem: (Friedman, G.) It is relatively consistent that there is a model of Z, + X1 -AC
in which M3-DC fails.

History: Simpson claimed to have proved the result in 1973, but his proof is lost.

Strategy:

o Construct a symmetric submodel N of some forcing extension such that in N:
» AC, holds,
» DC fails for a I'I%-definable relation on the reals.

o Let M |= Z> with second-order part P(w)".
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Class choice principles in second-order set theory

Classical model of AC,, + —~DC (Jensen)
The forcing P
Adds a collection of Cohen subsets of w; indexed by nodes of the tree <“w;.

e Conditions: p: D, — 2 for some countable D, C ““w; X w;.
@ Order: p < qif D, D Dq and for all s € Dg, p(s) < q(s).
@ P is countably closed.

Automorphisms of P
o Every automorphism m of the tree <“w; extends to an automorphism 7* of P.

o H={x"|mis an automorphism of <~“w;} is a group automorphisms of P.

The symmetric model N
@ A countable tree T C <“w; is good if it has no infinite branch.
Given a good tree T, let Hr be the group of all #™ with 7w point-wise fixing T.
Given a P-name o, let sym(o) be the group of all #* fixing o.
A P-name o is symmetric if sym(o) 2 Hr for some good tree T.

Let G C P be V-generic.
N = {o¢ | o € HS} is an inner model of V[G] satisfying ZF.
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Classical model of AC,, + —~DC (continued)

Preliminar.ies
o Let .7 be the canonical P-name for the tree of Cohen subsets of wi added by P.
e 7 is hereditarily symmetric, and hence 7 = ()¢ € N.

Lemma: DC fails in N.
Proof sketch:
@ Suppose that b € N is an infinite branch through 7.
@ Let 0 € HS be a P-name for b, witnessed by a good tree T.
o Use that eventually b lies outside of T to derive a contradiction. O

Lemma: AC,, holds in N.
Proof sketch:

o Let F ={F,| n<w} € N be a family of non-empty sets.

o Let o € HS be a P-name for F, witnessed by a good tree S.

@ Build a descending sequence of conditions pg > p1 > --- > p; > --- such that:
> p; Ik 7; € o(i) for some 7; € HS, witnessed by a good tree T;.
» Fori<j, T;,NT;=S.

o Let 7 € HS be a P-name for the sequence of the 7;, as witnessed by T = J,_, T:.
o Let p < pjforall i <w.
o pl-"7 is a choice function for ¢". O

Obstacle: .7 is not a tree of reals.
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Class choice principles in second-order set theory

A variation on the classical model (Friedman, G.)

The forcing P

@ Adds a collection of Cohen subsets of w indexed by nodes of the tree <“w;.

Conditions: p : D, — 2 for some finite D, C ““w; X w.
Order: p < q if D, D Dq and for all s € Dg, p(s) < q(s).

@ P has the ccc.

The symmetric model N
o Constructed analogously.
o DC failsin N.

o AC,, holds in N (use ccc instead of countable closure).

Obstacle: Why is .7 definable over P"(w)?
o domain

@ order
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Class choice principles in second-order set theory
Strategy

The forcing P
o Let (P, | n < w) be a sequence of forcing iterations such that:

» P, is an iteration of length n,

> a generic filter for P, is determined by an n-length sequence of reals,

> for m>n, Py | n =P,

> The collection of all generic n-length sequences of reals for P, is I'I%-definable.

e Conditions: p: D, — U, .., Pn such that:

> D, is a finite subtree of <“wy,
> for all s € Dp, p(s) € Piens), L
> for s C tin Dp, p(s) = p(t) | len(s). {Po, 41, 71)
Order: p < q if D, O Dq and for all s € Dy,
p(s) < a(s)- {Po, p1)

P is an “iteration along the tree <“w;".

Suppose G C P is V-generic.

An n-length sequence of reals in V[G] is
V-generic for P, if and only if it comes from a
node of the tree added by G.

@ P has the ccc.
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Strategy (continued)

The symmetric model N
@ Constructed analogously.
e DC failsin V.
@ Using that P has the ccc, it follows that AC,, holds in N.

The tree T
o Domain: M3-definable.

@ Order: extension.

Obstacle: Find (P, | n < w) with desired properties.
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Class choice principles in second-order set theory

Jensen’s poset P: overview

Properties
o Pe L
@ Subposet of Sacks forcing.
@ P has the ccc.
@ Adds a unique generic real over L.

@ In any model V, the collection of all L-generic reals for P is I3-definable.

Finite-support products

Let P<“ be the finite-support w-length product of P.

Theorem: (Lyubetsky, Kanovei) If G C P<“ is L-generic, then the only L-generic reals
for P in L[G] are those on the coordinates of G.
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Class choice principles in second-order set theory

Perfect posets

Perfect trees

o Atree T C %2 is perfect if every node in T has a splitting node above it.
@ The meet T A S of perfect trees T and S:

> the largest perfect tree contained in T NS, if T and S are compatible.
> () otherwise.

Perfect posets
A perfect poset P has the following properties:
o P is a subposet of Sacks forcing.
@ (<¥2)s € P for every s € <“2.
o If T,S € P are compatible, then T A S € P (closed under meets).
o If T,S€P, then TUS € P (closed under unions).

We associate to PP, the fusion poset Q(P):
e Conditions: (T,n) with T € P and n € w.
@ Order: (S,m)<(T,n)ifSCT,m>n,and TN"2=5N"2.
o If G C Q(P) is V-generic, then 7 = ;1 ,cc T N "2 is a perfect tree.
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Class choice principles in second-order set theory

Growing perfect posets
Preliminaries
@ A countable transitive model M is suitable if
> M= La,
> M= "ZFC™ + P(w) exists”.
Suppose P € M is a perfect poset.
Let Q(P)=* be the finite-support w-length product of Q(PP).
Let (7, | n < w) be the canonical names for the perfect trees added by Q(PP)<*.
Let G C Q(P)<“ be M-generic and let 7, = (T5)c.
Inside M[G]
o LetU={7T,AS|S€Pand 7,AS # (}.
o Let P* be the closure under unions of P and U.

Lemma:
(1) P* is a perfect poset.
(2) (Ta | n < w) is a maximal antichain of P*.
(3) Every maximal antichain of P from M remains maximal in P*.
(4) Every maximal antichain of P<* from M remains maximal in P*<¢.
Proof: (1) Easy. (2)

o By density, if n # m, then T, N Tp, is finite.

o By density, for every T € P, there is n such that 7, < T.

Victoria Gitman
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Class choice principles in second-order set theory

Growing perfect posets (continued)
Proof of (3):

o Fix a maximal antichain A € M of P.
e Fix a condition 7, A S € U and let p € G force T, A 5 # 0.

@ The set of conditions ((T;, m;) | i < w) with a node s on level m, such that
(Ta)s < A,S for some A € A is dense below p.

e Fix a condition {(T/,m;) | i < w) below p.
S A

level m,

T

@ There is a node s on level m, of T, such that S’ = (T;)s A S # 0.
o Thereis A€ A such that A =S ' AA# 0.
@ Let T, be the result of thinning out (T})s to A’. O
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Class choice principles in second-order set theory

Jensen’s poset P: definition

Preliminaries
@ Fix a canonical {-sequence (S, | o < wy).

Construction: P will be the union of an increasing sequence of countable perfect posets
PoCP1C--CPu T

of length ws.

Stage 0: Py is the smallest perfect poset.
Stage limit A: Px = (U, Pe.

Stage a + 1:

@ Suppose S, codes a well-founded binary relation E C o X o and E = M,, such that:
» M, is suitable,

. Mo _

w; Y =a

> Po € M.
Then

> Let G, be the L-least M,-generic filter for Q(Pn)<%.
> Let Py = (P%)MalCal,

@ Otherwise, Po11 = Pq.
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Class choice principles in second-order set theory

Jensen’s poset P: properties

Preliminaries

@ The models M, form an increasing sequence. o < g, then 5o € Mg.

e If A € M, is a maximal antichain of P, then A remains maximal in P.
Lemma: P (and P<“) have the ccc.
Proof: Fix a maximal antichain A of P.

o Let X < L., such that |X| =w; and A € X.

o Let

Xo<Xp << Xeg<--- <X

be a continuous increasing chain of length w;.
@ By properties of ¢, there is o such that

» S, codes X,
> Xy Nwi = a,
> Ac Xq,.

o T: My =Xy, T(P) =Py, m(A) = A
o Poiy = (Pr)MalCal

o A remains maximal in P.

o A= Ais countable. [J
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Class choice principles in second-order set theory

Jensen's poset IP: properties (continued)
Preliminaries
@ M is a suitable model, P € M is a perfect poset, G C Q(P)<“ is M-generic.
o x; is the canonical name for the i-th generic real added by P<%.
Uniqueness Lemma: (Lyubetsky, Kanovei) Suppose f is a P<“-name for a real such that
for all i < w, Ip<w IF F # X;.
Then for every n, conditions forcing that ¢ ¢ [7,] are dense in P*<«.
Theorem: (Lyubetsky, Kanovei) Suppose G C P<“ is L-generic. If r € L[G] is L-generic
for P, then r = (X;)¢ for some i < w.
Proof: Suppose r € L[G] and r # (x;)¢ for any i < w.
o Let F be a nice P<®“-name for r such that for all / < w, Ip<w I F # x;.
Let X < L, such that |[X| =w; and F € X.
Let Xo < X1 < --+ < X¢ <--- < X be a continuous increasing chain of length w;.
By properties of <>, there is « such that S, codes X,, Xo Nwi = a, F € X,.
7w My &2 Xy, ©(P) = Pq, w(F) = F.
Pa+1 = (P;)MQ[GQ]-
(Tn | n < w) € My[Ga] remains maximal in P<¢.
For every n < w, Pn41 has a maximal antichain A, of conditions forcing r ¢ T
Each A, remains maximal in P<%, so r ¢ [7,]. O
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Class choice principles in second-order set theory

Iterations of perfect posets (Abraham)

o P, =Q#Qy*---xQn_1 is an n-length iteration of perfect posets:
> Qo is a perfect poset,
> for 1 < i< n, P;IFQ;is a perfect poset.

o P=(Pi|1<i<w)isan w-iteration of perfect posets:
> for all i < w, IP; is an i-length iteration of perfect posets,
> fOI’i<j,Pj [i=TP;.

We associate to IP,, the fusion poset Q(IP,):

e Conditions: (p, F) with p € P, and F : n — w.

e Order: (p',F') < (p,F)if p’ < pand forall i < n,
> F'(i) > F(i),
> p/ 1ilkp/ ()N FD2 = p(i)n Fi)2,

@ Q(P,) is not an iteration!
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Class choice principles in second-order set theory

Tree iterations of perfect posets

Suppose P= (Pi | 1 < i< w)is an w-iteration of perfect posets.

IED(F_", <“w) is a tree iteration of perfect posets:
e Conditions: p: D, — |J;,, Pi such that:
> D, is a finite subtree of <“w,
> forall s € Dp, p(s) € Pen(s),
> for s C tin Dp, p(s) = p(t) | len(s).
@ Order: p < qif D, O D, and for all s € Dq,
p(s) < q(s).

Let Q(P, <“w) be the tree iteration of Q(Pn):
e Conditions: p: Dp — J;,, Q(P;) such that:
> D, is a finite subtree of <“w,
> forall s € Dp, p(s) € Qiens)
> for s C tin Dp, if p(t) = (qp, Fp), then
p(s) = (gp | len(s), Fp | len(s)).
o Order: p< qif D, O D, and for all s € Dq,
p(s) < q(s).

<p07 q.17 r1>

(po, P1) (po, G1)

((Po» a1> 1) (ngs ny» na))

(o, A1), (g, n1)) @((po. d1) . (ng. n1))
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Class choice principles in second-order set theory

Growing iterations of perfect posets
Preliminaries

@ M is a suitable model.

o P= (Pi |1 <i<w)€ M is an w-iteration of perfect posets.
o G C Q(P,<“w) is M-generic.

(a9 &30, a8%0), (mQ, m{®, m300))

(a3, 40, 8%y, (mQ, mdO, m3%'))

(69 00, 990), (3, 120, 00))

(¢eg. 9%, 8371y, (ng, n0, n3%7))

(<a3, 620y, (m3, m30))

((a9. a9y, (m3, md'y)
((p3, 50y, (nd, n30))

(p3. 597y, (n§., nd')

Sy
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Class choice principles in second-order set theory

Growing iterations of perfect posets (continued)
The perfect poset Qg
@ The finite-support product M;<,, Gy of the Gy is M-generic for Q(Qo)<*.
@ For i < w, let TP be the perfect tree constructed from Giy-
e Qj is constructed from Qg and (77 | i < w).
o (7T | i< w) is a maximal antichain of Q.
o Every maximal antichain of Qg from M remains maximal in Qg.
The Qf-name Q} for a perfect poset
e Fix a node (i) € ~*w.
o Suppose H* C Qg is V-generic. Inside V[H"]:

> Let Q1 = (Q1)p+-
> Let Gjj = {(P()H=, F(1)) | (P, F) € Ggjpy } € Q(Q1)-

> Let G, be the canonical name for G; ;.
@ Theorem: (Abraham) If there is p € Qg such that
p < q(0) for all (q, F) € Gy,

then
p Ik “The finite-support product M;<., Gi,j is M[Fl]—generic for Q(Q1)<“.”,

where H is the restriction of H* to Q.
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Class choice principles in second-order set theory

Growing iterations of perfect posets (continued)
The Qg-name Q7 for a perfect poset (continued)
o T;° < q(0) for every (q,F) € G-
o T IF “The finite-support product M., G;; is M[H]-generic for Q(Q1)<“."
e By mixing over the antichain (7° | i < w):
> Let 7'}1 for j < w be names for perfect trees added by G,-J.
> Let Qi‘ be a 3-name for the perfect poset constructed from Q; and (7;1 |j < w).
o {(T°,T*) | i,j < w} is a maximal antichain of P5.
@ Every maximal antichain of P, from M remains maximal in P5.

The P} -name Q:+1 for a perfect poset
@ Fix a node s € “Yw
@ Suppose H* C P} is V-generic. Inside V[H"]:

> Let Q, = (Qn)H*-
> Let Goy = {(p(me, F(m) | (b, F) € G, ).

o (T 5(0) Ts(l 7_5{2n71)> < q [ nforevery (q,F) € G,~;.

° <ng0), 7;(1), e 7'5%71)) I- “The finite-support product M;<,, Gs ; is M[H]-generic for
Q(Qn)=

@ etc.
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Class choice principles in second-order set theory

The w-iteration P: definition
Preliminaries

o Fix a canonical {>-sequence (S, | & < wi).
Construction: Completed in wi-many steps.
Stage 0: Po = (P? |1 <i<w)

o QJF is the smallest perfect poset.

° Q=@
Stage limit \: Py = (P} |1 < i< w).

° Qé‘ = U5<,\ QS

o O is the name for the union of Qf for £ < A.
Stage a + 1:

@ Suppose S, codes a well-founded binary relation E C a X a and E = M,, such that:
» M, is suitable,

> w{w‘" = q,
> Py € Ma.
Then

> Let G, be the L-least M,-generic filter for Q(ﬁa, <@w).
> Let Py 1 = (P*)MalGal,

@ Otherwise, lsn+1 = /Sa-
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Class choice principles in second-order set theory
Wrapping up

Preliminaries

o M is a suitable model, P, € M is an w-iteration of perfect posets, G C Q(Is;17 ““w)
is M-generic.
@ X, is the canonical name for the sequence of generic reals added on node s of G.

Uniqueness Lemma: (Friedman, G.) Suppose that ¢ is a P(P., <“w)-name for an
n-length sequence of reals such that for all s on level n of <“w

Vlrpp, <oy F # %
Then for every s on level n of <“w, conditions forcing that for some i < n, F(i) ¢ [7;’(,)]
are dense in P(P;, <“w).
Theorem: (Friedman, G.,) P(P, <“w) has the ccc.

Theorem (Friedman, G.) Suppose G C ]P’(I3 <“w) is L-generic. If an n-length sequence
of reals r € L[G] is L-generic for P, then r = (Xs)¢ for some node s on level n of ~*w

Corollary: All results carry over to the tree iteration P(P <“w1) over <“ws.
y Yy )
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Thank you!
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