Class forcing in its rightful setting

Victoria Gitman

vgitman@nylogic.org
http://victoriagitman.github.io

KGRC Seminar
June 25, 2020
Class forcing (forcing with a class partial order) is ubiquitous in set theory.

- Make GCH fail at every regular cardinal.
 - $\prod_{\alpha \in \text{Reg}} \text{Add}(\alpha, \alpha^{++})$ with Easton support.
- Make $V = \text{HOD}$ hold by coding all sets into the continuum function.
- Make all supercompact cardinals Laver indestructible.
- Add a global well-order (bijection $F : V \xrightarrow{1-1} \text{Ord}$).
 - $\text{Add}(\text{Ord}, 1)$: conditions are partial functions $f : \alpha \to \text{Ord}$ for $\alpha \in \text{Ord}$ ordered by extension.
 - $<\text{Ord}$-closed.
 - Does not add sets.
- Shoot a class club through a fat stationary class.
 - Conditions are closed sets of ordinals from the stationary class ordered by end-extension.
 - $<\text{Ord}$-distributive.
 - Does not add sets.
The right setting for class forcing

Class forcing is fundamentally about classes.

- A generic filter for a class partial order is a subclass of the partial order meeting all dense subclasses.
- The properties of the partial order depend on which classes exist around it.

First-order set theory

- Classes are definable (with parameters) collections of sets.
- Classes are objects in the meta-theory.

Second-order set theory

- Classes are elements of the model.
- We can quantify over classes.
- We can study general properties of classes.
- The theory determines which classes exist.

We should not expect class forcing to be as nice as set forcing because classes even in the strongest second-order set theories do not behave as nicely as sets.
Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: Two-sorted logic

- Separate variables and quantifiers for sets and classes
- Convention: upper-case letters for classes, lower-case letters for sets
- Notation:
 - Σ^0_n - first-order Σ_n-formula
 - Σ^1_n - n-alternations of class quantifiers followed by a first-order formula

Semantics: A model is a triple $\mathcal{V} = \langle V, \in, C \rangle$.

- V consists of the sets.
- C consists of the classes.
- Every set is a class: $V \subseteq C$.
- $C \subseteq V$ for every $C \in C$.
Weakest second-order theories

Set axioms

- ZF^-: no choice, no powerset, collection instead of replacement
- ZFC^-: no powerset, collection instead of replacement, well-ordering principle instead of axiom of choice\(^1\)

\(^1\)Different formulations of the axiom of choice are not equivalent over ZF^-.
Weakest second-order set theories

Second-order theories: axioms for sets and classes

- **GB**
 - set axioms: **ZF**
 - **Replacement:** If F is a function and a is a set, then $F \upharpoonright a$ is a set.
 - **First-order comprehension:** If $\varphi(x, A)$ is a first-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.
 - Every model of ZF with together with its definable collections is a model of GB.

- **GBc:** GB with ZF replaced by ZFC.
 - Every model of ZFC together with its definable collections is a model of GBc.

- **GBC:** Gödel-Bernays set theory
 - GBc
 - **Global well-order:** there is a bijection $F : V \xrightarrow{1-1 \text{onto}} \text{Ord}$.²
 - Every model of ZFC, with a definable global well-order, together with its definable collections is a model of GBC, e.g. L.
 - Every model of ZFC has a class forcing extension with the same sets satisfying GBC: force with Add(Ord, 1).
 - Conservative over ZFC.

- **GB⁻, GBc⁻, GBC⁻:** ZF⁻ instead of ZF.

²Different formulations of global choice are not equivalent over GBc⁻.
Hyperclasses

Definition: In a model of second-order set theory, a hyperclass is a definable (with parameters) collection of classes.
- Analogue of classes in second-order.
- Third-order part of the model.

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}$. Given a set a and a class A, the a-th slice of A is the class

$$\{ x \mid \langle a, x \rangle \in A \},$$

where \langle , \rangle is the Gödel pairing function.

Definition: A hyperclass, given by a formula $\varphi(X, A)$, is coded by a class C if for every class B, $\varphi(B, A)$ holds if and only if there is a set b such that $C_b = B$.

“A coded hyperclass has class-many classes.”
Transfinite recursion on classes along meta-ordinals

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models GBC$.

Definition: A meta-ordinal is a well-order $(\Gamma, \leq) \in C$.

- **Examples:** Ord, $\text{Ord} + \text{Ord}$, $\text{Ord} \cdot \omega$.
- **Notation:** For $a \in \Gamma$, $\Gamma \upharpoonright a$ is the restriction of the well-order to \leq-predecessors of a.
- Meta-ordinals may not have unique representations.

Question: Does GBC prove that any two meta-ordinals are comparable?

Definition: Suppose $\Gamma \in C$ is a meta-ordinal. A solution along Γ to a first-order recursion rule $\varphi(x, b, F)$ is a class S such that for every $b \in \Gamma$, $S_b = \{ x \mid \varphi(x, b, S \upharpoonright b) \}$.

- $S_0 = \{ x \mid \varphi(x, 0, \emptyset) \}$
- $S_1 = \{ x \mid \varphi(x, 1, \langle S_0 \rangle) \}$
- $S_2 = \{ x \mid \varphi(x, 2, \langle S_0, S_1 \rangle) \}$
- etc.
ETR: Elementary transfinite recursion

ETR: Every first-order recursion on classes along a meta-ordinal has a solution.

ETR\(_\Gamma\): **ETR** restricted to a well-order \(\Gamma\).
- \(\text{ETR}_{\text{Ord} \cdot \omega}, \text{ETR}_{\text{Ord}}, \text{ETR}_\omega\).

Theorem: (Fujimoto) Suppose \(\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}\).
- **ETR\(_\omega\)** is equivalent to the assertion that for every class \(A\), there is a truth predicate for the structure \(\langle V, \in, A \rangle\) (with a predicate for \(A\)).
 - Tarskian truth is given by a recursion of length \(\omega\) each of whose levels is a class.
- **ETR\(_\Gamma\)** is equivalent to the existence, for every class \(A\), of the iterated truth predicate of length \(\Gamma\) for the structure \(\langle V, \in, A \rangle\).

Corollary: **ETR** is equivalent to the assertion that for every meta-ordinal \(\Gamma\) and every class \(A\), there is an iterated truth predicate of length \(\Gamma\) for \(\langle V, \in, A \rangle\).

Corollary: \(\text{GBC} + \text{ETR}_\omega\) implies \(\text{Con}(\text{ZFC})\).

Theorem: (Williams) If \(\Gamma > \omega^\omega\) is a meta-ordinal, then \(\text{GBC} + \text{ETR}_\Gamma \cdot \omega\) implies \(\text{Con}(\text{GBC} + \text{ETR}_\Gamma)\).

Theorem: \(\text{GBC} + \text{ETR}\) implies that any two meta-ordinals are comparable.
A comprehension hierarchy to Kelley-Morse set theory

\(\Sigma^1_n \)-comprehension CA: Every \(\Sigma^1_n \)-formula defines a class.

Theorem: GBC + \(\Sigma^1_1 \)-CA implies ETR.

The theories GBC + \(\Sigma^1_n \)-CA form a hierarchy of strength culminating in Kelley-Morse set theory KM.

Kelley-Morse set theory KM

- GBC
- Every second-order formula defines a class.
Class choice principles

Choice Scheme CC: Given a second-order formula \(\varphi(x, X, A) \), if for every set \(x \), there is a class \(X \) witnessing \(\varphi(x, X, A) \), then there is a class collecting witnesses for every \(x \):

\[
\forall x \exists X \varphi(x, X, A) \rightarrow \exists Y \forall x \varphi(x, Y, A).
\]

\(\Sigma^1_n \)-CC: CC restricted to \(\Sigma^1_n \)-formulas.

Theorem: (G., Hamkins) \(\Sigma^0_1 \)-CC can fail in a model of KM.

\(\alpha \)-Dependent Choice Scheme DC\(\alpha \): (\(\omega \leq \alpha \leq \text{Ord} \)) Every second-order definable \(<\alpha \)-closed tree \(T(X, A) \) has a branch of height \(\alpha \).

\(\Sigma^1_n \)-DC\(\alpha \): DC\(\alpha \) restricted to \(\Sigma^1_n \)-definable trees.

Theorem: (Marek, Mostowski, Ratajczyk) If \(\mathcal{V} \models \text{GBC} + \Sigma^1_n \)-CA, then its second-order constructible universe \(\mathcal{L} \models \text{GBC} + \Sigma^1_n \)-Comprehension + \(\Sigma^1_n \)-CC + \(\Sigma^1_n \)-DC\(\text{Ord} \).

- If \(\mathcal{V} \models \text{KM} \), then its second-order constructible universe \(\mathcal{L} \models \text{KM} + \text{CC} + \text{DC}_{\text{Ord}} \).
 - Given a meta-ordinal \(\Gamma \), we can build a meta-constructible universe \(L_{\Gamma} \) by a recursion of length \(\Gamma \).
 - A meta-ordinal \(\Gamma \) is **constructible** if \(\Gamma \in L_{\text{Ord}^+} \).
 - **Theorem**: (Tharp) Constructible meta-ordinals have unique representations.
 - A class \(A \in C \) is **constructible** if there is a constructible meta-ordinal \(\Gamma \) such that \(A \in L_{\text{Ord}^+} \).
 - The second-order constructible universe is \(\mathcal{L} = \langle L, \in, \mathcal{L} \rangle \), where \(\mathcal{L} \) consists of the constructible classes.

- The theories KM and KM+CC+DC\(\text{Ord} \) are equiconsistent.
Applications of class choice

Theorem: Over GBC, Σ^1_n-CC implies Δ^1_n-CA. Consequently, GBC+CC is equivalent to KM+CC.

Theorem: (G., Hamkins) Over GBC, Łoś’ Lemma for second-order ultrapowers is equivalent to CC for set-many choices.

Theorem: (G., Hamkins) Over GBC, normal form for second-order formulas is equivalent to CC.

Theorem: (G., Hamkins, Karagila) Fodor’s Lemma for class clubs
- can fail in KM,
- holds in GBC+Σ^0_2-CC.

Aside

Theorem: (Enayat) GBC+Σ^1_1-CC is conservative over ZFC.
- Every countable model of ZFC can be elementarily extended to countable recursively saturated model of ZFC.
- Every countable recursively saturated model of ZFC can be expanded to a model of GBC+Σ^1_1-CC without adding sets.
Moving to first-order with KM+CC

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{KM}+\text{CC}$.

- View each extensional well-founded class relation $R \in C$ as coding a transitive set.
 - $\text{Ord} + \text{Ord}, \text{Ord} \cdot \omega$
 - $V \cup \{V\}$

- Define a membership relation E on the collection of all such relations R (modulo isomorphism).

- Let $\langle M_{\mathcal{V}}, E \rangle$, the companion model of \mathcal{V}, be the resulting first-order structure.
 - $M_{\mathcal{V}}$ has the largest cardinal $\kappa \cong \text{Ord}^{\mathcal{V}}$.
 - $V_{\kappa}^{M_{\mathcal{V}}} \cong V$.
 - $\mathcal{P}(V_{\kappa})^{M_{\mathcal{V}}} \cong C$.
 - $\langle M_{\mathcal{V}}, E \rangle \models \text{ZFC}^-_1$.

ZFC^-_1

- ZFC^-

- There is a largest cardinal κ.

- κ is inaccessible: κ is regular and for all $\alpha < \kappa$, 2^α exists and $2^\alpha < \kappa$.
 - V_{κ} exists.
 - $V_{\kappa} \models \text{ZFC}$.
Suppose $M \models \text{ZFC}_I^-$ with a largest cardinal κ.

- $V = V^M_\kappa$
- $C = \{X \in M \mid X \subseteq V^M_\kappa\}$
- $\mathcal{V} = \langle V, \in, C \rangle \models \text{KM+CC}$
- $M_\mathcal{V} \cong M$ is the companion model of \mathcal{V}.

Theorem: (Marek) The theory KM+CC is bi-interpretable with the theory ZFC_I^-.
Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}$ and $P \in C$ is a class forcing.

Definition:
- A **class P-name** is a collection of pairs $\langle \sigma, p \rangle$ such that $p \in P$ and $\sigma \in V^P$.
- G is \mathcal{V}-generic for P if G meets every dense subclass $D \in C$ of P.
- The forcing extension $\mathcal{V}[G] = \langle V[G], \in, C[G] \rangle$.
Definability of forcing relations

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}$ and $\mathbb{P} \in C$ is a class forcing.

The Class Forcing Theorem for \mathbb{P}: There is a solution to the recursion defining the forcing relation for atomic formulas.

- $p \vdash \sigma \in \tau$: there is a dense set of conditions $q \leq p$ for which there is $\langle \rho, r \rangle \in \tau$ with $q \leq r$ and $q \vdash \sigma = \rho$.
- $p \vdash \sigma = \tau$: $p \vdash \sigma \subseteq \tau$ and $p \vdash \tau \subseteq \sigma$.
- $p \vdash \sigma \subseteq \tau$: whenever $\langle \rho, r \rangle \in \sigma$ and $q' \leq p, r$, there is $q \leq q'$ with $q \vdash \rho \in \tau$.

The Class Forcing Theorem implies that forcing relations for all second-order formulas are definable.

- $p \vdash \sigma \in \Gamma$: there are densely many $q \leq p$ for which there is $\langle \tau, r \rangle \in \Gamma$ with $q \leq r$ and $q \vdash \sigma = \tau$.
- $p \vdash \varphi \land \psi$: $p \vdash \varphi$ and $p \vdash \psi$.
- $p \vdash \neg \varphi$: there is no $q \leq p$ with $q \vdash \varphi$.
- $p \vdash \forall x \varphi(x)$: $p \vdash \varphi(\tau)$ for every \mathbb{P}-name τ.
- $p \vdash \forall X \varphi(X)$: $p \vdash \varphi(\Delta)$ for every class \mathbb{P}-name Δ.
Nice class forcing

Definition: A class forcing \mathbb{P} has the **Ord-cc** if every antichain of \mathbb{P} is a set.

Definition: (Friedman) A class forcing \mathbb{P} is **pretame** if for every class sequence $\langle D_x \mid x \in a \rangle \in \mathcal{C}$ of dense classes of \mathbb{P}, indexed by elements of a set a, and condition $p \in \mathbb{P}$, there is a condition $q \leq p$ and a sequence $\langle d_x \mid x \in a \rangle$ of subsets of \mathbb{P} such that each $d_x \subseteq D_x$ is pre-dense below q in \mathbb{P}.

- “Reduces dense classes to pre-dense sets.”
- **Condition to preserve replacement**

Definition: (Friedman) A class forcing \mathbb{P} is **tame** if it is pretame and for every $p \in \mathbb{P}$, there is $q \leq p$ and ordinal α such that whenever $\vec{D} = \{\langle D_0^x, D_1^x \rangle \mid x \in a \} \in \mathcal{C}$, for a set a, is a sequence of pre-dense partitions below q, then the class

$$\{ r \in \mathbb{P} \mid \vec{D} \text{ is equivalent below } r \text{ to some partition } \vec{E} \in V_\alpha \}$$

is dense below q.

- **Condition to preserve powerset**
- **Ord-cc forcings**
- **Progressively closed Ord-length products and iterations** of set forcing
- **\langle Ord\text{-distributive forcing**
Preserving the theory

Class forcing need not preserve ZFC.

- $\text{Coll}(\omega, \text{Ord})$.
- (Friedman) Forcing \mathbb{F} to code $\langle V, \in \rangle$ into a relation E on ω.
 - In the extension: $\langle V, \in \rangle \cong \langle \omega, E \rangle$.

Question: Are class forcing extensions always closed under complements?

Theorem: (Friedman) Pretameness is equivalent to preservation of GB^-. Tameness is equivalent to preservation of GB.

Theorem: Tame forcings preserve:

- GBc, GBC.
- (Antos) KM.
- (Antos, G., Friedman) $\text{KM}+\text{CC}$.
- (Antos, G., Friedman) $\text{KM}+\text{CC}+\text{DC}_\alpha$ for every $\omega \leq \alpha \leq \text{Ord}$.

Theorem: Tame forcings preserve $\text{GBC} + \Sigma^1_n\text{-CA} + \Sigma^1_n\text{-CC}$.

Question: Do tame forcings preserve $\text{GBC} + \Sigma^1_n\text{-CA}$?

- Without $\Sigma^1_n\text{-AC}$, the forcing relation for Σ^1_n-formulas may not be Σ^1_n-definable.
Class Forcing Theorem

Theorem: (Holy, Krapf, Lücke, Njegomir, Schlicht) The **Class Forcing Theorem** can fail in a model of GBC.

- The **Class Forcing Theorem** for Friedman’s forcing \mathbb{F} implies existence of truth predicate for $\langle V, \in \rangle$.

Theorem: (Stanley) In GB^-, the **Class Forcing Theorem** holds for all pretame forcings.

- In ZFC, pretame forcings have definable forcing relations.
- In ZFC^- pretame forcings have definable forcing relations.

Theorem: (G., Hamkins, Holy, Schlicht, Williams) Over GBC, the **Class Forcing Theorem** is equivalent to ETR_{Ord}.

- The recursion to define the forcing relation on atomic formulas has length Ord.
- The atomic forcing relation for Friedman’s forcing \mathbb{F} yields an iterated truth predicate of length Ord for $\langle V, \in \rangle$.
- Define a version of Friedman’s forcing \mathbb{F}_A for a class A.
Dense embeddings

Theorem: Suppose \mathbb{P} and \mathbb{Q} are set forcings and there is a dense embedding from \mathbb{P} into \mathbb{Q}. Then \mathbb{P} and \mathbb{Q} have the same forcing extensions.

Definition:
- $\text{Coll}(\omega, \text{Ord})$: conditions $f : A \to \text{Ord}$, where A is a finite subset of ω.
- $\text{Coll}^*(\omega, \text{Ord})$: conditions $f : n \to \text{Ord}$ (no holes!).

Theorem (Holy, Krapf, Lücke, Njegomir, Schlicht)
- $\text{Coll}^*(\omega, \text{Ord})$ densely embeds into $\text{Coll}(\omega, \text{Ord})$.
- $\text{Coll}(\omega, \text{Ord})$ adds a bijection between every ordinal and ω.
- $\text{Coll}^*(\omega, \text{Ord})$
 - adds a class $f : \omega \xrightarrow{1-1} \text{Ord}$,
 - does not add sets.

Theorem: (Holy, Krapf, Lücke, Njegomir, Schlicht) Assume GBC^-. If \mathbb{P} and \mathbb{Q} are pretame class forcings such that \mathbb{P} densely embeds into \mathbb{Q}, then \mathbb{P} and \mathbb{Q} have the same forcing extensions.
Nice names

Definition: Suppose \(P \) is a forcing. A nice \(P \)-name for a subset of ordinals has the form \(\bigcup_{\xi<\alpha} \{\xi\} \times A_\xi \), where each \(A_\xi \subseteq P \) is an antichain.

Theorem: Suppose \(P \) is a set forcing. Then every subset of ordinals in a forcing extension by \(P \) has a nice \(P \)-name.

Theorem: (Holy, Krapf, Schlicht) Suppose \(\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC} \) and \(G \subseteq \text{Coll}(\omega, \text{Ord}) \) is \(\mathcal{V} \)-generic. In \(\mathcal{V}[G] \), the set

\[
A = \{ n \in \omega \mid G(n) = 0 \}
\]

does not have a nice-\(\text{Coll}(\omega, \text{Ord}) \)-name.

Theorem: (Holy, Krapf, Schlicht)
- Assume \(\text{GBC}^- \). Every pretame class forcing \(P \) has nice \(P \)-names for all subsets of ordinals.
- Assume \(\text{GBC} + \text{ETR}_{\text{Ord}} \). A class forcing \(P \) that has nice \(P \)-names for all subsets of ordinals is pretame.
 - Uses existence of definable forcing relation.
Ground model definability

Theorem: (Laver, Woodin) The ground model V is uniformly definable from a parameter in any set-forcing extension.

Theorem: (Antos) Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}$. There is a class forcing \mathbb{P} such that $\langle V, \in \rangle$ is not definable from parameters over $V[G]$ in any forcing extension $\mathcal{V}[G]$ by \mathbb{P}.

- \mathbb{P} is the Easton support product $\prod_{\alpha \in \text{Reg}} \text{Add}(\alpha, 1)$.
- $\text{Add}(\alpha, 1) \cong \text{Add}(\alpha, 1) \times \text{Add}(\alpha, 1)$.
- Use an automorphism.

Theorem: (G., Johnstone) It is consistent that $H_{\kappa^+}(|= \text{ZFC}_1^-)$ is not definable, even with parameters, in its forcing extension $H_{\kappa^+}[G]$ by $\text{Add}(\kappa, 1)$.

Corollary: There is a model $\mathcal{V} = \langle V, \in, C \rangle \models \text{KM+CC}$ such that C is not a hyperclass of its forcing extensions $\mathcal{V}[G] = \langle V[G], \in, C[G] \rangle$ by $\text{Add}(\text{Ord}, 1)$, even with a parameter from $C[G]$.

Theorem: (Asperó) It is consistent (from large cardinals) that $H_{\kappa^+}(|= \text{ZFC}_1^-)$ is not definable, even with parameters, in its forcing extension $H_{\kappa^+}[G]$ by $\text{Add}(\omega, 1)$.

Corollary: Ground model definability can fail in KM+CC even for set-forcing.
Boolean completions

Theorem: Every set forcing \mathbb{P} densely embeds into a unique (modulo isomorphism) complete Boolean algebra.

- $U \subseteq \mathbb{P}$ is a cut if it is closed downwards: if $p \in U$ and $q \leq p$, then $q \in U$.
- For $p \in \mathbb{P}$, $U_p = \{ q \in \mathbb{P} \mid q \leq p \}$ is a cut.
- A cut U is regular if for every $p \notin U$, there is $q \leq p$ such that $U_q \cap U = \emptyset$.
- The Boolean algebra $\mathbb{B}_\mathbb{P}$ consists of all regular cuts of \mathbb{P}.

Definition: A class Boolean algebra is:
- set-complete if it has suprema for all its subsets,
- class-complete if it has suprema for all its subclasses.

Theorem: (Holy, Krapf, Lücke, Njegomir, Schlicht) Assume GBC. A class forcing has:
- a Boolean set-completion if and only if the Class Forcing Theorem holds for it.
 - The forcing relation can be used to construct a Boolean set-completion.
 - Defining Boolean values of assertions in the forcing language does not require ETR.
- a Boolean class-completion if and only if it has the Ord-cc.
- a unique Boolean set-completion if and only if it has the Ord-cc.

A class forcing with a proper class antichain cannot have a Boolean class-completion!
Hyperclass Boolean completions

Definition: Suppose $\mathcal{V} \models \text{GBC}$.

- Suppose $\mathbb{P} \in \mathcal{C}$ is a class forcing. The regular cuts of \mathbb{P} form a hyperclass Boolean algebra $\mathcal{B}_\mathbb{P}$.
- A hyperclass Boolean algebra is:
 - class-complete if it has suprema for all its coded subhyperclasses.
 - hyperclass-complete if it has suprema for all its subhyperclasses.

Theorem: Suppose $\mathcal{V} \models \text{GBC}$ and $\mathbb{P} \in \mathcal{C}$ is a class forcing. Then $\mathcal{B}_\mathbb{P}$ is class-complete.

Theorem: (Antos, Friedman, G.) Suppose $\mathcal{V} = \langle \mathcal{V}, \in, \mathcal{C} \rangle \models \text{GBC}$ and $\mathbb{P} \in \mathcal{C}$ is not Ord-cc. If $\mathcal{B}_\mathbb{P}$ is hyperclass-complete, then $\mathcal{V} \models \text{KM}$.

- Code instances of comprehension into suprema of antichains of $\mathcal{B}_\mathbb{P}$.

Theorem: (Antos, Friedman, G.) Suppose $\mathcal{V} = \langle \mathcal{V}, \in, \mathcal{C} \rangle \models \text{KM}$ and $\mathbb{P} \in \mathcal{C}$ is a class forcing. Every hyperclass antichain of $\mathcal{B}_\mathbb{P}$ is coded.

Corollary: Suppose $\mathcal{V} = \langle \mathcal{V}, \in, \mathcal{C} \rangle \models \text{KM+CC}$ and $\mathbb{P} \in \mathcal{C}$ is a class forcing. In the companion model $M_{\mathcal{V}}$, $\mathcal{B}_\mathbb{P}$ is an $\text{Ord}^{M_{\mathcal{V}}}$-cc class-complete Boolean algebra.
The Class Intermediate Model Theorem

Intermediate Model Theorem: (Solovay)
- If $V \models \text{ZFC}$ and $W \models \text{ZFC}$ is an intermediate model between V and its set-forcing extension $V[G]$, then W is a set-forcing extension of V.
- If $V \models \text{ZF}$ and $V[a] \models \text{ZF}$, with $a \subseteq V$, is an intermediate model between V and its set-forcing extension $V[G]$, then $V[a]$ is a set-forcing extension of V.

Definition: Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{GBC}$. Then $\mathcal{W} = \langle W, \in, C^* \rangle$ is a simple extension of \mathcal{V} if C^* is generated by C together with a single new class.

- Forcing extensions are simple extensions.

Definition: Suppose T is a second-order set theory.
- The Intermediate Model Theorem holds for T if whenever $\mathcal{V} \models T$ and $\mathcal{W} \models T$ is an intermediate model between \mathcal{V} and its class-forcing extension $\mathcal{V}[G] \models T$, then \mathcal{W} is a class-forcing extension of \mathcal{V}.
- The simple Intermediate Model Theorem holds for T if whenever $\mathcal{V} \models T$ and $\mathcal{W} \models T$ is a simple extension of \mathcal{V} between \mathcal{V} and its class-forcing extension $\mathcal{V}[G] \models T$, then \mathcal{W} is a class-forcing extension of \mathcal{V}.
The Class Intermediate Model Theorem: successes and failures

Theorem:
- (Friedman) The simple Intermediate Model Theorem for GBC fails.
- (Hamkins, Reitz) The simple Intermediate Model Theorem for GBC fails even for Ord-cc forcing.

Theorem: (Antos, Friedman, G.) If $M \models \text{ZFC}^-$ and $M[a] \models \text{ZFC}^-$, with $a \subseteq M$, is an intermediate model between M and its set-forcing extension $M[G]$, then $M[a]$ is a set-forcing extension of M.
 - Use the Ord-cc class-complete Boolean completion $\mathbb{B}_\mathbb{P}$.

Corollary: (Antos, Friedman, G.) The simple Intermediate Model Theorem for KM+CC holds.

Theorem: (Antos, Friedman, G.) Every model $\mathcal{V} \models \text{KM}+\text{CC}$ has a forcing extension $\mathcal{V}[G] \models \text{KM} + \text{CC}$ with a non-simple intermediate model. Therefore the Intermediate Model Theorem for KM+CC fails.

Question: Does the simple Intermediate Model Theorem for KM hold?
Hyperclass forcing

The theory of hyperclass forcing was developed by Antos and Friedman.

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models KM + CC$ and \mathbb{P} is a hyperclass forcing of \mathcal{V}.

$G \subseteq \mathbb{P}$ is \mathcal{V}-generic if it meets every dense subhyperclass of \mathbb{P}.

Move to the companion model $M_\mathcal{V}$, where \mathbb{P} is a definable class forcing, and form the forcing extension $M_\mathcal{V}[G]$.

Suppose $M_\mathcal{V}[G] \models ZFC^-_I$ with κ as the largest cardinal.

- \mathbb{P} is pretame.
- \mathbb{P} preserves inaccessibility of κ.
- e.g, \mathbb{P} is $\text{Ord}^{M_\mathcal{V}}$-cc.

Define $\mathcal{V}[G] = \langle W, \in, C^* \rangle$:

- $W = V_{\kappa}^{M_\mathcal{V}[G]}$
- $C^* = \{ C \subseteq V_{\kappa}^{M_\mathcal{V}[G]} | C \in M_\mathcal{V}[G] \}$
Useful hyperclass forcing

Suppose $\mathcal{V} = \langle V, \in, C \rangle \models \text{KM} + \text{CC}$ and $M_{\mathcal{V}}$ is the companion model of \mathcal{V}.

Hyperclass Boolean completions

Let $P \in C$ be a class forcing.

In $M_{\mathcal{V}}$:
- B_P is a definable $\text{Ord}^{M_{\mathcal{V}}}$-cc class-complete Boolean algebra.
- B_P is pretame.
- P and B_P have the same forcing extensions.
- The hyperclass forcing extensions by B_P are precisely forcing extensions by P.

Hyperclass forcing and first-order set theory

- (Welch) Assuming large cardinals, models of the form $L[C]$ for a proper class club C of uncountable cardinals are characterized as hyperclass forcing extensions of a truncated iterate of a mouse with large cardinals.
- (Friedman, G., Müller) Assuming large cardinals, models $L[C_1, \ldots, C_n]$ for specially nested clubs C_i of uncountable cardinals as hyperclass forcing extensions of a truncated iterate of a mouse with stronger large cardinals.
- Uses class products of Prikry forcing with class supports.