Generic Vopěnka's Principle

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

Young Set Theory 2016

June 14, 2016

<ロ> (日) (日) (日) (日) (日)

This is joint work with Joan Bagaria (University of Barcelona) and Ralf Schindler (University of Münster).

・ロト ・回ト ・ヨト ・ヨト

Vopěnka's Principle and imitations

Vopěnka's Principle: For every proper class C of first-order structures of the same type, there are $B \neq A$, both in C, such that B elementarily embeds into A.

- Vopěnka's Principle is a second-order assertion.
- $VP(\Sigma_n)$: Vopěnka's Principle fragment for Σ_n -definable classes.
- $VP(\Sigma_n)$: Vopěnka's Principle fragment for Σ_n -definable without parameters classes.

First-order Vopěnka's Principle: Scheme asserting $VP(\Sigma_n)$ for every $n \in \omega$.

Theorem: (Hamkins) There are models of Gödel-Bernays set theory in which first-order Vopěnka's Principle holds, but Vopěnka's Principle fails. The two principles are equiconsistent.

Let κ be a cardinal.

 $\operatorname{VP}(\kappa, \Sigma_n)$: (Bagaria) For every proper class \mathcal{C} of first-order structures of the same type that is Σ_n -definable with parameters from H_{κ} , for every $A \in \mathcal{C}$, there is $B \in \mathcal{C} \cap H_{\kappa}$ such that B elementarily embeds into A.

- "The class ${\mathcal C}$ of structures reflects below $\kappa".$
- At first sight, $VP(\kappa, \Sigma_n)$ appears to be much stronger than $VP(\Sigma_n)$.

イロン イヨン イヨン イヨン 三日

Strength of Vopěnka-like principles

Relevant large cardinals

Let $C^{(n)}$ be the class of all δ such that $V_{\delta} \prec_{\Sigma_n} V$.

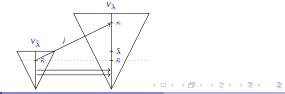
Definition:

- A cardinal κ is extendible if for every α > κ, there is an elementary j : V_α → V_β with crit(j) = κ and j(k) > α.
- (Bagaria) A cardinal κ is $C^{(n)}$ -extendible if for every $\alpha > \kappa$, there is an extendibility embedding $j : V_{\alpha} \to V_{\beta}$ with $j(\kappa) \in C^{(n)}$.

Lemma:

- Extendible cardinals are $C^{(1)}$ -extendible.
- (Bagaria) A $C^{(n+1)}$ -extendible cardinal is a limit of $C^{(n)}$ -extendible cardinals.

Theorem: (Magidor) A cardinal κ is supercompact iff for every $\lambda > \kappa$, there is $\overline{\lambda} < \kappa$ such that there is $j : V_{\overline{\lambda}} \to V_{\lambda}$ with $j(\operatorname{crit}(j)) = \kappa$.



Strength of Vopěnka-like principles (continued)

Lemma: $VP(\kappa, \Sigma_1)$ holds for every uncountable κ .

Theorem: (Bagaria) (Lightface)

- The following are equivalent:
 - (1) There exists a supercompact cardinal.
 - (2) $VP(\Sigma_2)$ holds.
 - (3) $VP(\kappa, \Sigma_2)$ holds for some κ .
- The following are equivalent for $n \ge 1$:
 - (1) There exists a $C^{(n)}$ -extendible cardinal.
 - (2) $VP(\Sigma_{n+2})$ holds.
 - (3) VP(κ, Σ_{n+2}) holds for some κ .

Theorem: (Bagaria) (Boldface)

- The following are equivalent:
 - (1) There exists a proper class of supercompact cardinals.
 - (2) $VP(\Sigma_2)$ holds.
 - (3) $VP(\kappa, \Sigma_2)$ holds for a proper class of κ .
- The following are equivalent for $n \ge 1$:
 - (1) There exists a proper class of $C^{(n)}$ -extendible cardinals.
 - (2) $VP(\Sigma_{n+2})$ holds.
 - (3) $VP(\kappa, \Sigma_{n+2})$ holds for a proper class of κ .

・ロト ・個ト ・ヨト ・ヨト

Characterization of first-order Vopěnka's Principle

Corollary: First-order Vopěnka's Principle holds iff for every $n \in \omega$, there is a proper class of $C^{(n)}$ -extendible cardinals.

Theorem: (Bagaria)

- The least κ such that $VP(\kappa, \Sigma_2)$ holds is the least supercompact cardinal.
- The least κ such that VP(κ, Σ_{n+2}) hold for n ≥ 1 is the least C⁽ⁿ⁾-extendible cardinal.

イロン イヨン イヨン イヨン

Generic Vopěnka's Principle and imitations

Generic Vopěnka's Principle: For every proper class C of first-order structures of the same type, there are $B \neq A$, both in C, such that B elementarily embeds into A in some set-forcing extension.

- $gVP(\Sigma_n)$: Generic Vopěnka's Principle fragment for Σ_n -definable classes.
- gVP(Σ_n): Generic Vopěnka's Principle fragment for Σ_n-definable without parameters classes.

First-order Generic Vopěnka's Principle: Scheme asserting $gVP(\Sigma_n)$ for every $n \in \omega$.

Let κ be a cardinal.

 $gVP(\kappa, \Sigma_n)$: For every proper class C of first-order structures of the same type that is Σ_n -definable with parameters from H_{κ} , for every $A \in C$, there is $B \in C \cap H_{\kappa}$ such that B elementarily embeds into A in some set-forcing extension.

・ロト ・四ト ・ヨト ・ヨト

Absoluteness Lemma for embeddings on countable structures

Suppose B and A are (first-order) structures in the same language.

Lemma: (Absoluteness Lemma for embeddings on countable structures) Suppose B is countable and B elementarily embeds into A. If W is a transitive (set or class) model of (a sufficiently large fragment of) ZFC such that

- $B, A \in W$,
- B is countable in W,

then B elementarily embeds into A in W.

Proof:

- Enumerate $B = \{b_n \mid n < \omega\}$ in W. Let $B \upharpoonright n = \{b_i \mid i < n\}$.
- Let T be the tree of all partial finite isomorphisms

 $f: B \upharpoonright n \to A$

ordered by extension.

- B elementarily embeds into A if and only if T has a cofinal branch.
- T is ill-founded in V, and hence in W. \Box

<ロ> (四) (四) (三) (三) (三) (三)

Why do embeddings exist in a set-forcing extension?

Observation: In a $V^{\operatorname{Coll}(\omega,\mathbb{R})}$, there is an isomorphism $j:\mathbb{R}^V\to\mathbb{Q}$.

Proof: In $V^{\text{Coll}(\omega,\mathbb{R})}$, \mathbb{R}^V is a countable dense linear order without endpoints. \Box

Observation: Suppose $0^{\#}$ exists. Then there is an elementary $j : L_{\omega_1 V} \to L_{\omega_2 V}$ in $L^{\operatorname{Coll}(\omega, \omega_1^V)}$.

Proof:

- V has an elementary $h: L_{\omega_1 V} \to L_{\omega_2 V}$.
- Suppose $G \subseteq \operatorname{Coll}(\omega, \omega_1^V)$ is V-generic.
- $h \in V[G]$ and $L[G] \subseteq V[G]$.
- L[G] has some $j: L_{\omega_1^V} \to L_{\omega_2^V}$ (by Absoluteness Lemma). \Box

イロト イポト イヨト イヨト 二日

When do embeddings exist in a set-forcing extension? Part I

Suppose B and A are (first-order) structures in the same language.

Theorem: The following are equivalent.

- (1) B elementarily embeds into A in some set-forcing extension.
- (2) B elementarily embeds into A in $V^{\text{Coll}(\omega,B)}$.

Proof:

- $(2) \Rightarrow (1)$: Trivial.
- (1) \Rightarrow (2): Suppose a set-forcing extension V[G] has an elementary $j: B \rightarrow A$.
 - Let $|B|^V = \delta$.
 - Consider a further extension V[G][H] by $Coll(\omega, \delta)$.
 - $j \in V[G][H]$ and B is countable in V[G][H].
 - $V[H] \subseteq V[G][H]$ has some elementary $j^* : B \to A$ (by Absoluteness Lemma). \Box

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

When do embeddings exist in a set-forcing extension? Part II Suppose B and A are (first-order) structures in the same language.

Let G(B, A) be an ω -length Ehrenfeucht-Fraïssé type game:

- Stage *n*: player I plays some $b_n \in B$ and player II plays some $a_n \in A$.
- Player II wins if for every $n \in \omega$ and formula $\varphi(x_0, \ldots, x_n)$,

 $B \models \varphi(b_0,\ldots,b_n) \leftrightarrow A \models \varphi(a_0,\ldots,a_n),$

and otherwise player I wins.

- If player II loses, she must do so in finitely many steps.
- G(B, A) is closed, and hence determined by the Gale-Stewart Theorem.

Theorem: The following are equivalent.

(1) Player II has a winning strategy in G(B, A).

(2) B elementarily embeds into A in $V^{\text{Coll}(\omega,B)}$.

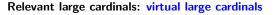
Proof:

(1) \Rightarrow (2): A winning strategy for player II, remains winning in $V^{\text{Coll}(\omega,B)}$ because no new finite sequences are added.

(2) \Rightarrow (1): Fix $p \Vdash$ " $\tau : \check{B} \to \check{A}$ is an elementary embedding".

- To every finite \vec{b} from *B*, associate $p_{\vec{b}} \Vdash \tau(\vec{b}) = \vec{a}$ below *p* so that: if \vec{b}' extends \vec{b} , then $p_{\vec{b}'} \leq p_{\vec{b}}$.
- A winning strategy for player II: play \vec{a} in response to $\vec{b}_{\perp} \square_{n}$

Strength of Generic Vopěnka-like principles



Suppose \mathcal{A} is a very large cardinal property

- supercompact
- extendible, $C^{(n)}$ -extendible
- rank-into-rank

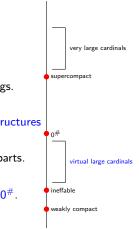
characterized by the existence of "suitable" set-sized embeddings.

(Certain closure requirements are not allowed.)

We say that a cardinal is virtually A if the embeddings of V-structures characterizing A exist in set-forcing extensions.

Virtual large cardinals are mini versions of their actual counterparts.

- Silver indiscernibles are virtual large cardinals.
- Virtual large cardinals are situated between ineffables and $0^{\#}$.
- Virtual large cardinals are downward absolute to L.



(a)

Remarkable cardinals

Definition: (Schindler) A cardinal κ is remarkable if for every $\lambda > \kappa$, there is $\overline{\lambda} < \kappa$ such that in some set-forcing extension there is an elementary $j : V_{\overline{\lambda}} \to V_{\lambda}$ with $j(\operatorname{crit}(j)) = \kappa$.

Remarkable cardinals are virtually supercompact!

Theorem The following assertions are equiconsistent with a remarkable cardinal.

- (Schindler) The theory of $L(\mathbb{R})$ cannot be changed by proper forcing.
- (Schindler) The weak proper forcing axiom wPFA.
- (Fuchs, Minden) The weak forcing axiom for subcomplete forcing wSCFA.

Lemma: If κ is remarkable, then for every $\lambda > \kappa$ and $a \in V_{\lambda}$, there is $\overline{\lambda} < \kappa$ such that in some set-forcing extension there is a remarkability embedding $j : V_{\overline{\lambda}} \to V_{\lambda}$ with $a \in \operatorname{ran}(j)$.

Corollary: If κ is remarkable, then for every $\lambda > \kappa$ and $\alpha < \kappa$, there is $\overline{\lambda} < \kappa$ such that in some set-forcing extension there is a remarkability embedding $j: V_{\overline{\lambda}} \to V_{\lambda}$ with $\operatorname{crit}(j) > \alpha$.

イロン イヨン イヨン イヨン 三日

Definition: (Bagaria, G., Schindler) A cardinal κ is *n*-remarkable, for $n \ge 1$, if for every $\lambda > \kappa$ in $C^{(n)}$, there is $\overline{\lambda} < \kappa$ also in $C^{(n)}$ such that in some set-forcing extension, there is an elementary $j: V_{\overline{\lambda}} \to V_{\lambda}$ with $j(\operatorname{crit}(j)) = \kappa$.

Lemma:

- A remarkable cardinal is 1-remarkable.
- An n + 1-remarkable cardinal is a limit of *n*-remarkable cardinals.

Lemma: If κ is *n*-remarkable, then for every $\lambda > \kappa$ in $C^{(n)}$ and $a \in V_{\lambda}$, there is $\bar{\lambda} < \kappa$ also in $C^{(n)}$ such that in some set-forcing extension there is a remarkability embedding $j : V_{\bar{\lambda}} \to V_{\lambda}$ with $a \in \operatorname{ran}(j)$.

Question: What are *n*-remarkable cardinals virtualizing?

(日) (四) (E) (E) (E) (E)

More virtual large cardinals

Definition:

- A cardinal κ is virtually extendible if for every α > κ, in a set-forcing extension there
 is an elementary j : V_α → V_β with crit(j) = κ and j(κ) > α.
- A cardinal κ is virtually C⁽ⁿ⁾-extendible if for every α > κ, in a set-forcing extension, there is an extendibility embedding j : V_α → V_β with j(κ) ∈ C⁽ⁿ⁾.
- A cardinal κ is virtually rank-into-rank if for some α > κ, in a set-forcing extension there is an elementary j: V_α → V_α with crit(j) = κ.

Observation: (Beyond Kunen's Inconsistency) A set-forcing extension can have an elementary $j: V_{\alpha} \to V_{\alpha}$ with $\alpha \gg \lambda$, the supremum of the critical sequence.

Proof: If κ is a Silver indiscernible and $\alpha \gg \kappa$ is uncountable in *V*, then there is an elementary $j: L_{\alpha} \to L_{\alpha}$ with crit $(j) = \kappa$. \Box

Lemma: If κ is virtually rank-into-rank, then V_{κ} is a model of proper class many virtually $C^{(n)}$ -extendible cardinals for every $n \in \omega$.

イロン イヨン イヨン イヨン 三日

Virtually $C^{(n)}$ -extendible cardinals and *n*-remarkable cardinals

Theorem: (Bagaria, G., Schindler) A cardinal κ is n + 1-remarkable iff it is virtually $C^{(n)}$ -extendible.

We can generalize Magidor's characterization of supercompact cardinals to $C^{(n)}$ -extendible cardinals and produce a unifying definition.

Theorem: A cardinal κ is $C^{(n)}$ -extendible iff for every $\lambda > \kappa$ in $C^{(n+1)}$, there is a $\overline{\lambda} < \kappa$ also in $C^{(n+1)}$ such that there is an elementary $j: V_{\overline{\lambda}} \to V_{\lambda}$ with $j(\operatorname{crit}(j)) = \kappa$.

Question: How strong are the virtual large cardinals?

α -iterable cardinals

Definition: A weak κ -model (for a cardinal κ) is a transitive $M \models \text{ZFC}^-$ of size κ and height above κ .

Suppose *M* is a weak κ -model.

Proposition: The following are equivalent.

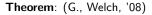
- There exists an elementary $j: M \to N$ with $\operatorname{crit}(j) = \kappa$.
- There exists an M-ultrafilter U with a well-founded ultrapower.
 - U is an M-ultrafilter if $\langle M, \in, U \rangle \models U$ is a normal ultrafilter.
 - $\bullet \ U = \{A \in M \mid \kappa \in j(A)\}.$

Definition: An *M*-ultrafilter *U* is weakly amenable if for every $X \in M$ with $|X|^M \leq \kappa$, $X \cap U \in M$.

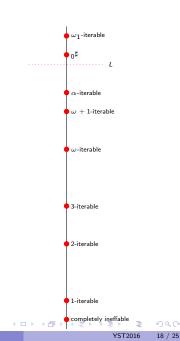
- U is partially internal to M.
- Weak amenability is needed to iterate the ultrapower construction.

Definition: (G.) A cardinal κ is α -iterable $(1 \le \alpha \le \omega_1)$ if every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists a weakly amenable M-ultrafilter on κ with α -many well-founded iterated ultrapowers.

$\alpha\text{-iterable cardinals}$ in the hierarchy



- A 1-iterable cardinal is a limit of completely ineffable cardinals.
- An α-iterable cardinal is a limit of β-iterable cardinals for every β < α.



Virtual large cardinals in the hierarchy

Theorem: (G., Schindler)

- A remarkable cardinal is a 1-iterable limit of 1-iterable cardinals.
- If κ is 2-iterable, then V_κ is a model of proper class many virtually C⁽ⁿ⁾-extendible cardinals for every n ∈ ω.
- A virtually rank-into-rank cardinal is an ω-iterable limit of ω-iterable cardinals.
- An ω + 1-iterable cardinal implies the consistency of a virtually rank-into-rank cardinal.

Question: What is between an *n*-iterable cardinal and an n + 1-iterable cardinal?

Definition: A cardinal κ is virtually *n*-huge* if for some $\alpha > \kappa$, in a set-forcing extension there is an elementary $j : V_{\alpha} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$ and $j^{n}(\kappa) < \alpha$.

$\mathrm{gVP}(\kappa, \mathbf{\Sigma}_{\mathrm{n+1}})$ holds for *n*-remarkable κ

Theorem: Suppose κ is *n*-remarkable. Then $gVP(\kappa, \Sigma_{n+1})$ holds.

Proof:

- Let C be a proper class of first-order structures defined by the formula $\exists y \varphi(x, y, a)$ with $\varphi(x, y, z) \in \prod_n$ and $a \in H_{\kappa}$.
- Fix $A \in C$ and let $A \in V_{\lambda}$ with $\lambda \in C^{(n+1)}$.
- There is $\bar{\lambda} \in C^{(n)}$ such that in $V^{\operatorname{Coll}(\omega, V_{\bar{\lambda}})}$, there is an elementary $j: V_{\bar{\lambda}} \to V_{\lambda}$:
 - ▶ rk(a) < crit(j),</p>
 - $j(\operatorname{crit}(j)) = \kappa$,
 - ► A = j(B).
- $j: B \to A$ is elementary.
- $V_{\lambda} \models \exists y \varphi(A, y, a) \rightarrow V_{\overline{\lambda}} \models \exists y \varphi(B, y, a).$
- $B \in C$. \Box

Corollary:

- If there a proper class of *n*-remarkable cardinals, then $gVP(\kappa, \Sigma_{n+1})$ holds for a proper class of κ .
- If 0[#] exists, then Generic Vopěnka's Principle holds in *L* (Silver indiscernibles are *n*-remarkable).

イロン イロン イヨン イヨン 三日

$gVP(\Sigma_{n+1})$ implies an *n*-remarkable or virtually rank-into-rank cardinal

Theorem: (Bagaria, G., Schindler) Suppose $gVP(\Sigma_{n+1})$ holds. Then there is an *n*-remarkable cardinal or there is a virtually rank-into-rank cardinal.

Proof: Suppose there are no *n*-remarkable cardinals.

- Let C be the class of structures $\langle V_{\lambda+2}, \in, \alpha \rangle$ where $\lambda > \alpha$ is least in $C^{(n)}$ such that no $\delta \leq \alpha$ is *n*-remarkable up to λ .
- $\bullet \ \mathcal{C}$ is proper.
- \mathcal{C} is \sum_{n+1} -definable without parameters.
- In $V^{\text{Coll}(\omega, V_{\lambda+2})}$, there is an elementary

 $j: \langle V_{\lambda+2}, \in, \alpha \rangle \to \langle V_{\mu+2}, \in, \beta \rangle$

for some $\langle V_{\lambda+2}, \in, \alpha \rangle \neq \langle V_{\mu+2}, \in, \beta \rangle$.

- Since j cannot be the identity map, let $crit(j) = \kappa$.
- $\alpha < \beta$ because either $\lambda = \mu$ or $\lambda < \mu$, in which case
 - no $\delta \leq \alpha$ is *n*-remarkable up to λ ,
 - there is $\delta \leq \beta$ *n*-remarkable up to λ (by minimality of μ).
- It follows that $\kappa \leq \alpha$.

 $gVP(\Sigma_{n+1})$ implies there is an *n*-remarkable or virtual rank-into-rank cardinal (continued)

- If $j(\kappa) \ge \lambda$, then κ is *n*-remarkable up to λ .
 - Let $n < \lambda$ in $C^{(n)}$.
 - $j: V_{\eta} \to V_{j(\eta)}$ with $j(\operatorname{crit}(j)) = j(\kappa)$. $V_{\mu+2}$ satisfies:

There is $\bar{\eta} < i(\kappa)$ in $C^{(n)}$ such that in $V^{\text{Coll}(\omega, V_{\bar{\eta}})}$, there is $j^*: V_{\overline{\eta}} \to V_{j(\eta)}$ with $j^*(\operatorname{crit}(j^*)) = j(\kappa)$.

V_{λ+2} satisfies:

There is $\bar{\eta} < \kappa$ in $C^{(n)}$ such that in $V^{\operatorname{Coll}(\omega, V_{\bar{\eta}})}$. there is $j^*: V_{\bar{n}} \to V_n$ with $j^*(\operatorname{crit}(j^*)) = \kappa$.

- $j(\kappa) < \lambda$ and $V_{\mu+2} \models \kappa$ is *n*-remarkable up to $j(\kappa)$.
- Fix $\gamma < \kappa$ that is *n*-remarkable up to κ .
- By elementarity, if $j^m(\kappa)$ exists, then γ is *n*-remarkable up to $j^m(\kappa)$.
- It follows that all $j^m(\kappa)$ exist and their supremum is below λ .
- Let ρ be largest such that γ is *n*-remarkable up to ρ .
- $i(\rho) = \rho$.
- $j: V_{\rho+2} \rightarrow V_{\rho+2}$. (We would be done here if Kunen's Incosistency held!)
- κ is virtually rank-into-rank in a very strong sense. \Box

イロン イヨン イヨン イヨン 三日

Strength of Generic Vopěnka-like principles (continued)

Corollary: If $gVP(\Sigma_{n+1})$ holds, then there is a proper class of κ , where each κ is either remarkable or virtually rank-into-rank.

Theorem: (Bagaria, G., Schindler) (lightface) The following are equiconsistent.

- (1) There is an *n*-remarkable cardinal.
- (2) $gVP(\Sigma_{n+1})$ holds.
- (3) $gVP(\kappa, \Sigma_{n+1})$ holds for some κ .

Proof:

- If κ is *n*-remarkable cardinal, then $gVP(\kappa, \Sigma_{n+1})$ holds.
- $gVP(\kappa, \Sigma_{n+1})$ holds for some κ implies $gVP(\Sigma_{n+1})$.
- gVP(Σ_{n+1}) implies that there is an *n*-remarkable cardinal or a there is a model with proper class many *n*-remarkable cardinals.

Theorem: (Bagaria, G., Schindler) (boldface) The following are equiconsistent.

- (1) There is a proper class of *n*-remarkable cardinals.
- (2) $gVP(\boldsymbol{\Sigma}_{n+1})$ holds.
- (3) $gVP(\kappa, \Sigma_{n+1})$ holds for a proper class of κ .

- Does $gVP(\Sigma_{n+1})$ imply that there is an *n*-remarkable cardinal?
- Is the least κ such that $gVP(\kappa, \Sigma_{n+1})$ holds the least *n*-remarkable cardinal?
- What other natural set theoretic properties are equiconsistent with virtual large cardinals?

<ロ> (日) (日) (日) (日) (日)

Thank you!

▲□→ ▲圖→ ▲温→ ▲温→