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Abstract. We introduce and study the first-order Generic Vopěnka’s Prin-

ciple, which states that for every definable proper class of structures C of

the same type, there exist B 6= A in C such that B elementarily embeds
into A in some set-forcing extension. We show that, for n ≥ 1, the Generic

Vopěnka’s Principle fragment for Πn-definable classes is equiconsistent with

a proper class of n-remarkable cardinals. The n-remarkable cardinals hierar-
chy for n ∈ ω, which we introduce here, is a natural generic analogue for the

C(n)-extendible cardinals that Bagaria used to calibrate the strength of the

first-order Vopěnka’s Principle in [1].
Expanding on the theme of studying set theoretic properties which assert

the existence of elementary embeddings in some set-forcing extension, we in-
troduce and study the weak Proper Forcing Axiom, wPFA, which states that

for every transitive modelM in the language of set theory with some ω1-many

additional relations, if it is forced by a proper forcing P thatM satisfies some
Σ1-property, then V has a transitive model M̄, which satisfies the same Σ1-

property, and in some set-forcing extension there is an elementary embedding

from M̄ intoM. This is a weakening of a formulation of PFA due to Schindler
and Claverie [2], which asserts that the embedding from M̄ toM exists in V .

We show that wPFA is equiconsistent with a remarkable cardinal and that

wPFA implies PFAℵ2
, the proper forcing axiom for antichains of size at most

ω2, but it is consistent with �κ for all κ ≥ ω2, and therefore does not imply

PFAℵ3
.

1. Introduction

Vopěnka’s Principle is a large cardinal principle which states that for every
proper class C of structures of the same type there are B 6= A, both in C, such that
B elementarily embeds into A. It can be formalized in first-order set theory1 as
a schema, where for each natural number n in the meta-theory there is a formula
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expressing that Vopěnka’s Principle holds for all Σn-definable (with parameters)
classes. Following [1], we call VP(Σn) the fragment of Vopěnka’s Principle for
Σn-definable classes and let VP(Σn) be the weaker principle, where parameters
are not allowed in the definition of the class (with analogous definitions for Πn).
Bagaria introduced in [1] a family of Vopěnka-like principles VP(κ,Σn), where κ is
a cardinal, which state that for every proper class C of structures of the same type
that is Σn-definable with parameters in Hκ (the collection of all sets of hereditary
size less than κ), C reflects below κ, namely for every A ∈ C there is B ∈ Hκ∩C that
elementarily embeds into A. Bagaria established a relationship between Vopěnka’s
Principle fragments and his family of principles VP(κ,Σn) and provided a complete
characterization of Vopěnka’s Principle fragments VP(Πn), as well as the weaker
principles VP(Πn), in terms of the existence of supercompact and C(n)-extendible
cardinals [1].

Recall that C(n) denotes the class club of ordinals δ such that Vδ ≺Σn V . A
cardinal κ is called C(n)-extendible if for every α > κ, there is an elementary
embedding j : Vα → Vβ with critical point κ and with j(κ) ∈ C(n). Note that every
extendible cardinal is 1-extendible. Bagaria [1] showed that the weaker principle
VP(Π1) holds if and only if for some κ, VP(κ,Σ2) holds, and if and only if there is
a supercompact cardinal. Also, for n ≥ 1, VP(Πn+1) holds if and only if for some
κ, VP(κ,Σn+2) holds, and if and only if there is a C(n)-extendible cardinal. The
results generalize to show that the Vopěnka’s Principle fragment VP(Π1) holds if
and only if VP(κ,Σ2) holds for a proper class of κ, and if and only if there is a
proper class of supercompact cardinals. Also, for n ≥ 1, VP(Πn+1) holds if and
only if VP(κ,Σn+2) holds for a proper class of κ, and if and only if there is a proper
class of C(n)-extendible cardinals. Thus, Vopěnka’s Principle holds precisely when,
for every n ∈ ω, there is a proper class of C(n)-extendible cardinals.

In this article, we introduce and study generic versions of Vopěnka’s Principle
and its variants. The Generic Vopěnka’s Principle states that for every proper
class C of structures of the same type there are B 6= A, both in C, such that B
elementarily embeds into A in some set-forcing extension. We call gVP(Σn) the
Generic Vopěnka’s Principle fragment for Σn-definable (with parameters) classes
and we let gVP(Σn) be the weaker principle where parameters are not allowed
in the definition of the class (with analogous definitions for Πn). We also call
gVP(κ,Σn) the analogous generic version of VP(κ,Σn).

It turns out that an elementary embedding j : B → A between first-order struc-
tures exists in some set-forcing extension if and only if it already exists in V Coll(ω,B)

(Proposition 2.7). We show that to every pair of structures B and A of the same
type, we can associate a closed game G(B,A) such that B elementarily embeds into
A in V Coll(ω,B) precisely when a particular player has a winning strategy in that
game. The game G(B,A) is a variant of an Ehrenfeucht-Fräıssé game of length
ω, where player I starts out by playing some b0 ∈ B and player II responds by
playing a0 ∈ A. Players I and II continue to alternate, choosing elements bn and an
from their respective structures at stage n of the game. Player II wins if for every
formula ϕ(x0, . . . , xn),

B |= ϕ(b0, . . . , bn)↔ A |= ϕ(a0, . . . , an),
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and otherwise player I wins. Since if player II loses she must do so at some finite
stage of the game, the game G(B,A) is closed and hence determined by the Gale-
Stewart theorem [5]. Thus, either player I or player II has a winning strategy. We
show that player II has a winning strategy precisely when B elementarily embeds
into A in V Coll(ω,B) (Proposition 4.1). It follows that each first-order fragment of
Generic Vopěnka’s Principle is characterized by the existence of certain winning
strategies in its associated class of closed games.

The consistency strength of Generic Vopěnka’s Principle fragments is measured
by a hierarchy of cardinals, the n-remarkable cardinals (Definition 3.1) we introduce
here, which generalize Schindler’s remarkable cardinals analogously to how C(n)-
extendible cardinals generalize extendible cardinals. A remarkable cardinal (which
is 1-remarkable by our definition) is a type of generic supercompact cardinal (see
Section 2) and, correspondingly, an n-remarkable cardinal (for n > 1) is a type
of generic C(n)-extendible cardinal (see Section 3). The n-remarkable cardinals
sit relatively low in the large cardinal hierarchy. Call a large cardinal completely
remarkable if it is n-remarkable for every n ∈ ω. Completely remarkable cardinals
can exist in L and the consistency of a completely remarkable cardinal follows from
a 2-iterable cardinal (Theorem 3.6). We show that the Generic Vopěnka’s Principle
fragment gVP(Πn) is equiconsistent with an n-remarkable cardinal.

Theorem 1.1. The following are equiconsistent.

(1) gVP(Πn).
(2) gVP(κ,Σn+1) for some κ.
(3) There is an n-remarkable cardinal.

The result generalizes to the bold-face gVP(Πn) principles.

Theorem 1.2. The following are equiconsistent.

(1) gVP(Πn).
(2) gVP(κ,Σn+1) for a proper class of κ.
(3) There is a proper class of n-remarkable cardinals.

See Section 5 for proofs.
The notion of a generic embedding existing in some forcing extension leads nat-

urally to a weak version of the Proper Forcing Axiom PFA, which we introduce
and study here. Schindler and Claverie showed in [2] that PFA has the following
equivalent formulation.

Theorem 1.3. The following are equivalent.

(1) PFA
(2) If M = (M ;∈, (Ri | i < ω1)) is a transitive model, ϕ(x) is a Σ1-formula,

and Q is a proper forcing such that

Q ϕ(M),

then there is in V some transitive M̄ = (M̄ ;∈, (R̄i | i < ω1)) together with
some elementary embedding

j : M̄ →M

such that ϕ(M̄) holds.
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By weakening this formulation of PFA to say that the embedding j exists in
V Coll(ω,M̄), we obtain the weak Proper Forcing Axiom wPFA. We show that wPFA
is equiconsistent with a remarkable cardinal.

Theorem 1.4.

(1) If κ is remarkable, then there is a forcing extension in which wPFA holds.
(2) If wPFA holds, then ωV2 is remarkable in L.

The principle wPFA implies PFAℵ2 , the Proper Forcing Axiom for meeting an-
tichains of size ≤ ℵ2, but it does not imply PFAℵ3 . For proofs see Section 6.

2. Remarkable cardinals

Remarkable cardinals were introduced by Schindler, who showed that the asser-
tion that the theory of L(R) cannot be changed by proper forcing is equiconsistent
with the existence of a remarkable cardinal [9]. Remarkable cardinals have also
found applications in other settings: recently Cheng and Schindler showed that
third-order arithmetic together with Harrington’s principle is equiconsistent with
the existence of a remarkable cardinal [4].

Definition 2.1 (Schindler [9], [11]). A cardinal κ is remarkable if for every regular
cardinal λ > κ, there is a regular cardinal λ̄ < κ such that in V Coll(ω,<κ) there is
an elementary embedding j : HV

λ̄
→ HV

λ with j(crit(j)) = κ.

We can view a remarkable cardinal as a type of generic supercompact cardinal using
the following theorem of Magidor.

Theorem 2.2 (Magidor, [8]). A cardinal κ is supercompact if and only if for
every regular cardinal λ > κ there is a regular cardinal λ̄ < κ and an elementary
embedding j : Hλ̄ → Hλ with j(crit(j)) = κ.

Remarkable cardinals are much weaker than supercompact cardinals. Remarkable
cardinals are downward absolute to L and the consistency of a remarkable cardinal
follows from a 2-iterable cardinal, which is much weaker than an ω-Erdős cardinal.
It is not difficult to see that remarkable cardinals are totally indescribable and
ineffable. (See [9] and [7].)

For the rest of the article, we will make the convention that structures of the
form Hλ or Vλ always refer to ground model objects, so that we don’t have to use
superscripts.

If κ is remarkable, then every set a can be put into the range of some remarka-
bility embedding j : Hλ̄ → Hλ in V Coll(ω,<κ) with λ arbitrarily large.

Proposition 2.3 (Schindler, [11]). If κ is remarkable, then for every set a and
regular λ such that a ∈ Hλ, there is a regular λ̄ < κ such that in V Coll(ω,<κ) there
is an elementary embedding j : Hλ̄ → Hλ with j(crit(j)) = κ and a ∈ range(j).

Recall that C(n) is the Πn-definable club proper class of ordinals δ such that
Vδ ≺Σn V . In particular, C(1) is the class of uncountable strong limit cardinals
δ such that Vδ = Hδ (see [1] for details). Note, more generally, that for every
uncountable cardinal δ, Hδ ≺Σ1

V .

Proposition 2.4. The following are equivalent for a cardinal κ.

(1) κ is remarkable.
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(2) For every λ > κ and every a ∈ Vλ, there is λ̄ < κ such that in V Coll(ω,<κ)

there is an elementary embedding j : Vλ̄ → Vλ with j(crit(j)) = κ and
a ∈ range(j).

(3) For every λ > κ in C(1) and every a ∈ Vλ, there is λ̄ < κ also in C(1)

such that in V Coll(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ with
j(crit(j)) = κ and a ∈ range(j).

(4) There is a proper class of λ > κ such that for every λ in the class, there is
λ̄ < κ such that in V Coll(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ
with j(crit(j)) = κ.

Proof. Clearly, (3) implies (4).
Let us show (1) implies (2). So, assume κ is remarkable. Fix λ > κ and a ∈ Vλ.

Choose a regular δ large enough so that Vλ ∈ Hδ. By Proposition 2.3, there is a
regular δ̄ < κ such that in V Coll(ω,<κ) there is an elementary embedding j : Hδ̄ →
Hδ with j(crit(j)) = κ and a, λ ∈ range(j). Let j(λ̄) = λ. Suppose x is the pre-
image of Vλ under j. Hδ̄ thinks that x is Vλ̄ by elementarity and it must be correct
about this since ”x = Vλ̄” is Π1 expressible, with λ̄ as a parameter, and Hδ̄ ≺Σ1

V .
Thus, we can restrict j to j : Vλ̄ → Vλ and the restriction has all the required
properties.

For (2) implies (3), it suffices to observe that if j : Vλ̄ → Vλ is elementary and λ
is in C(1), then λ̄ must be in C(1) as well. Since λ ∈ C(1), λ is an uncountable limit
cardinal and Vλ = Hλ. Thus, by elementarity, λ̄ is a limit of cardinals and hence a
limit cardinal, and then, by elementarity, it must be the case that Vλ̄ = Hλ̄.

It only remains to show that (4) implies (1). So, assume that for every λ in
some proper class C, there is λ̄ such that in V Coll(ω,<κ) there is an elementary
embedding j : Vλ̄ → Vλ with j(crit(j)) = κ. Suppose towards a contradiction that
κ is not remarkable and let λ > κ be the least V -regular cardinal witnessing the
non-remarkability of κ. By (4), there is some δ > λ in C and δ̄ < κ such that
in V Coll(ω,<κ) there is an elementary embedding j : Vδ̄ → Vδ with j(crit(j)) = κ.
Note that λ is definable in Vδ as the least regular cardinal witnessing the non-
remarkability of κ. So λ is in the image of j and we can let j(λ̄) = λ, noting that λ̄
must be regular by elementarity. Now we restrict j to j : Hλ̄ → Hλ and note that
the restriction has all the desired properties, thus contradicting our assumption on
λ. �

Proposition 2.5. Every remarkable cardinal is in C(2).

Proof. Suppose κ is remarkable, ϕ(x, y) is a Π1-formula, a ∈ Vκ, and ∃xϕ(x, a)
holds in V . Then V |= ϕ(a, b) for some witness b. We must find some witness
b̄ ∈ Vκ. Let δ > κ be regular such that b ∈ Hδ and let α < κ be some ordinal
above the rank of a. By Proposition 2.3, there is a regular δ̄ < κ such that in
V Coll(ω,<κ) there is an elementary embedding j : Hδ̄ → Hδ with j(crit(j)) = κ and
α ∈ range(j). It follows that crit(j) is above the rank of a and hence j(a) = a. Since
Hδ |= ϕ(a, b), there is some b̄ ∈ Hδ̄ such that Hδ̄ |= ϕ(a, b̄), but then V |= ϕ(a, b̄)
as well and b̄ ∈ Vκ. �

When working with remarkable cardinals we often appeal to the following folklore
result, which asserts that the existence of an embedding of a countable model into
another fixed model is absolute.
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Lemma 2.6. Suppose M is a countable first-order structure and j : M → N is
an elementary embedding. If W ⊆ V is a transitive (set or class) model of (some
sufficiently large fragment of) ZFC such that M is countable in W and N ∈ W ,
then W has some elementary embedding j∗ : M → N . Moreover, if both M and
N are transitive ∈-structures, we can additionally assume that crit(j∗) = crit(j).
Also, we can assume that j and j∗ agree on some fixed finite number of values.

The proof proceeds by fixing an enumeration {ai | i < ω} of M in W and con-
structing in W the tree of all finite partial isomorphisms between M to N with
domain some {ai : i < n} for some n. This tree is ill-founded in V , and hence
must be ill-founded in W (for details see Lemma 2.7 in [3]). The absoluteness
lemma 2.6 immediately gives the equivalence between the assertion that an embed-
ding j : B → A exists in some set-forcing extension and the assertion that such an
embedding exists in V Coll(ω,B).

Proposition 2.7. The following are equivalent for structures B and A in the same
language.

(1) There is a complete Boolean algebra B such

V B |= “There exists an elementary embedding j : B → A.”

(2) In V Coll(ω,B) there is an elementary embedding j : B → A.
(3) For every complete Boolean algebra B,

V B |= “|B| = ℵ0 → There exists an elementary embedding j : B → A.”

Moreover, if B and A are transitive ∈-structures, we can assume that the embed-
dings have the same critical point and agree on finitely many fixed values.

Proof. Clearly (2) implies (1) and (3) implies (2).
Let’s show (1) implies (2). So suppose a forcing extension V [G] has an elementary

embedding j : B → A and let |B|V = δ. Let H ⊆ Coll(ω, δ) be V [G]-generic. Since
j exists in V [G][H] and B is countable in V [H] ⊆ V [G][H], by Lemma 2.6, there
is some elementary embedding j∗ : B → A in V [H] satisfying the “moreover”
conditions.

Finally, let’s show (2) implies (3). So suppose a forcing extension V [G] satisfies
|B| = ℵ0 and let |B|V = δ. Let H ⊆ Coll(ω, δ) be V [G]-generic. Then, by (2),
V [H] has an elementary embedding j : B → A, and hence so does V [G][H]. But
then by Lemma 2.6, since B is countable in V [G], it must have some j∗ : B → A
as desired. �

In particular, we can rephrase the definition of a remarkable cardinal κ to say that
for every regular λ > κ, there is some regular λ̄ < κ such that some set-forcing
extension has an elementary embedding j : Hλ̄ → Hλ with j(crit(j)) = κ.

3. n-remarkable cardinals

We generalize remarkable cardinals to obtain the notion of n-remarkable cardinal,
for n > 0. We show that the n-remarkable cardinals form a hierarchy of strength
and, for n ≥ 2, they can be viewed as a type of a generic C(n−1)-extendible cardinal.

Definition 3.1. A cardinal κ is n-remarkable, for n > 0, if for every λ > κ in
C(n), there is λ̄ < κ also in C(n) such that in V Coll(ω,<κ), there is an elementary
embedding j : Vλ̄ → Vλ with j(crit(j)) = κ. A cardinal κ is completely remarkable
if it is n-remarkable for every n > 0.
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By Proposition 2.4, remarkable cardinals are precisely the 1-remarkable cardinals.
The argument that yields Proposition 2.3 gives the same result for n-remarkable
cardinals.

Proposition 3.2. If κ is n-remarkable, then for every λ > κ in C(n) and a ∈ Vλ,
there is λ̄ < κ also in C(n) such that in V Coll(ω,<κ) there is an elementary embedding
j : Vλ̄ → Vλ with j(crit(j)) = κ and a ∈ range(j).

An analogous argument as given for Proposition 2.5 gives the following.

Proposition 3.3. Every n-remarkable cardinal is in C(n+1).

Theorem 3.4. Every n+1-remarkable cardinal is a limit of n-remarkable cardinals.

Proof. First, observe that being n-remarkable is a Πn+1-property. Suppose that κ
is n + 1-remarkable and fix α < κ. We will show that there is an n-remarkable
cardinal between α and κ. In V Coll(ω,<κ) fix some elementary j : Vλ̄ → Vλ with
λ > κ, λ̄ < κ both in C(n+1) and j(crit(j)) = κ. Let j(κ̄) = κ, and note that by
putting a large enough ordinal into the range of j we can assume that κ̄ > α. Since
λ ∈ C(n+1), Vα satisfies that κ is n-remarkable, and so by elementarity Vλ̄ satisfies
that κ̄ is n-remarkable. But λ̄ is also in C(n+1), and so κ̄ is truly n-remarkable in
V . �

It follows that the n-remarkable cardinals form a hierarchy of strength bounded
above by completely remarkable cardinals.

Theorem 3.5. If 0# exists, then every Silver indiscernible is completely remarkable
in L.

Proof. Suppose 0# exists and let κ be a Silver indiscernible. Fix α > κ such that
Lα ≺Σn L. Let δ > α be a Silver indiscernible and let j : L→ L be an elementary
embedding generated by a shift of indiscernibles such that crit(j) = κ and j(κ) = δ.
The embedding j restricts to j : Lα → Lj(α). It follows, by Lemma 2.6, that there

is ᾱ < j(κ) (namely ᾱ = α) such that in LColl(ω,<j(κ)) there is an elementary
embedding j∗ : Lᾱ → Lj(α) with j∗(crit(j∗)) = j(κ) and Lᾱ ≺Σn L. So by

elementarity via j, L satisfies that in LColl(ω,<κ) there is ᾱ < κ and an elementary
embedding j∗ : Lᾱ → Lα such that j∗(crit(j∗)) = κ and Lᾱ ≺Σn L. �

Thus, the consistency of a completely remarkable cardinal follows from 0#, but
in fact the assertion is much weaker, and already follows from a 2-iterable cardinal.
A cardinal κ is said to be α-iterable, for some 1 ≤ α ≤ ω1, if every A ⊆ κ can be
put into a weak κ-model2 M for which there is a weakly amenable M -ultrafilter3

on κ with α-many well-founded iterated ultrapowers. For a finite n, an n-iterable
cardinal is stronger than a completely ineffable cardinal but weaker than an ω-Erdős
cardinal. If κ is (at least) 2-iterable, it can be shown that every A ⊆ κ can be put
into a weak κ-model M |= ZFC with an elementary embedding j : M → N such
that N is well-founded, crit(j) = κ, M ≺ N , and M = V Nj(κ). (See [7] for details.)

2A transitive model M |= ZFC− is called a weak κ-model if it has size κ and height above κ.
3If M is a transitive model of ZFC− and κ is a cardinal in M , then U ⊆ PM (κ) is called

an M -ultrafilter if the structure 〈M,∈, U〉 with a predicate for U satisfies that U is a normal

ultrafilter. An M -ultrafilter is weakly amenable if for every A ∈ M with |A|M = κ, A ∩ U ∈ M .
Weak amenability makes it possible to carry out the iterated ultrapowers construction with an

external ultrafilter.
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Theorem 3.6. If κ is 2-iterable, then Vκ is a model of proper class many completely
remarkable cardinals.

Proof. Suppose κ is 2-iterable. Fix a weak κ-model M |= ZFC containing Vκ
for which there is an elementary embedding j : M → N such that N is well-
founded, crit(j) = κ, M ≺ N , and M = V Nj(κ). To show that Vκ is a model of

proper class many completely remarkable cardinals, it suffices to show that κ is
completely remarkable in M = V Nj(κ). So, fix n and fix α > κ in M such that

VMα ≺Σn M . Note that, since M ≺ N and M = V Nj(κ), V
M
α = V Nα ≺Σn N as

well. Consider the restriction j : VMα → V Nj(α). By Lemma 2.6, N satisfies that

in V Coll(ω,<j(κ)) there is ᾱ < j(κ) and an elementary embedding j∗ : Vᾱ → Vj(α)

such that j∗(crit(j∗)) = j(κ) and Vᾱ ≺Σn N . By elementarity, M satisfies that
in V Coll(ω,<κ) there is ᾱ < κ and an elementary embedding j∗ : Vᾱ → Vα such
that j∗(crit(j∗)) = κ and Vᾱ ≺Σn M . Thus, κ is n-remarkable in M , for every
n ∈ ω. �

If we assume, for a cardinal κ, that the embeddings characterizing a supercom-
pact cardinal given by Magidor’s theorem exist in some set-forcing extension, then
we get a remarkable cardinal. In [6], Gitman and Schindler apply this procedure
to obtain generic variants of other large cardinals including extendible, huge, and
rank-into-rank. We will show that 2-remarkable cardinals are precisely the vir-
tually extendible cardinals defined in this manner and that more generally, the
n-remarkable cardinals, for n > 1 correspond to virtually C(n−1)-extendible cardi-
nals.

Definition 3.7 ([6]). A cardinal κ is virtually extendible if for every α > κ, in some
set-forcing extension (equivalently in V Coll(ω,Vα)) there is j : Vα → Vβ such that

crit(j) = κ and j(κ) > α. A cardinal κ is virtually C(n)-extendible if additionally
j(κ) ∈ C(n).

Note that virtually extendible cardinals are C(1)-extendible because j(κ) must be
inaccessible in V .

Theorem 3.8. A cardinal κ is virtually extendible if and only if it is 2-remarkable.
More generally, κ is virtually C(n)-extendible if and only if it is n+ 1-remarkable.

Proof. Let us first show that if κ is virtually extendible, then it is 2-remarkable. Fix
λ > κ in C(2) and let α > λ also be in C(2). By virtual extendibility, in V Coll(ω,Vα)

there is an elementary embedding j : Vα → Vβ with crit(j) = κ and j(κ) > α.
Consider the restriction of j to j : Vλ → Vj(λ). Let’s argue that Vλ ≺Σ2

Vj(λ).

Since λ ∈ C(1), and j is elementary, j(λ) ∈ C(1) as well. So suppose Vj(λ) satisfies
∃xϕ(x, a), where ϕ is Π1 and a ∈ Vλ. Then Vj(λ) satisfies ϕ(b, a) for some witness
b. So V satisfies ϕ(b, a) as well. Hence V satisfies ∃xϕ(x, a) and Vλ must agree
because λ ∈ C(2).

So Vβ satisfies that there is λ̄ < j(κ) such that Vλ̄ ≺Σ2
Vj(λ), and in V Coll(ω,<j(κ))

there is an elementary embedding j∗ : Vλ̄ → Vj(λ) with j∗(crit(j∗)) = j(κ). So Vα
satisfies that there is λ̄ < κ such that Vλ̄ ≺Σ2

Vλ, and in V Coll(ω,<κ) there is
j∗ : Vλ̄ → Vλ such that j∗(crit(j∗)) = κ. Since λ ∈ C(2), it follows that λ̄ ∈ C(2) as
well, completing the argument.

Let us now show that every 2-remarkable κ is virtually extendible. It follows
from 2-remarkability, that there must be some λ̄ < κ in C(2) such that for cofinally
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many λ > κ in C(2), in V Coll(ω,<κ) there is jλ : Vλ̄ → Vλ with jλ(crit(jλ)) = κ.
We can also assume that crit(jλ) is some fixed κ̄ for all λ. Let us argue that κ̄
is virtually extendible in Vλ̄. Fix β < λ̄ above κ̄. The embedding jλ restricts to
jλ : Vβ → Vjλ(β). Thus, in V Coll(ω,Vβ) there is some ξ and an elementary embedding
j∗ : Vβ → Vξ such that crit(j∗) = κ̄ and j∗(κ̄) > β. But this is a Σ2 fact. So it holds
true in Vλ̄. So κ̄ is virtually extendible in Vλ̄, but then since there are embeddings
from Vλ̄ into cofinally many Vλ, with λ ∈ C(2), we have that κ = jλ(κ̄) is virtually
extendible in V .

The arguments just given easily generalize to show that for n > 1, the n + 1-
remarkable cardinals are precisely the C(n)-virtually extendible cardinals. �

4. Remarkable games

The main theme of this article is studying assertions of the form that an ele-
mentary embedding between two structures exists in some set-forcing extension.
It turns out that such assertions can be reformulated in terms of the existence of
winning strategies in a class of Ehrenfeucht-Fräıssé-like games.

Let B and A be two structures in the same language. We consider a two-player
game, denoted by G(B,A), where in the n-th move player I chooses bn ∈ B and
player II chooses an ∈ A. Player II wins the game if for every formula ϕ(x0, . . . , xn),

B |= ϕ(b0, . . . , bn)↔ A |= ϕ(a0, . . . , an),

and otherwise player I wins. Since if player II loses she has to lose by some finite
stage, the game is closed and hence determined by the Gale-Stewart Theorem [5].

Proposition 4.1. The following are equivalent for structures B and A in the same
language.

(1) Player II has a winning strategy in G(B,A).
(2) In V Coll(ω,B), there is an elementary embedding j : B → A.
(3) There is a complete Boolean algebra B such that

V B |= “There exists an elementary embedding j : B → A.”

(4) For every complete Boolean algebra B,

V B |= “|B| = ℵ0 → There is an elementary embedding j : B → A.”

Proof. By Proposition 2.7, it suffices to show only that (1) and (2) are equivalent.
Let’s show (1) implies (2). So, suppose σ is a winning strategy for player II and

G is Coll(ω,B)-generic over V . In V [G], we fix an enumeration {bi | i < ω} of
the universe of B. Notice that, in V [G], σ is still a winning strategy for player
II, because the game is a closed game and there are no new finite sets in V [G].
So, by playing according to σ against the moves bn of player I given by the fixed
enumeration, player II obtains the desired elementary embedding j : B → A.

Next, we show (2) implies (1). So, suppose that in V Coll(ω,B) there is an elemen-
tary embedding j : B → A. Let τ be a Coll(ω,B)-name for j. The following is a
winning strategy for player II: When player I plays some b0 at stage n = 0, choose
some p〈b0〉 which forces τ(b0) = a0 and play a0. When player I plays b1 at stage
n = 1, choose some p〈b0,b1〉 ≤ p〈b0〉 which forces τ(b1) = a1 and play a1. Continuing
in this manner, at stage n + 1 of the game, to every sequence of plays 〈b0, . . . , bn〉
of player I, we have associated a condition p〈b0,...,bn〉 which forces τ(bi) = ai and
the ai are the plays according to the strategy. So when player I plays bn+1 at stage
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n+1, we choose a condition p〈b0,...,bn,bn+1〉 ≤ p〈b0,...,bn〉 which forces τ(bn+1) = an+1

and play an+1. �

5. Generic Vopěnka’s Principle

We introduce the Generic Vopěnka’s Principle which states that for every proper
class C of structures of the same type, there are B 6= A, both in C, such that B
elementarily embeds into A in some set-forcing extension; equivalently, by Propo-
sition 4.1, player II has a winning strategy in G(B,A). We will study fragments
of Generic Vopěnka’s Principle for Σn-definable classes, as well as similarly defined
generic variants of other Vopěnka-like principles, such as VP(κ,Σn).

Definition 5.1.

(1) The principle gVP(Σn) asserts that for every Σn-definable with parameters
proper class C of structures of the same type, there are B 6= A, both in C,
such that B elementarily embeds into A in some set-forcing extension. The
principle gVP(Σn) is defined analogously but does not allow parameters
in the definition of the class. The principles gVP(Πn) and gVP(Πn) are
defined analogously.

(2) The principle gVP(κ,Σn), where κ is a cardinal, asserts that every Σn-
definable with parameters from Hκ class C of structures of the same type
generically reflects below κ, meaning that for every A ∈ C, there is B ∈ Hκ

such that B elementarily embeds into A in some set-forcing extension.

Theorem 5.2. If κ is n-remarkable, then gVP(κ,Σn+1) holds.

Proof. We prove the case n = 1, for remarkable κ, and note that the general case
is completely analogous.

Let C be a proper class of structures Σ2-definable from a ∈ Hκ. Fix A ∈ C and fix
a cardinal λ > κ in C(2) with A ∈ Vλ. By Proposition 2.4, there is λ̄ < κ such that
in V Coll(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ with j(crit(j)) = κ
and A ∈ range(j). By also putting the rank of a into the range of j, we can assume
that j(a) = a. Let j(B) = A. Since C is Σ2-definable and λ ∈ C(2), we have that
Vλ |= “A ∈ C”. Since j(a) = a by assumption, it follows that Vλ̄ |= B ∈ C. And
since λ̄ ∈ C(1), it follows that truly B ∈ C. Thus, the restriction j : B → A is the
desired elementary embedding. �

Theorem 5.3. If for some cardinal κ, gVP(κ,Σn+1) holds, then either there is an
n-remarkable cardinal or there is a transitive model of ZFC with a proper class of
n-remarkable cardinals.

Proof. We first prove the case n = 1.
Let C be the Π1-definable class of structures of the form 〈Vθ,∈〉. By gVP(κ,Σ2),

for every θ > κ, there is θ̄ < κ such that in V Coll(ω,Vθ̄) there is an elementary
embedding j : Vθ̄ → Vθ. Let θ̄ < κ be the least such that for a proper class of
θ, in V Coll(ω,Vθ̄) there is an elementary embedding jθ : Vθ̄ → Vθ. Notice that θ̄
must be a limit ordinal by minimality. If jθ is the identity map for a proper class
of θ, then Vθ̄ is elementary in V , which is impossible since θ̄ is definable. So, let
ᾱ be least such that for a proper class of θ, in V Coll(ω,Vθ̄) there is an elementary
embedding jθ : Vθ̄ → Vθ having ᾱ as its critical point. For a proper class of such θ,
the ordinals jθ(κ̄) must be the same, for otherwise we would have Vᾱ ≺ V , and this
is impossible because ᾱ is definable. So, let α be the least such that for a proper
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class K of ordinals θ > κ, in V Coll(ω,Vθ̄) there exists an elementary embedding
jθ : Vθ̄ → Vθ with crit(jθ) = ᾱ, and jθ(ᾱ) = α.

It is not difficult to see that ᾱ must be inaccessible. If for some β < κ f : β → ᾱ
is cofinal, then f ∈ Vθ̄, and so by elementarity, j(f) : β → α is cofinal, but j(f) = f .

Thus, ᾱ is regular. If for some β < ᾱ there is an injection f : ᾱ
1−1→ P(β), then

f ∈ Vθ̄ and j(f) is an injection by elementarity, but j(f)(ᾱ) = A ⊆ β must already
appear in the image of f ⊆ j(f) by elementarity. Thus, ᾱ is a strong limit.

First, let’s suppose that θ̄ < α. We claim that, in this case, α is remarkable. If
not, then there is a least regular λ > α witnessing the non-remarkability of α. Fix
θ > λ in K, so that Vθ sees that λ is least witnessing the non-remarkability of α.
Then λ is definable in Vθ from α, and so λ is in the range of jθ. Let jθ(λ̄) = λ
and note that λ̄ is regular by elementarity. Consider the restriction jθ : Hλ̄ → Hλ,
which has jθ(crit(jθ)) = α. Such an embedding exists in V Coll(ω,<α) since Vλ̄ is
countable there (by Proposition 2.7). But this contradicts our assumption that λ
is a witness to the non-remarkability of κ, and so α must be remarkable.

Now suppose alternatively that α ≤ θ̄. First, we claim that ᾱ is remarkable
in Vα. To see this, fix some λ < α. In V Coll(ω,Vθ̄), fix some jθ : Vθ̄ → Vθ with
θ > κ and consider the restriction jθ : Vλ → Vjθ(λ), which has jθ(crit(jθ)) = jθ(ᾱ).

By Proposition 2.7, in V Coll(ω,<jθ(ᾱ)) there is some j∗ : Vλ → Vjθ(λ), which has
j∗(crit(j∗)) = jθ(ᾱ) and Vθ sees this. Thus, by elementarity, Vθ̄ satisfies that
there is some λ̄ < ᾱ such that in V Coll(ω,<ᾱ) there is an elementary embedding
j∗ : Vλ̄ → Vλ, which has j∗(crit(j∗)) = ᾱ. By Proposition 2.4, this completes the
argument that ᾱ is remarkable in Vα . But now it easily follows using elementarity
that Vᾱ is a model of proper class many remarkable cardinals.

For the general case, where we consider gVP(κ,Σn+1), let C be the Πn-definable
class of structures of the form 〈Vθ,∈〉 with θ ∈ C(n). We argue analogously to
case of n = 1. As in that proof, we fix minimal θ̄ < κ, ᾱ, and α, such that
for a proper class K ⊆ C(n) of ordinals above κ, for every θ ∈ K, there is an
embedding jθ : Vθ̄ → Vθ with crit(jθ) = ᾱ and jθ(ᾱ) = α. First, suppose ᾱ < θ̄
and assume towards a contradiction that λ > κ is least in C(n) witnessing that
κ is not n-remarkable. Since θ ∈ C(n), Vθ is correct about this property of λ
and so λ is in the range of jθ with jθ(λ̄) = λ. Since Vλ ≺Σn Vθ, it follows by
elementarity that Vλ̄ ≺Σn Vθ̄. The restricted embedding jθ : Vλ̄ → Vλ thus witnesses
a contradiction, showing that α is indeed n-remarkable. Next, suppose alternatively
that ᾱ ≥ θ. As before, we argue that ᾱ is n-remarkable in Vα. Fix λ < α above ᾱ
such that Vλ ≺Σn Vα and consider the restriction jθ : Vλ → Vjθ(λ). The requirement
Vλ ≺Σn Vα translates via elementarity into the assertion that Vλ̄ ≺Σn Vᾱ, since
jθ(ᾱ) = α. But then Vλ̄ ≺Σn Vα as well since Vᾱ ≺ Vα. The rest of the argument
proceeds analogously. �

Theorem 5.4.

(1) If gVP(Πn) holds, then either there is an n-remarkable cardinal or there is
a transitive model of ZFC with a proper class of n-remarkable cardinals.

(2) If gVP(Πn) holds, then either there is a proper class of n-remarkable re-
markable cardinals or there is a transitive model of ZFC with a proper class
of n-remarkable cardinals.

Proof. We will say that a cardinal κ is remarkable up to λ > κ if for every κ < η < λ,
there is η̄ < κ and such that in V Coll(ω,<κ) there is an elementary embedding
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j : Vη̄ → Vη with j(crit(j)) = κ, and we will make an analogous definition for
n-remarkable κ.

We start with the case n = 1.
First, we prove (1). We follow the proof of Theorem 4.3(1) in [1]. Let C be

the class of structures of the form 〈Vλ+2,∈, α, λ〉, where λ is the least limit ordinal
greater than α such that no κ ≤ α is remarkable up to λ. It is not difficult to see
that C is Π1-definable without parameters. Observe that if there are no remarkable
cardinals, then C is a proper class. So, let’s assume that there are no remarkable
cardinals. By gVP(Π1) applied to C, there exist structures

〈Vλ+2,∈, α, λ〉 6= 〈Vµ+2,∈, β, µ〉
such that in V Coll(ω,Vλ+2) there is an elementary embedding

j : 〈Vλ+2,∈, α, λ〉 → 〈Vµ+2,∈, β, µ〉.
If j was the identity, then we would have λ = µ and α = β, which is impossible
since we assumed 〈Vλ+2,∈, α, λ〉 6= 〈Vµ+2,∈, β, µ〉. So j has a critical point, call it
κ.

Let’s argue that α < β, and hence κ ≤ α. If λ = µ, then this must be the case
because j is not the identity. If λ < µ, then it must also be the case because no
ξ ≤ α is remarkable up to λ (by definition of C) and there is some ξ ≤ β which
is remarkable up to λ, by minimality of µ. Let’s argue next that j(κ) < λ. If
not, then we claim κ is remarkable up to λ, which is impossible. Fix some δ > κ
below λ. Consider the restriction j : Vδ → Vj(δ), which has j(crit(j)) = j(κ). By
Proposition 2.7 and our assumption that δ < j(κ), there is some j∗ : Vδ → Vj(δ)
with j∗(crit(j∗)) = j(κ) in V Coll(ω,<j(κ)) and Vµ+2 sees this. Thus, by elementarity,

Vλ+2 satisfies that there is some δ̄ < κ such that in V Coll(ω,<κ) there is an elementary
embedding j∗ : Vδ̄ → Vδ with j∗(crit(j∗)) = κ. So we verified that j(κ) < λ. We
claim that κ is remarkable in Vj(κ). Fix δ > κ below j(κ). Consider the restriction
j : Vδ → Vj(δ) and argue as above. Thus, by elementarity, Vκ is a model with
proper class many remarkable cardinals.

Next, we prove (2). We follow the proof of Theorem 4.3(2) in [1]. For an ordinal
ξ, we will show that either there is a remarkable cardinal above ξ or there is a
transitive ZFC-model with a proper class of remarkable cardinals. Let C be the
class of structures of the form 〈Vλ+2,∈, α, λ, {γ}γ≤ξ〉, where α > ξ and λ is the
least limit ordinal greater than α such that no κ ≤ α and above ξ is remarkable up
to λ. The class C is Π1-definable in the parameter ξ and if there is no remarkable
cardinal above ξ, then C is a proper class. An analogous argument to (1) now shows
that, in this case, there is a transitive ZFC-model with a proper class of remarkable
cardinals.

For the general case with gVP(Πn), let C the be the class of structures of the form
〈Vλ+2,∈, α, λ〉, where λ is least in C(n) such that all κ ≤ α are not n-remarkable
up to λ. The class C is Πn-definable and if there is no n-remarkable cardinal, then
it is proper. The rest of the argument proceeds analogously. �

Putting together the above results, we get that the principles gVP(Πn) and
gVP(κ,Σn+1) are equiconsistent with an n-remarkable cardinal.

Theorem 5.5. The following are equiconsistent.

(1) gVP(Πn).
(2) gVP(κ,Σn+1) for some κ.
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(3) There is an n-remarkable cardinal.

Proof. If there is a model with gVP(Πn), then there is a model with an n-remarkable
cardinal by Theorem 5.4 (1). If there is a model with gVP(κ,Σn+1), then there is a
model with an n-remarkable cardinal by Theorem 5.3. If there is an n-remarkable
cardinal, then gVP(κ,Σn+1) holds by Theorem 5.3 and gVP(κ,Σn+1) trivially
implies gVP(Πn). �

Theorem 5.6. The following are equiconsistent.

(1) gVP(Πn).
(2) gVP(κ,Σn+1) for a proper class of κ.
(3) There is a proper class of n-remarkable cardinals.

Proof. If there is a model with gVP(Πn), then there is a model with proper class
many remarkable cardinals by Theorem 5.4 (2). If µ is an ordinal and gVP(κ,Σn+1)
holds for some κ > µ, then by using structures 〈Vθ,∈, {ξ}ξ≤µ〉, we can ensure that
α, in the proof of Theorem 5.3, is as large as desired. Thus, if there is a model
with gVP(κ,Σn+1) for a proper class of κ, then there is a model with proper class
many n-remarkable cardinals. If there is a proper class of n-remarkable cardinals,
then gVP(κ,Σn+1) holds for a proper class of κ by Theorem 5.3 and if C is a Πn-
definable class in some parameter a, then gVP(κ,Σn+1) with κ above the rank of
a trivially implies the Generic Vopěnka’s Principle for this class. �

We don’t know whether equiconsistency can be replaced by direct implication
in Theorems 5.5 and 5.6, as in the case of Vopěnka’s Principle fragments and su-
percompact and C(n)-extendible cardinals. The chief obstacle to obtaining direct
implications seems to be that the “virtual” version of Kunen’s inconsistency does
not hold, namely, it is consistent that for some cardinal δ, in V Coll(ω,Vδ) there is an
elementary embedding j : Vδ → Vδ with, say, δ = λ+, where λ is the supremum of
the critical sequence for j.

Question 5.7.

(1) If gVP(κ,Σn+1) holds for some κ, holds does it follows that there is an
n-remarkable cardinal?

(2) If gVP(Πn) holds, does it follow that there is an n-remarkable cardinal?

Bagaria showed in [1] that the least κ for which VP(κ,Σ2) holds is the least su-
percompact and, for n > 1, the least κ for which VP(κ,Σn+1) holds is the least
C(n)-extendible. We can obtain analogous results for a potentially stronger variant
of Generic Vopěnka’s Principle and an analogous strengthening of gVP(κ,Σn).

Definition 5.8. Suppose B and A are transitive ∈-structures and j : B → A is an
elementary embedding. We say that j is overspilling if j has a critical point and
j(crit(j)) > rank(B).

Definition 5.9. The principle gVP∗(Σn) asserts for every Σn-definable, without
parameters, proper class C of transitive ∈-structures, that there are B 6= A in
C such that there is an overspilling elementary embedding j : B → A in some
set-forcing extension. The principles gVP∗(Πn), gVP∗(Πn), and gVP∗(κ,Σn) are
defined analogously.

Theorem 5.10. The following are equivalent for a cardinal κ.

(1) κ is the least for which gVP∗(κ,Σn+1) holds.
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(2) κ is the least n-remarkable cardinal.

Proof. Since gVP∗(κ,Σn+1) holds for n-remarkable κ by the proof of Theorem 5.2,
it follows that the least κ of (2) is at least as large as the least κ of (1). Thus, it
suffices to show that the least κ in (1) is n-remarkable. By the proof of Theorem 5.3,
and following its notation, we have that α is n-remarkable. Since κ is least such
that gVP∗(κ,Σn+1) holds, we cannot have that α < κ. So assume towards a
contradiction that α > κ. Since α is n-remarkable, and therefore Vα ≺Σn+1

V by
Proposition 3.3, Vα satisfies that gVP∗(κ,Σn+1) holds. And since Vᾱ ≺ Vα, there
exists some ordinal γ < α such that Vᾱ satisfies that gVP∗(γ,Σn+1) holds. Hence,
again because Vᾱ ≺ Vα, Vα satisfies that gVP∗(γ,Σn+1) holds, but then so does V ,
which contradicts the minimality of κ. �

Theorem 5.11.

(1) If gVP∗(Πn) holds, then there is an n-remarkable cardinal.
(2) If gVP∗(Πn) holds, then there is a proper class of n-remarkable cardinals.

6. A weak version of the Proper Forcing Axiom

In the spirit of investigating principles which assert the existence of elementary
embeddings in a set-forcing extension, we introduce and study a weakening of PFA,
the Proper Forcing Axiom, based on the notion that the embeddings arising from
PFA exist in a set-forcing extension. As we noted in the introduction, the proof of
[2, Theorem 1.3] produces the following characterization of PFA.

Theorem 6.1. The following are equivalent.

(1) PFA
(2) If M = (M ;∈, (Ri | i < ω1)) is a transitive model, ϕ(x) is a Σ1-formula,

and Q is a proper forcing such that

Q ϕ(M),

then there is in V some transitive M̄ = (M̄ ;∈, (R̄i | i < ω1)) together with
some elementary embedding

j : M̄ →M
such that ϕ(M̄) holds.

For instance, to see that (2) implies PFA, suppose that Q is a proper poset
and 〈Dα | α < ω1〉 is a sequence of dense sets of Q. Let M have the form
〈Hλ,∈,Q, (Dα | α < ω1)〉, where Hλ is sufficiently large that it contains all sub-
sets of Q. Clearly Q forces the Σ1-assertion about M that there is a filter for Q
meeting all the Dα. So by (2), V has an elementary embedding j : M̄ → M for
some transitive model M̄ = (M̄ ;∈, Q̄, (D̄α | α < ω1) and V has a filter Ḡ for Q̄
meeting all the D̄α. Let G be the point-wise image of Ḡ under j. Clearly G is a
filter on P meeting all the Dα as required by PFA.

PFA is weakened to the weak Proper Forcing Axiom, wPFA, by asserting that
the embedding j : M̄ →M exists in some set-forcing extension.

Definition 6.2. The weak Proper Forcing Axiom wPFA asserts that if
M = (M ;∈, (Ri | ξ < ω1)) is a transitive model, ϕ(x) is a Σ1-formula, and Q
is a proper forcing such that

Q ϕ(M),
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then there is in V some transitive M̄ = (M̄ ;∈, (R̄i | i < ω1)) such that ϕ(M̄)

holds and inside some set-forcing extension (equivalently in V Coll(ω,M̄)) there is an
elementary embedding

j : M̄ →M.

We will show that wPFA is equiconsistent with a remarkable cardinal.
Let us first show that wPFA is consistent relative to a remarkable cardinal. The

proof uses a remarkable Laver function which is the analogue of a Laver function
on a supercompact cardinal.

Suppose κ is a cardinal and ` : κ → Vκ is a partial function. We say that a set
x ∈ Vλ with λ > κ is λ-anticipated by ` if there is λ̄ < κ such that in V Coll(ω,<κ),
there is an elementary embedding j : Vλ̄ → Vλ with crit(j) = ξ and j(ξ) = κ so
that ` � ξ + 1 ∈ Vλ̄, j(` � ξ) = `, and j(`(ξ)) = x. The function ` is called a
remarkable Laver function if whenever x ∈ Vλ with λ > κ, then x is λ-anticipated
by `. Gitman showed in [3] that every remarkable cardinal has a remarkable Laver
function.

Theorem 6.3. Let κ be remarkable. Then wPFA holds in a forcing extension by
a proper poset.

Proof. We imitate the standard argument which produces PFA in a forcing exten-
sion of a ground model with a supercompact cardinal.

Let ` : κ → Vκ be a remarkable Laver function. We define a countable support
κ-length iteration P, where at stage ξ, if `(ξ) = (Q̇,M) for some set M and Pξ-name

Q̇ such that Pξ “Q̇ is proper”, then we force with Q̇ξ = Q̇, and with the trivial
forcing otherwise. The iteration P is proper and therefore preserves ω1.

Let G be P-generic over V . We claim that wPFA holds in V [G]. To this end, let
M = (M ;∈, (Ri | i < ω1)) ∈ V [G] be a transitive model, let ϕ(x) be a Σ1-formula,
and let Q ∈ V [G] be a proper forcing such that, in V [G], Q ϕ(M) holds.

Let Q̇ be a P-name for Q such that P “Q̇ is proper”, let τ be a P-name for M,
and let x = (Q̇, τ). Let λ > κ be sufficiently large such that x ∈ Vλ, Vλ satisfies

that P “Q̇ is proper”, and Vλ[G] satisfies that Q ϕ(M). This is possible because

if λ is large enough, then Vλ[G] has a sufficiently large H
V [G]
δ and a club of models

in [H
V [G]
δ ]ω witnessing the properness of Q and Vλ[G] has a Q-name witnessing

the Σ1-formula ϕ(M). By the properties of `, there is some λ̄ < κ such that in
V Coll(ω,<κ) there is an elementary embedding j : Vλ̄ → Vλ with crit(j) = ξ and

j(ξ) = κ so that ` � ξ + 1 ∈ Vλ̄, j(` � ξ) = `, and j(`(ξ)) = (Q̇, τ). It follows by
elementarity that `(ξ) = (Q, τ̄) and Vλ̄ satisfies that Pξ “Q is proper”. But then
it must truly be the case that Pξ “Q is proper” because any Pξ-generic extension
of Vλ̄ would provide the necessary witnessing club of models. By the definition of

P, it follows that Q̇ξ = Q.
Note that j fixes all elements of Pξ ⊆ Vξ and, since j(` � ξ) = `, it follows that

j(Pξ) = P. Thus, inside V [G]Coll(ω,<κ), we may lift j to an elementary embedding
j : Vλ̄[G � ξ] → Vλ[G] by setting j(σG�ξ) = j(σ)G for every Pξ-name σ ∈ Vλ̄. In
particular, setting M̄ = (M̄ ;∈, (R̄i | i < ω1)) = τ̄G�ξ, M̄ ∈ V [G � ξ] ⊆ V [G] and

j � M̄ : M̄ →M
is an elementary embedding. By Lemma 2.6 such an embedding then also exists in
V [G]Coll(ω,M̄). Note that we used the preservation of ω1 to conclude that M̄ has
ω1-many relations.
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Since Vλ[G] satisfies that Q ϕ(M), we will now clearly have that

Vλ[Gξ+1] |= ϕ(M̄),

so that because ϕ(x) is Σ1,
V [G] |= ϕ(M̄).

We have verified that wPFA holds true in V [G]. �

Next, we show that if wPFA holds, then ωV2 is remarkable in L.

Theorem 6.4. Assume wPFA. Then ωV2 is remarkable in L.

Proof. We may assume without loss of generality that 0# does not exist, as oth-
erwise all cardinals of V are remarkable in L. We shall exploit an argument of
Todorcevic from [14], which shows that �κ fails under PFA for all uncountable κ.
In what follows, we shall make references to the proof of [12, Theorem 11.64].

Let us write κ = ωV2 . Let α > κ be an L-cardinal. It suffices to find some L-
cardinal β < κ such that in V Coll(ω,β) there is some elementary embedding j : Jβ →
Jα with j(crit(j)) = κ. This suffices by Proposition 2.3, because for any infitite
L-cardinal γ, Jγ = Lγ = HL

γ .

By way of notation, if Jγ is a model of ZFC− with the largest cardinal, say γ′,
then by (Cγξ : ξ < γ) we mean the canonical �γ′–sequence as being constructed in

Jγ as in the proof of [12, Theorem 11.64]. In particular, if γ is an L-cardinal, then
γ′ will also be an L-cardinal and (Cγξ : ξ < γ) is the canonical �γ′ -sequence of L.

Let us assume that α = (α′)+L. By the Jensen Covering Lemma, cf(α) ≥ |α′| ≥
ω2 in V . There is then by [14] some proper forcing P such that if g is P–generic
over V , then in V [g], |α| = ℵ1 and there is a pair (C,F ) such that

(1) C ⊆ α is a club subset of α of order type ω1,
(2) F : C → ω is such that if η < ξ are both in C and η is a limit point of Cαξ ,

then F (ξ) 6= F (η).

Let M have the form 〈Hλ,∈,P, α, (ξ | ξ < ω1)〉 for a sufficiently large λ > α
and consider the Σ1-assertion about M that there exists a pair (C,F ) as above.
By wPFA, there is in V some some transitive model M̄ = 〈M̄,∈, P̄, β, (ξ | ξ < ω1)〉
and a pair (c, f) such that

(1) c ⊆ β is a club subset of β of order type ω1,

(2) f : c→ ω such that if η < ξ are both in c and η is a limit point of Cβξ , then

f(ξ) 6= f(η),

and inside V Coll(ω,M̄) there is an elementary embedding j : M̄ →M.
We must have j � (ωV1 ) + 1 = id because we included constants for countable

ordinals of V in our language. Let’s consider the restriction j � Jβ : Jβ → Jα
and let β′ be largest cardinal of Jβ , which exists by elementarity, since α′ was the
largest cardinal of Jα.

It remains to verify that β is an L-cardinal. If not, then let γ > β be least
such that ρω(Jγ) ≤ β′. Let ρn+1(Jγ) ≤ β′ < ρn(Jγ). Let d ⊂ β be the set
of all ξ < β such that Jξ ≺ Jβ and if ν > ξ is least with ρω(Jν) = β′, then
ρn+1(Jν) = β′ < ρn(Jν) and there is a weakly rΣn elementary embedding

σ : Jν → Jγ

with σ � ξ = id and σ(ξ) = ᾱ. By the proof of [12, Theorem 11.64], there is a club

e ⊂ d ∩ c in β such that if ξ ∈ e, then Cβξ ∩ e = e ∩ ξ. Let e′ be the set of limit
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points of e. We now have that if η < ξ are both in e′, then η is a limit point of

Cβξ , so that f(η) 6= f(ξ). This gives that f � e′ → ω is injective, which contradicts

cf(β) = ω1.
We note that we now must have β < ωV2 = κ by the Jensen Covering Lemma.

It follows, since j(β) = α, that the critical point of j is below ωV2 , and hence
j(crit(j)) = ωV2 = κ as desired. �

For a cardinal κ, let us write PFAκ for the statement that if B is any proper
complete Boolean algebra and if 〈Aξ | ξ < ω1〉 is any family of maximal antichains
in B with |Aξ| ≤ κ for each ξ < ω1, then there is some filter G ⊆ B such that
G ∩ Aξ 6= ∅ for all ξ < ω1. PFAℵ1

is then BPFA, the Bounded Proper Forcing
Axiom. The proof of [2, Theorem 1.3] easily shows that PFAκ can be characterized
analogously to PFA as in Theorem 6.1 with the restriction that |M | = κ, where M
is the universe of M.

The axiom wPFA implies PFAℵ2 , but it does not imply PFAℵ3 .

Theorem 6.5.

(1) wPFA implies PFAℵ2
.

(2) The assertion “wPFA ∧∀κ ≥ ℵ2 �κ” is consistent relative to a remarkable
cardinal.

(3) wPFA does not imply PFAℵ3
.

Proof. Let’s prove (1). So assume that P is a proper poset and 〈Aξ | ξ < ω1〉 is a
sequence of maximal antichains of P such that each Aξ has size at most ω2. Let
Q be a subposet of P of size ω2 containing all the Aξ and preserving compatibility
from P, so that if p and q are compatible in P, they remain compatible in Q. By
taking an isomorphic copy, we can assume without loss of generality that Q has
universe ω2. Let N be the structure 〈Hω2 ,Q, (Aξ | ξ < ω1)〉. Now let M be an
elementary substructure of Hω3 with predicates for N . In any forcing extension by
P there is a filter for Q meeting all the Aξ. Thus, by wPFA, there is a transitive
model M̄ = (M̄ ; N̄ , Q̄, (Āξ | ξ < ω1)〉 and a filter for Q̄ meeting all the Āξ so that in

V Coll(ω,M) there is an elementary embedding j : M̄ →M. By including constants
for all countable ordinals in M, we can assume without loss of generality that j
fixes ω1. SinceM knows that N ⊆ Hω2 , by elementarity, M̄ knows that N̄ ⊆ Hω2 .
But now it follows that j fixes all elements of N̄ . Thus, the restriction j : N̄ → N
is the identity map, and so we have a filter for Q meeting all the Aξ. Closing this
filter downwards gives a filter for P meeting all the Aξ.

Assertion (2) follows from the proof of Theorem 6.3 by starting with a remarkable
κ in L. Recall that κ is the ω2 of the forcing extension, and so because the forcing
iteration does not collapse any cardinals above κ, for δ ≥ κ, the old square sequences
from L witness that �δ holds.

Assertion (3) follows by the proof of [13, Theorem 1], which shows that PFAℵ3

implies the failure of �ω2
, whereas by (2), wPFA is compatible with �ω2

. �
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