Notes to "Indestructible Strong Cardinals"

Thomas Johnstone

Talk Series in the Set Theory Seminar CUNY Graduate Center August 28 and September 4, 2009

Abstract

The goal of this talk is to show how to make a strong cardinal κ indestructible by all $\leq \kappa$ -closed forcing. We show in Section 2 how to lift elementary embeddings that witness that κ is a θ -strong cardinal through $\leq \kappa$ -distributive forcing. In Section 3 we contrast this result by showing why this does not mean that every strong cardinal κ is indestructible by $\leq \kappa$ -closed forcing. In fact, we show how to make a strong cardinal destructible by arbitrarily highly closed forcing. This illustrates the significance of the main indestructibility theorem, which is proved in Section 4.

1 The filter $\langle j \ G \rangle$ is a ran(j)-generic filter on $j(\mathbb{P})$

For this section, assume that \mathbb{P} is any poset, and that $j: V \to M$ is an elementary embedding with $\operatorname{cp}(j) = \kappa$ and $M \subseteq V$. It is clear that $\operatorname{ran}(j)$ is an elementary substructure of M. Let $G \subseteq \mathbb{P}$ be V-generic. By the lifting criterion, we need an M-generic filter $H \subseteq j(\mathbb{P})$ such that $j^{"}G \subseteq H$. So let's focus on the set $j^{"}G$.

The set $j"G \subseteq j"\mathbb{P}$ is a V-generic filter on $j"\mathbb{P}$, as $j \upharpoonright \mathbb{P}$ is an isomorphism. But how much genericity can we get for the poset $j(\mathbb{P})$? Since $j"\mathbb{P}$ is a subposet of $j(\mathbb{P})$, we see that j"G is a directed subset of $j(\mathbb{P})$. We may thus close the set j"G upwards in $j(\mathbb{P})$ and obtain the filter $\langle j"G \rangle \subseteq j(\mathbb{P})$.

The observation below shows that the filter $\langle j^{"}G \rangle$ is a ran(j)-generic filter on $j(\mathbb{P})$.

Observation 1. For every set $D \in ran(j)$ such that D is a dense subset of $j(\mathbb{P})$, we have that $j^{"}G \cap D \neq \emptyset$.

Proof. Assume that \mathbb{P} is any poset, and that $j : V \to M$ is an elementary embedding with $\operatorname{cp}(j) = \kappa$ and $M \subseteq V$. Let $D \in \operatorname{ran}(j)$ be a dense subset of $j(\mathbb{P})$. So D = j(E) some dense subset $E \subseteq P$. Since $G \cap E \neq \emptyset$, it follows that $j^{"}G \cap j^{"}E \neq \emptyset$. As $j^{"}E \subseteq j(E)$, the observation follows.

Observation 2. If \mathbb{P} is a poset of size less than κ (\mathbb{P} may or may not be a subset of V_{κ}), then j lifts uniquely to $j : V[G] \to M[j(G)]$, with $j(G) = \langle j^{*}G \rangle$ necessarily.

Proof. Since \mathbb{P} is of size less than κ , we see that $j"\mathbb{P} = j(\mathbb{P})$, and consequently that j"G is a fully V-generic filter on $j(\mathbb{P})$ by the remarks above. By the lifting criterion, we have no choice in choosing the M-generic filter $H \subseteq j(\mathbb{P})$: since j"G is already V-generic and hence M-generic on $j(\mathbb{P})$, it follows that $H = j"G = \langle j"G \rangle$ necessarily and the embedding lifts uniquely to $j: V[G] \to M[j(G)]$ with $j(G) = j"G = \langle j"G \rangle$.

Observation 2 has the following, important consequence.

Theorem 3 (Levy-Solovay, 1967, by a different proof). If κ is measurable and \mathbb{P} is a poset of size less than κ , then κ remains measurable after forcing with \mathbb{P} .

Proof. If κ is measurable, then there is an elementary embedding $j : V \to M$ with critical point κ . Suppose that \mathbb{P} is a poset of size less than κ . By Observation 2 the embedding j lifts uniquely to $j : V[G] \to M[j(G)]$, with $j(G) = \langle j^{*}G \rangle$. This lifted embedding witnesses that κ is measurable in V[G], as desired.

2 Lifting elementary embeddings through $\leq \kappa$ distributive forcing

Theorem 4. Suppose that \mathbb{P} is $\leq \kappa$ -distributive and $j : V \to M$ is an ultrapower embedding by a normal measure μ on κ .

- 1. If $D \in M$ is a dense open subset of $j(\mathbb{P})$, then there is a $\overline{D} \in ran(j)$ such that \overline{D} is a dense subset of $j(\mathbb{P})$ and $\overline{D} \subseteq D$.
- 2. The filter $\langle j^{"}G \rangle \subseteq j(\mathbb{P})$ is an *M*-generic filter on $j(\mathbb{P})$.
- 3. The embedding j lifts uniquely to $j: V[G] \to M[j(G)]$, with $j(G) = \langle j^{"}G \rangle$ necessarily.

Proof. This proof presents a typical argument for the lifting techniques presented in this talk. Recall that as j is an ultrapower embedding by a measure μ , we have that the embedding j is generated by the unique seed $[\mathrm{id}]_{\mu}$. As μ is a normal measure on κ , we see that $[\mathrm{id}]_{\mu} = \kappa$ and consequently that every element of M has the form $j(f)(\kappa)$ for some function $f : \kappa \to V$ in V. In summary, we have that $j : V \to M$ is elementary with $\mathrm{cp}(j) = \kappa$ and $M = \{j(f)(\kappa) \mid f : \kappa \to V, f \in V\}.$

To prove assertion 1, fix a set $D \in M$ that is a dense open subset of $j(\mathbb{P})$. It follows that $D = j(f_0)(\kappa)$ for some function $f_0 : \kappa \to V$ in V. Clearly, D is definable from $j(f_0)$ and κ , but since κ is not an element of $\operatorname{ran}(j)$, it may be that $D \notin \operatorname{ran}(j)$. In order to find a the desired subset $\overline{D} \in \operatorname{ran}(j)$, we aim to avoid the dependency on κ . We thus define in M the set

$$\overline{D} = \left\{ j(f_0)(\alpha) : \alpha < j(\kappa) \text{ and } j(f_0)(\alpha) \text{ is a dense open subset of } j(\mathbb{P}) \right\}$$

Note that this intersection is well-defined since for at least one ordinal $\alpha < j(\kappa)$, namely κ , the set $j(f_0)(\alpha)$ is really a dense open subset of $j(\mathbb{P})$. Since M thinks that $j(\mathbb{P})$ is $\leq j(\kappa)$ -distributive, and the set \overline{D} is defined in M, we see that \overline{D} is a dense subset of $j(\mathbb{P})$. The set \overline{D} is obviously a subset of D. The key point now is that \overline{D} is definable from the elements $j(f_0), j(\kappa)$ and $j(\mathbb{P})$, each an element of $\operatorname{ran}(j)$. Since $\operatorname{ran}(j) \prec M$, it follows that $\overline{D} \in \operatorname{ran}(j)$, as desired.

Assertion 2 is immediate from assertion 1 since Observation 1 showed that $\langle j^{"}G \rangle$ is always an ran(j)-generic filter on $j(\mathbb{P})$. Assertion 3 is immediate from assertion 2 and the lifting criterion.

Assertion 3 of Theorem 4 of course implies that κ remains measurable after forcing with \mathbb{P} . But this was already clear from the outset, as \mathbb{P} doesn't add any subsets to κ and therefore the measure $\mu \in V$ remains a measure in V[G].

Note that the argument of the proof of Theorem 4 in fact does not rely on the specifics of μ being a normal measure on κ . It is sufficient that j is an ultrapower embedding by some measure $\mu \subseteq \mathcal{P}(E)$ where E has size at most κ . It is thus a straightforward exercise to state and prove the corresponding theorem concerning these more general ultrapower embeddings.

Theorem 4 applies to ultrapower embeddings, and thus to embeddings where the target model M is generated by a single seed. Its proof avoids the dependency on that single seed by quantifying over a lot of seeds, namely over $j(\kappa)$ many possible such seeds. Using this idea, we shall see that the proof idea of Theorem 4 can be applied to certain θ -strongness embeddings of a cardinal κ (Theorem 5), or even more generally to embeddings whose target model is generated by a set S of seeds such that $S \subseteq j(E)$ for some set $E \in V$ of size at most κ in V (Theorem 6).

Recall that a cardinal κ is strong if it is θ -strong for every ordinal θ , meaning that there is an elementary embedding $j : V \to M$ such that $\operatorname{cp}(j) = \kappa$ with $j(\kappa) > \theta$ and $V_{\theta} \subseteq M$. We call such an embedding a θ -strongness embedding of κ in V. Results from elementary seed theory show that we may assume without loss of generality that the target model M of j is generated by the seed set V_{θ} , namely that $M = \{j(f)(s) \mid f : V_{\kappa}^{<\omega} \to V, f \in V, s \in V_{\theta}^{<\omega}\}$. Of course, as κ is a limit ordinal, it follows that V_{κ} is closed under finite sequences, so that $V_{\kappa}^{<\omega} \subseteq V_{\kappa}$. The same applies for V_{θ} , as long as θ is a limit ordinal. But even if θ is an infinite successor ordinal, we may use flat pairing (instead of the usual von Neumann pairing function) to see that finite sequences of V_{θ} may be viewed as elements of V_{θ} . Consequently, $V_{\theta}^{<\omega} \subseteq V_{\theta}$, and we may drop in the following discussions the exponent $<\omega$ and write the target model M simpler as $M = \{j(f)(s) \mid f : V_{\kappa} \to V, f \in V, s \in V_{\theta}\}$.

Theorem 5. Suppose that \mathbb{P} is $\leq \kappa$ -distributive and $j: V \to M$ is a θ -strongness embedding of κ in V such that $M = \{j(f)(s) \mid f: V_{\kappa} \to V, f \in V, s \in V_{\theta}\}.$

- 1. If $D \in M$ is a dense open subset of $j(\mathbb{P})$, then there is a $\overline{D} \in ran(j)$ such that \overline{D} is a dense subset of $j(\mathbb{P})$ and $\overline{D} \subseteq D$.
- 2. The filter $\langle j^{"}G \rangle \subseteq j(\mathbb{P})$ is an *M*-generic filter on $j(\mathbb{P})$.

3. The embedding j lifts uniquely to $j: V[G] \to M[j(G)]$, with $j(G) = \langle j^{"}G \rangle$ necessarily.

Proof. The proof is similar to the proof of Theorem 4, except that we now have a set of seeds, rather than a single seed only. To prove assertion 1, we again fix a set $D \in M$ that is a dense open subset of $j(\mathbb{P})$. It follows that $D = j(j_0)(s_0)$ for some function $f_0: V_{\kappa} \to V$ in V and for some seed $s_0 \in V_{\theta}$. We do not want to take the intersection over all possible seeds $s \in V_{\theta}$, since V_{θ} need not be an element of ran(j). Instead, we are even more generous and use the fact that $V^V_{\theta} \subseteq j(V_{\kappa})$ as $\theta < j(\kappa)$ and $V^V_{\theta} \subseteq M$ to define in M the set

 $\bar{D} = \bigcap \{ j(f_0)(s) : s \in j(V_{\kappa}) \text{ and } j(f_0)(s) \text{ is a dense open subset of } j(\mathbb{P}) \}$

Note that this intersection is well-defined, since for at least one seed $s \in i(V_{\kappa})$, namely s_0 , the set $j(f_0)(s)$ is really a dense open subset of $j(\mathbb{P})$. As $j(\mathbb{P})$ is $\langle i(\kappa) \rangle$ -distributive in M, and $i(V_{\kappa})$ has size $i(\kappa)$ is M, it follows that D is a dense open subset of $j(\mathbb{P})$. The set \overline{D} is obviously a subset of D. As \overline{D} is definable from $j(f_0), j(V_{\kappa})$ and $j(\mathbb{P})$, we have that $\overline{D} \in \operatorname{ran}(j)$, as desired.

Assertions 2 and 3 follow as before.

The argument of the proof of Theorem 5 does not rely on the specifics that the target model M was generated by seeds $s \in V_{\theta}$. All that we used was that every element of M is expressible as j(f)(s) for some function $f \in V$ and some seed $s \in j(E)$ where j(E) has size at most $j(\kappa)$ in M. Suppose that $j: V \to M$ is an elementary embedding with $cp(j) = \kappa$. We say that the target model M is generated by the seed set S if there is some underlying set $E \in V$ with $S \subseteq j(E)$ such that $M = \{j(f)(s) \mid f : E \to V, f \in V, s \in S\}$. Using this terminology we can state the following generalization of Theorem 5, which also generalizes Theorem 4.

Theorem 6. Suppose that \mathbb{P} is $\leq \kappa$ -distributive and $j: V \to M$ is an elementary embedding of κ with $cp(j) = \kappa$ such that M is generated by the seed set S with $S \subseteq j(E)$ for some $E \in V$. Suppose furthermore that E has size at most κ in V.

- 1. If $D \in M$ is a dense open subset of $j(\mathbb{P})$, then there is a $\overline{D} \in ran(j)$ such that \overline{D} is a dense subset of $j(\mathbb{P})$ and $\overline{D} \subseteq D$.
- 2. The filter $\langle j, G \rangle \subseteq j(\mathbb{P})$ is an *M*-generic filter on $j(\mathbb{P})$.
- 3. The embedding j lifts uniquely to $j: V[G] \to M[j(G)]$, with $j(G) = \langle j, G \rangle$ necessarily.

Proof. Given the proof of Theorem 5, it is an easy exercise to prove this theorem. To prove assertion 1, we fix any dense open set $D \in M$, express D as $j(f_0)(s_0)$ for some function $f_0: E \to V$ in V and some $s_0 \in S \subseteq j(E)$. We are again quite generous and quantify over all $s \in j(E)$ to build the set \overline{D} in M. As E has size at most κ , and \mathbb{P} is $<\kappa$ -distributive, it follows by elementarity that Dis a dense subset of $j(\mathbb{P})$, as desired. There is an important subtlety in Theorem 5 that is relevant for the next two sections, and that we now aim to discuss. The theorem shows that if \mathbb{P} is a $\leq \kappa$ -distributive poset and $j: V \to M$ is a θ -strongness embedding with $j(\kappa) > \theta$ and $M = \{j(f)(s) \mid f: V_{\kappa} \to V, f \in V, s \in V_{\theta}\}$, then j lifts uniquely to $j: V[G] \to M[j(G)]$, with $j(G) = \langle j^{"}G \rangle$. Does this mean that the lifted embedding $j: V[G] \to M[j(G)]$ is a θ -strongness embedding in V[G]? In other words, do we have that $V_{\theta}^{V[G]} \subseteq M[j(G)]$?

If \mathbb{P} is nontrivial forcing and $\mathbb{P} \in V_{\theta}$, then the answer is an emphatic No! Of course, we know that $V_{\theta} \subseteq M$, and thus $V_{\theta}[G] \subseteq M[G]$. Moveover, from $\mathbb{P} \in V_{\theta}$ it even follows $V_{\theta}^{V[G]} = V_{\theta}[G]$. We thus have $V_{\theta}^{V[G]} = V_{\theta}[G] \subseteq M[G]$, but is M[G] a subclass of M[j(G)]? This question is equivalent to whether the generic filter G is an element of M[j(G)]. But, it is easy to see that G is *never* an element of M[j(G)]! For, if G would be an element of M[j(G)], then it would there have size less than V_{θ}^V , and thus have size less than $j(\kappa)$ in M[j(G)]. But, since $j(\mathbb{P})$ is $\leq j(\kappa)$ -distributive in M, this would mean that $G \in M$, an obvious contradiction as $M \subseteq V$ and G is a V-generic filter for the nontrivial forcing \mathbb{P} . Consequently, $G \notin M[j(G)]$ and thus $M[G] \not\subseteq M[j(G)]$. Moreover, since G has rank less than θ in V[G], it follows that $V_{\theta}^{V[G]} \not\subseteq M[j(G)]$, and consequently that the lifted embedding $j: V[G] \to M[j(G)]$ is *not* a θ -strongness embedding in V[G].

Thus, even though we saw that the θ -strongness embedding $j: V \to M$ does lift through $\leq \kappa$ -distributive forcing, we now know that in general such a lift will not be a θ -strongness embedding in V[G] anymore. But it might still be that κ is θ -strong in V[G], and it is thus natural to ask the following question.

Question 1. Assume that κ is a strong cardinal. Is κ necessarily indestructible by all $\leq \kappa$ -distributive forcing?

We shall show in the next section that the answer is again an emphatic No!

3 Making A Strong Cardinal destructible by highly closed forcing

Here is the main idea. As an example for highly closed forcing, let us consider the poset $\mathbb{Q} = \operatorname{Add}(\theta, 1)$ where θ is some very large regular cardinal θ , and conditions in \mathbb{Q} have size less than θ . Let $G \subseteq \mathbb{Q}$ be V-generic. Let us assume that κ is strong in V[G] and discuss some consequences. Fix thus any $(\theta + 1)$ -strongness embedding $j : V[G] \to \overline{M}$ with $\operatorname{cp}(j) = \kappa$ and $j(\kappa) > \theta$. Since $V_{\theta+1}^{V[G]} \subseteq \overline{M}$, we see that $G \in \overline{M}$. As is always the case, if we let $M = \bigcup \operatorname{ran}(j \upharpoonright V)$, then the restriction $j \upharpoonright V : V \to M$ is elementary, and \overline{M} becomes the forcing extension M[j(G)] so that we have $j : V[G] \to M[j(G)]$.

We may now ask the following question. Is M a subclass of V? It is easy to see that the answer to this question is No! For, as $G \in \overline{M} = M[j(G)]$ and \mathbb{Q} is (much more than) $\langle \kappa$ -closed in V, we see that $j(\mathbb{Q})$ is $\langle j(\kappa)$ -closed in M, and forcing with $j(\mathbb{Q})$ could therefore not have added G. It follows that $G \in M$! But G is V-generic, so $G \notin V$ and consequently $M \not\subseteq V$.

I view of the next theorem, we remark that if \mathbb{Q} would have been any forcing that had a *closure point* δ below κ , (or more generally forcing that had the δ cover and δ approximation property for some cardinal $\delta < \kappa$, see [Hamkins 2003]), then the answer to the previous question would have been Yes! Thus, assuming that κ is strong in V[G], we would have concluded that $M \subseteq V$, but also that $M \not\subseteq V$. This obvious conflict is at the heart of the next theorem.

Theorem 7. After small forcing, a strong cardinal κ is destructible by $Add(\theta, 1)$ for any regular $\theta \geq \kappa$. In fact, forcing with $Add(\theta, 1)$ destroys the $(\theta + 1)$ -strongness of κ .

Proof. Let \mathbb{P} be a small poset relative to κ . So $|\mathbb{P}| < \kappa$. Without loss of generality, let $\mathbb{P} \in V_{\kappa}$. Let $g \subseteq \mathbb{P}$ be V-generic. Fix now any regular θ in V[g] and let $\mathbb{Q} = \operatorname{Add}(\theta, 1)$. We will show that forcing with \mathbb{Q} necessarily destroys the $(\theta + 1)$ -strongness of κ .

Let $G \subseteq \mathbb{Q}$ be V[g]-generic. Suppose for contradiction that κ is $(\theta + 1)$ strong in V[g * G]. Then fix any $(\theta + 1)$ -strongness embedding $j : V[g * G] \to \overline{M}$ with $\operatorname{cp}(j) = \kappa$ and $j(\kappa) > \theta$. As $V_{\theta+1}^{V[G]} \subseteq \overline{M}$, we see that $G \in \overline{M}$. If we let $M = \bigcup \operatorname{ran}(j \upharpoonright V)$, then the restriction $j \upharpoonright V : V \to M$ is elementary and \overline{M} becomes the forcing extension M[j(g) * j(G)] so that we have $j : V[g * G] \to M[j(g) * j(G)]$.

As $j(\mathbb{Q})$ is (much more than) $\langle j(\kappa)$ -closed in M, and $G \in M[j(g) * j(G)]$, we see that forcing with $j(\mathbb{Q})$ could not have added G. It follows that $G \in M[j(g)]$. But $\mathbb{P} \in V_{\kappa}$ is small, so $j(g) = j^{"}g = g$. So $G \in M[g]$. The crucial point now is as follows. Since $\mathbb{P} * \mathbb{Q}$ has a closure point below κ (namely the cardinal $|\mathbb{P}| < \kappa$), the fundamental theorem in [Hamkins 2003] implies that the restriction $j \upharpoonright V : V \to M$ is a definable class in V, and consequently that $M \subseteq V$. This implies that $M[g] \subseteq V[g]$, and therefore that $G \in V[g]$. But this contradicts that $G \subseteq \mathbb{Q}$ is V[g]-generic, which completes the proof.

Using the fact that measurability is equivalent to $(\kappa + 1)$ -strongness, we have the following.

Corollary 8. After small forcing, a measurable cardinal κ is destructible by the forcing $Add(\kappa, 1)$.

The proof of Theorem 7 did not really depend on \mathbb{Q} actually being the particular forcing $\operatorname{Add}(\theta, 1)$. In fact, we get the following corollary which shows that no matter how highly closed a poset \mathbb{Q} may be, it is possible that \mathbb{Q} destroys the strongness of κ .

Corollary 9. After small forcing, a strong cardinal κ is destructible by any $<\kappa$ -closed nontrivial set forcing. In fact, if such $<\kappa$ -closed forcing necessarily adds a subset to θ , then forcing with it destroys the $(\theta + 1)$ -strongness of κ .

Proof. We follow the proof of Theorem 7 closely. Again, we first fix a small poset $\mathbb{P} \in V_{\kappa}$ and let $g \subseteq \mathbb{P}$ be V-generic. Instead of using the poset $\operatorname{Add}(\theta, 1)$, we now fix the poset \mathbb{Q} in V[g] which is $<\kappa$ -closed and nontrivial. It follows that there is a cardinal θ such that forcing with \mathbb{Q} necessarily adds a new subset of θ . So, let $G \subseteq \mathbb{Q}$ be V[g]-generic, and let $A \subseteq \theta$ be a subset of θ added by \mathbb{Q} , so that $A \in V[g*G]$ but $A \notin V[g]$. Again, we suppose for contradiction that κ is $(\theta+1)$ -strong in V[g*G]. Let thus $j: V[g*G] \to \overline{M}$ be a $(\theta+1)$ -strongness embedding in V[g*G]. Note that $A \in \overline{M}$. Again, it follows that $\overline{M} = M[j(g) * j(G)]$ where $M = \bigcup \operatorname{ran}(j \upharpoonright V)$. The set $A \subseteq \theta$ is in fact an element of M[j(g)] by elementarity and the $< j(\kappa)$ -closure of $j(\mathbb{Q})$. But, as before in the proof of Theorem 7, we have that $\mathbb{P} * \overline{\mathbb{Q}}$ has a closure point below κ , which implies that $M \subseteq V$. Consequently, $M[g] \subseteq V[g]$ and therefore $A \in M[j(g)] = M[g] \subseteq V[g]$, contradicting that A was added by the poset \mathbb{Q} .

We just showed that it is possible that a strong cardinal κ is destroyed by $<\kappa$ -closed forcing, no matter how highly closed the forcing may be. In view of the next section, it is thus natural to ask the following.

Question 2. Assume that κ is a strong cardinal. Can we make κ indestructible by all $\leq \kappa$ -closed forcing?

We shall show in Section 4 that the answer is (an emphatic) Yes! We shall use a Laver-like forcing iteration \mathbb{P} of length κ , defined relative to a Laver function of a strong cardinal κ , such that forcing with \mathbb{P} makes the strong cardinal κ indestructible by all $\leq \kappa$ -closed forcing. Moreover, the Gitik-Shelah result presented by Victoria Gitman will generalize this result even further and make κ indestructible by all $\leq \kappa$ -weakly-closed forcing with the Prikry property.

4 Making a strong cardinal indestructible by all $\leq \kappa$ -closed forcing

In Sections 1 and 2, we used the ran(j)-generic filter $\langle j^{"}G \rangle \subseteq j(\mathbb{P})$ in order to lift the elementary embedding $j: V \to M$ to $j: V[G] \to M[j(G)]$. We used the $\leq \kappa$ -distributivity of \mathbb{P} to establish that for every dense open set $D \subseteq j(\mathbb{P})$ with $D \in M$, there is some dense set $\overline{D} \in \operatorname{ran}(j)$ of $j(\mathbb{P})$ such that $\overline{D} \subseteq D$. This meant that $\langle j^{"}G \rangle$ was in fact a fully M-generic filter on $j(\mathbb{P})$, which allowed us to lift the embedding j. As we saw in Section 3, this method though is not sufficient to preserve the θ -strongness of the cardinal κ . The particular problem was that in general, the filter $G \subseteq \mathbb{P}$ is not an element of M[j(G)].

To solve this problem and make a strong cardinal κ indestructible by $\leq \kappa$ closed forcing, we will use some preparatory forcing, namely an Easton support κ -iteration \mathbb{P} defined relative to a Laver function $l: \kappa \to V_{\kappa}$. The Laver function will be able to anticipate any particular $\leq \kappa$ -closed poset, so that if $\dot{\mathbb{Q}}$ is a \mathbb{P} -name of any $\leq \kappa$ -closed poset, we may find a θ -strongness embedding $j: V \to M$ such that $j(\mathbb{P})$ factors as $\mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{P}}_{tail}$. If $G * g \subseteq \mathbb{P} * \dot{\mathbb{Q}}$ is V-generic, it will be our goal to lift the embedding j in two steps in V[G*g] to $j: V[G*g] \to M[j(G)*j(g)]$. Since j(G) will equal $G * g * G_{\text{tail}}$ for some M[G * g]-generic filter $G_{\text{tail}} \subseteq \mathbb{P}_{\text{tail}}$, it will be clear from the construction that G * g is an element of M[j(G) * j(g)], and consequently that the lifted embedding will be a θ -strongness embedding in V[G * g]. The key problem though is: *How* can we manage to lift the embedding in two steps in V[G * g]? Here is a sketch of the idea that underlies the proof of Theorem 11.

In the first lifting step, we shall lift through the preparatory forcing \mathbb{P} . Since $j(\mathbb{P})$ factors as $\mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{P}}_{tail}$ and $G * g \subseteq \mathbb{P} * \dot{\mathbb{Q}}$ is fully V-generic, it suffices to find in V[G * g] an M[G * g]-generic filter $G_{\text{tail}} \subseteq \mathbb{P}_{\text{tail}}$. But we cannot apply the techniques from Sections 1 and 2 directly, since \mathbb{P}_{tail} will not be fully $\leq j(\kappa)$ distributive, and $\langle j^{*}G \rangle$ will thus not be sufficiently generic. Instead, we shall use a single seed, namely κ , to define an elementary substructure $X \prec M$ such that $\{\kappa, \mathbb{P}, \dot{\mathbb{Q}}, \dot{\mathbb{P}}_{tail}\} \subseteq X$ and $ran(j) \subseteq X$. It will follow that $X^{\kappa} \subseteq X$ in V, and consequently that $X[G * g]^{\kappa} \subseteq X[G * g]$ in V[G * g]. By an additional $2^{\kappa} = \kappa^+$ assumption in V, it will follow that X[G*g] contains only κ^+ many dense subsets of \mathbb{P}_{tail} . Since \mathbb{P}_{tail} will be (much more than) $\leq \kappa$ -closed in X[G * g], we will be able to use diagonalization to build an X[G * g]-generic filter $G_{\text{tail}} \subseteq \mathbb{P}_{\text{tail}}$ in V[G * g]. Moreover, it will follow from the high distributivity of \mathbb{P}_{tail} somewhat analogously as in Section 2, but now by using $X[G * g] \prec M[G * g]$ rather than the elementarity $\operatorname{ran}(j) \prec M$, that in fact G_{tail} is a fully M[G * g]-generic filter on \mathbb{P}_{tail} ! This will be the key step that will allow us to let $j(G) = G * g * G_{\text{tail}}$ and lift the embedding in V[G * g] to $j : V[G] \to M[j(G)]$. This will conclude the first lifting step.

The second lifting step will be considerably easier as we only have to lift the embedding $j : V[G] \to M[j(G)]$ through the $\leq \kappa$ -closed forcing \mathbb{Q} . The $\leq \kappa$ -distributivity of \mathbb{Q} will allow us to use the technique of Section 2 directly and simply use the M[j(G)]-generic filter $\langle j''g \rangle \subseteq j(\mathbb{Q})$ to lift j in V[G * g] to $j : V[G * g] \to M[j(G) * j(g)]$, with $j(g) = \langle j''g \rangle$. This concludes the discussion of the idea that underlies the proof of Theorem 11.

Strong cardinals admit a Laver function l, a kind of generalized \diamond -sequence, which anticipates any object in the universe.

Theorem 10. If κ is a strong cardinal, then there is a function $l : \kappa \to V_{\kappa}$ such that for any x and θ with $x \in H_{\theta^+}$ there is a θ -strongness embedding $j : V \to M$ with $j(l)(\kappa) = x$.

We call a function $l : \kappa \to V_{\kappa}$ as in the theorem above, a *Laver function* for the strong cardinal κ .

Theorem 11. If κ is strong and $2^{\kappa} = \kappa^+$, then there is a set forcing extension in which the strongness of κ becomes indestructible by any $\leq \kappa$ -closed forcing.

Proof. The definition of the iteration is very similar to the original Laver preparation of a supercompact cardinal, yet we will neither use a master condition argument nor will we use closure of the target model to lift the embedding. Let l be a Laver function for the strong cardinal κ , as in the theorem above. We use l to define a Easton support iteration \mathbb{P} of length κ . If \mathbb{P}_{γ} is defined for $\gamma < \kappa$,

and $l(\gamma)$ happens to be a \mathbb{P}_{γ} -name for a poset that is $\leq \gamma$ -closed in $V^{\mathbb{P}_{\gamma}}$, then we let the stage γ forcing \mathbb{Q}_{γ} be this poset; otherwise, \mathbb{Q}_{γ} is trivial forcing.

Suppose that $G \subseteq \mathbb{P}$ is V-generic and that \mathbb{Q} is any $\leq \kappa$ -closed poset in V[G]. It suffices to show that κ is strong in V[G][g], where $g \subseteq \mathbb{Q}$ is V[G]-generic. Fix a name $\dot{\mathbb{Q}}$ for \mathbb{Q} which necessarily yields a $\leq \kappa$ -closed poset. Fix any ordinal θ above κ with $\dot{\mathbb{Q}} \in H_{\theta^+}$. Since l is a Laver function, there is a θ -strongness embedding $j: V \to M$ such that $j(l)(\kappa) = \dot{\mathbb{Q}}$. Without loss of generality, we may assume that M is generated by the seed set V_{θ} , namely that $M = \{j(f)(s) \mid f: V_{\kappa} \to V, f \in V, s \in V_{\theta}\}$. Since \mathbb{P} is defined relative to l and M[G] agrees that $\dot{\mathbb{Q}}$ is a name for a $\leq \kappa$ -closed poset, it follows that the stage κ forcing in $j(\mathbb{P})$ is precisely $\dot{\mathbb{Q}}$. The forcing factors therefore as $j(\mathbb{P}) = \mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{P}}_{tail}$. We may assume that $l^{"}\gamma \subseteq V_{\gamma}$ for all $\gamma \in \text{dom}(l)$. We may also assume that the next element of the domain of $j(l)(\kappa)$ is beyond \exists_{θ} , so that \mathbb{P}_{tail} is $\leq \exists_{\theta}$ -closed in M[G][g]. Lastly, we may also assume that $\theta = j(l')(\kappa)$ for some function $l' : \kappa \to \kappa$.

Step 1. In V[G * g], lift the embedding $j: V \to M$ to $j: V[G] \to M[j(G)]$.

We shall build in V[G * g] an M-generic filter $j(G) \subseteq j(\mathbb{P})$. Since $j(\mathbb{P}) = \mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{P}}_{tail}$, and $G * g \subseteq \mathbb{P} * \dot{\mathbb{Q}}$ is V-generic and hence M-generic, it suffices to find an M[G * g]-generic filter $G_{tail} \subseteq \mathbb{P}_{tail}$. We cannot use diagonalization over M[G * g], since we have no closure of M[G * g] to rely on. Instead, we consider the structure $X = \{j(f)(\kappa) \mid f : \kappa \to V, f \in V\}$ and we will work with X[G * g] in V[G * g]. As usual, we have that $X \prec M$ with $\operatorname{ran}(j) \subseteq X$ and $\kappa \in X$. The structure X thus contains the elements $j(\mathbb{P}), j(l), \mathbb{P}, \dot{\mathbb{Q}}$, and $\dot{\mathbb{P}}_{tail}$. It also contains the ordinal θ and thus the set V_{θ} also. Since $\mathbb{P} \in X$, and $\mathbb{Q} \in X[G]$, it is a standard application of Tarski's criterion to see that $X[G] \prec M[G]$ and that $X[G * g] \prec M[G * g]$. The following claim is key and resembles the arguments of Sections 1 and 2. It is the reason for our definition of X and X[G * g].

Claim 1. If $D \in M[G * g]$ is a dense open subset of \mathbb{P}_{tail} , then there is a $\overline{D} \in X[G * g]$ such that \overline{D} is a dense subset of \mathbb{P}_{tail} and $\overline{D} \subseteq D$.

Proof of Claim 1. Fix any $D \in M[G * g]$ which is a dense open subset of \mathbb{P}_{tail} . Since $j: V \to M$ is an extender embedding, we see that $D = j(f_0)(s_0)_{G*g}$ for some function $f_0: V_{\kappa} \to V$ with $f_0 \in V$ and some seed $s_0 \in V_{\theta}^V$. Clearly, Dis definable from $j(f_0), G * g$ and s_0 , but it may be that neither s_0 nor D is an element of X[G * g]. In order to find the desired subset $\overline{D} \in X[G * g]$, we aim to avoid the dependency on s_0 . We thus define in M[G * g] the set

 $\bar{D} = \bigcap \{ j(f_0)(s)_{G*g} \mid s \in V_{\theta}^V \text{ and } j(f_0)(s) \text{ is a dense open subset of } \mathbb{P}_{\text{tail}} \}.$

Note that this intersection is well-defined since for at least one seed $s \in V_{\theta}^{V} \subseteq V_{\theta}^{M[G*g]}$, namely s_0 , the set $j(f_0)(s)_{G*g}$ is really a dense open subset of \mathbb{P}_{tail} . The set \bar{D} is thus an element of M[G*g]. Moreover, since \mathbb{P}_{tail} is $\leq \beth_{\theta}$ -distributive in M[G*g], the set \bar{D} is in fact a dense subset of \mathbb{P}_{tail} . The set \bar{D} is obviously a subset of D. The key point now is that \bar{D} is definable from the elements $j(f_0), G*g, V_{\theta}^V$ and \mathbb{P}_{tail} , each an element of X[G*g]. Since $X[G*g] \prec M[G*g]$, it follows that $\bar{D} \in X[G*g]$, which proves Claim 1.

To complete Step 1, it suffices to find in V[G * g] an X[G * g]-generic filter $G_{\text{tail}} \subseteq \mathbb{P}_{\text{tail}}$. By the claim this filter will then be fully M[G * g]-generic, and the embedding j will thus lift in V[G * g] to $j : V[G] \to M[j(G)]$ where j(G) = $G * g * G_{\text{tail}}$. We shall use diagonalization over X[G * g] to build G_{tail} . It is a standard argument to see that $X^{\kappa} \subseteq X$ in V. As $\mathbb{P} \subseteq X$ and \mathbb{P} is κ -cc, it follows that $X[G]^{\kappa} \subseteq X[G]$ in V[G]. Since \mathbb{Q} is $\leq \kappa$ -distributive, it follows that $X[G*g]^{\kappa} \subseteq X[G*g]$ in V[G*g]. Since $X[G*g] \prec M[G*g]$, it follows that \mathbb{P}_{tail} is (much more than) $\leq \kappa$ -closed in X[G * g]. Lastly, we need to count in V[G * g] the maximal antichains of \mathbb{P}_{tail} that exist in X[G * g]. As usual, since \mathbb{P}_{tail} has size $j(\kappa)$ and $\mathbb{P} * \mathbb{Q}$ doesn't increase the size of $\mathcal{P}(j(\kappa))$, it suffices to count $\mathcal{P}(j(\kappa)) \cap X$ in the ground model V. Since every $A \in X$ with $A \subseteq j(\kappa)$ is represented by a function from κ to $\mathcal{P}(\kappa)$, we see that $\mathcal{P}(j(\kappa)) \cap X$ has size 2^{κ} in V. Consequently there are at most $(2^{\kappa})^{V}$ many maximal antichains of \mathbb{P}_{tail} that exist in X[G * g]. Since $(2^{\kappa})^{V} = (\kappa^{+})^{V} \leq (\kappa^{+})^{V[G * g]}$, we see that we can enumerate in V[G * g] all maximal antichains of X[G * g] of \mathbb{P}_{tail} as a κ^+ -sequence. In view of the next theorem, note that this is the only place in the proof where one relies on the assumption that $2^{\kappa} = \kappa^+$ in V. We can now use diagonalization, applied to X[G * g], to build a descending κ^+ -sequence of conditions in $X[G * g] \cap \mathbb{P}_{\text{tail}}$ which meets every maximal antichain of \mathbb{P}_{tail} that exists in X[G * g]. Let $G_{tail} \subseteq \mathbb{P}_{tail}$ be the filter generated by this descending sequence. Since G_{tail} is X[G * g]-generic by construction, it follows from the claim that in fact $G_{\text{tail}} \subseteq \mathbb{P}_{\text{tail}}$ is an M[G * g]-generic filter on \mathbb{P}_{tail} . If we let $j(G) = G * g * G_{tail}$, we see that the embedding j lifts in V[G * g] to $j: V[G] \to M[j(G)]$. This completes Step 1.

Step 2. In V[G * g], lift the embedding to $j: V[G * g] \to M[j(G) * j(g)]$.

This second lifting step is significantly easier. Since we already lifted the embedding to $j: V[G] \to M[j(G)]$, it makes sense to consider in V[G * g] the set j"g. As always, this directed set generates a filter $\langle j$ "g $\rangle \subseteq j(\mathbb{Q})$ which meets every dense subset $D \in \operatorname{ran}(j)$ of $j(\mathbb{Q})$. In other words, the filter $\langle j$ "g \rangle is a $\operatorname{ran}(j)$ -generic filter on $j(\mathbb{Q})$. The following claim shows that in fact this filter is M[j(G)]-generic.

Claim 2. If $D \in M[j(G)]$ is a dense open subset of $j(\mathbb{Q})$, then there is a $\overline{D} \in \operatorname{ran}(j)$ such that \overline{D} is a dense subset of $j(\mathbb{Q})$ and $\overline{D} \subseteq D$.

Proof of Claim 2. Fix any $D \in M[j(G)]$ which is a dense open subset of $j(\mathbb{Q})$. Since $j: V \to M$ is an embedding where M is generated by the seed set V_{θ} , it follows that $D = j(f_0)(s_0)_{j(G)}$ for some function $f_0: V_{\kappa} \to V$ with $f_0 \in V$ and some seed $s_0 \in V_{\theta}^V$. Clearly, D is definable from $j(f_0), j(G)$ and s_0 , but it may be that s_0 is not an element of $\operatorname{ran}(j)$. In order to find the desired subset $\overline{D} \in \operatorname{ran}(j)$, we aim to avoid the dependency on s_0 . We thus define in M[j(G)]the set

$$\bar{D} = \bigcap \{ j(f_0)(s)_{j(G)} \mid s \in j(V_{\kappa}^V) \text{ and } j(f_0)(s) \text{ is a dense open subset of } j(\mathbb{Q}) \}.$$

Note that this intersection is well-defined since for at least one seed $s \in V_{\theta}^V \subseteq j(V_{\kappa}^V)$, namely s_0 , the set $j(f_0)(s)_{j(G)}$ is really a dense open subset of $j(\mathbb{Q})$.

Since \overline{D} is defined in M[j(G] and $j(\mathbb{Q})$ is $\leq j(\kappa)$ -distributive there, we see that the set $\overline{D} \in M[G*g]$ is a dense subset of $j(\mathbb{Q})$. The set \overline{D} is obviously a subset of D. The key point now is that \overline{D} is definable from the elements $j(f_0), j(G), j(V_{\kappa}^V)$ and $j(\mathbb{Q})$, each an element of $\operatorname{ran}(j)$. Since $\operatorname{ran}(j) \prec M[j(G)]$, it follows that $\overline{D} \in \operatorname{ran}(j)$. This proves Claim 2.

If we let $j(g) = \langle j^{"}g \rangle$, we therefore see that the embedding j lifts in V[G * g] to $j: V[G * g] \to M[j(G) * j(g)]$. This completes Step 2.

Since $\mathbb{P} * \dot{\mathbb{Q}}$ has rank less than θ and $V_{\theta} \subseteq M$, we see that $V_{\theta}^{V[G*g]} = V_{\theta}[G*g] \subseteq M[G*g]$. The filter G*g is an initial segment of j(G) by construction, and so G*g is an element of M[j(G)]. It follows that $V_{\theta}^{V[G*g]} \subseteq M[G*g] \subseteq M[G*g] \subseteq M[j(G)*j(g)]$, and consequently that $j: V[G*g] \to M[j(G)*j(g)]$ is a θ -strongness embedding in V[G*g]. This completes the proof of the theorem. \Box

So, how can we get rid of the additional $2^{\kappa} = \kappa^+$ assumption? Here it goes.

Theorem 12. If κ is strong, then there is a set forcing extension preserving the strongness of κ and in which $2^{\kappa} = \kappa^+$.

Proof. We use the same Easton support iteration \mathbb{P} as defined in Theorem 11. But, instead of forcing with an arbitrary poset \mathbb{Q} , we let $\mathbb{Q} = \operatorname{Add}(\kappa^+, 1)$, the canonical forcing to force $2^{\kappa} = \kappa^+$. Clearly, \mathbb{Q} is $\leq \kappa$ -closed, and we use a θ strongness embedding $j: V \to M$ such that $j(l)(\kappa) = \mathbb{Q}$. Let $G * g \subseteq \mathbb{P} * \mathbb{Q}$ be any V-generic filter. I claim that V[G * g] is the desired forcing extension. We clearly have $2^{\kappa} = \kappa^+$ in V[G * g]. In order to see that κ remains strong, we follow the argument of the previous proof exactly. In Step 1, when we counted the maximal antichains of \mathbb{P}_{tail} that existed in X[G * g] we had used the assumption $(2^{\kappa})^V = (\kappa+)^V$ to obtain the conclusion $(2^{\kappa})^V \leq (\kappa+)^{V[G * g]}$. But, for the particular poset $\mathbb{Q} = \operatorname{Add}(\kappa^+, 1)$, we of course can obtain the same conclusion even without any assumption on the size of 2^{κ} in V. The remainder of the proof is identical.

Theorems 11 and 12 hence imply the goal indestructibility theorem of this talk.

Theorem 13. If κ is strong, then there is a set forcing extension in which the strongness of κ becomes indestructible by any $\leq \kappa$ -closed forcing.