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Abstract

The goal of this talk is to show how to make a strong cardinal κ in-
destructible by all ≤κ-closed forcing. We show in Section 2 how to lift
elementary embeddings that witness that κ is a θ-strong cardinal through
≤κ-distributive forcing. In Section 3 we contrast this result by showing
why this does not mean that every strong cardinal κ is indestructible by
≤κ-closed forcing. In fact, we show how to make a strong cardinal destruc-
tible by arbitrarily highly closed forcing. This illustrates the significance
of the main indestructibility theorem, which is proved in Section 4.

1 The filter 〈j”G〉 is a ran(j)-generic filter on j(P)

For this section, assume that P is any poset, and that j : V → M is an ele-
mentary embedding with cp(j) = κ and M ⊆ V . It is clear that ran(j) is an
elementary substructure of M . Let G ⊆ P be V -generic. By the lifting criterion,
we need an M -generic filter H ⊆ j(P) such that j”G ⊆ H. So let’s focus on the
set j”G.

The set j”G ⊆ j”P is a V -generic filter on j”P, as j � P is an isomorphism.
But how much genericity can we get for the poset j(P)? Since j”P is a subposet
of j(P), we see that j”G is a directed subset of j(P). We may thus close the set
j”G upwards in j(P) and obtain the filter 〈j”G〉 ⊆ j(P).

The observation below shows that the filter 〈j”G〉 is a ran(j)-generic filter
on j(P).

Observation 1. For every set D ∈ ran(j) such that D is a dense subset of
j(P), we have that j”G ∩D 6= ∅.
Proof. Assume that P is any poset, and that j : V → M is an elementary
embedding with cp(j) = κ and M ⊆ V . Let D ∈ ran(j) be a dense subset of
j(P). So D = j(E) some dense subset E ⊆ P . Since G ∩ E 6= ∅, it follows that
j”G ∩ j”E 6= ∅. As j”E ⊆ j(E), the observation follows.

Observation 2. If P is a poset of size less than κ ( P may or may not be a
subset of Vκ), then j lifts uniquely to j : V [G] → M [j(G)], with j(G) = 〈j”G〉
necessarily.
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Proof. Since P is of size less than κ, we see that j”P = j(P), and consequently
that j”G is a fully V -generic filter on j(P) by the remarks above. By the lifting
criterion, we have no choice in choosing the M -generic filter H ⊆ j(P): since j”G
is already V -generic and hence M -generic on j(P), it follows that H = j”G =
〈j”G〉 necessarily and the embedding lifts uniquely to j : V [G]→M [j(G)] with
j(G) = j”G = 〈j”G〉.

Observation 2 has the following, important consequence.

Theorem 3 (Levy-Solovay, 1967, by a different proof). If κ is measurable and
P is a poset of size less than κ, then κ remains measurable after forcing with P.

Proof. If κ is measurable, then there is an elementary embedding j : V →
M with critical point κ. Suppose that P is a poset of size less than κ. By
Observation 2 the embedding j lifts uniquely to j : V [G] → M [j(G)], with
j(G) = 〈j”G〉. This lifted embedding witnesses that κ is measurable in V [G],
as desired.

2 Lifting elementary embeddings through ≤κ-
distributive forcing

Theorem 4. Suppose that P is ≤κ-distributive and j : V →M is an ultrapower
embedding by a normal measure µ on κ.

1. If D ∈M is a dense open subset of j(P), then there is a D̄ ∈ ran(j) such
that D̄ is a dense subset of j(P) and D̄ ⊆ D.

2. The filter 〈j”G〉 ⊆ j(P) is an M -generic filter on j(P).

3. The embedding j lifts uniquely to j : V [G]→M [j(G)], with j(G) = 〈j”G〉
necessarily.

Proof. This proof presents a typical argument for the lifting techniques pre-
sented in this talk. Recall that as j is an ultrapower embedding by a measure
µ, we have that the embedding j is generated by the unique seed [id]µ. As
µ is a normal measure on κ, we see that [id]µ = κ and consequently that ev-
ery element of M has the form j(f)(κ) for some function f : κ → V in V .
In summary, we have that j : V → M is elementary with cp(j) = κ and
M = {j(f)(κ) | f : κ→ V, f ∈ V }.

To prove assertion 1, fix a set D ∈ M that is a dense open subset of j(P).
It follows that D = j(f0)(κ) for some function f0 : κ → V in V . Clearly, D is
definable from j(f0) and κ, but since κ is not an element of ran(j), it may be
that D /∈ ran(j). In order to find a the desired subset D̄ ∈ ran(j), we aim to
avoid the dependency on κ. We thus define in M the set

D̄ =
⋂
{j(f0)(α) : α < j(κ) and j(f0)(α) is a dense open subset of j(P)}
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Note that this intersection is well-defined since for at least one ordinal α < j(κ),
namely κ, the set j(f0)(α) is really a dense open subset of j(P). Since M thinks
that j(P) is ≤j(κ)-distributive, and the set D̄ is defined in M , we see that D̄ is
a dense subset of j(P). The set D̄ is obviously a subset of D. The key point now
is that D̄ is definable from the elements j(f0), j(κ) and j(P), each an element
of ran(j). Since ran(j) ≺M , it follows that D̄ ∈ ran(j), as desired.

Assertion 2 is immediate from assertion 1 since Observation 1 showed that
〈j”G〉 is always an ran(j)-generic filter on j(P). Assertion 3 is immediate from
assertion 2 and the lifting criterion.

Assertion 3 of Theorem 4 of course implies that κ remains measurable after
forcing with P. But this was already clear from the outset, as P doesn’t add
any subsets to κ and therefore the measure µ ∈ V remains a measure in V [G].

Note that the argument of the proof of Theorem 4 in fact does not rely on
the specifics of µ being a normal measure on κ. It is sufficient that j is an
ultrapower embedding by some measure µ ⊆ P(E) where E has size at most
κ. It is thus a straightforward exercise to state and prove the corresponding
theorem concerning these more general ultrapower embeddings.

Theorem 4 applies to ultrapower embeddings, and thus to embeddings where
the target model M is generated by a single seed. Its proof avoids the depen-
dency on that single seed by quantifying over a lot of seeds, namely over j(κ)
many possible such seeds. Using this idea, we shall see that the proof idea of
Theorem 4 can be applied to certain θ-strongness embeddings of a cardinal κ
(Theorem 5), or even more generally to embeddings whose target model is gen-
erated by a set S of seeds such that S ⊆ j(E) for some set E ∈ V of size at
most κ in V (Theorem 6).

Recall that a cardinal κ is strong if it is θ-strong for every ordinal θ, meaning
that there is an elementary embedding j : V → M such that cp(j) = κ with
j(κ) > θ and Vθ ⊆M . We call such an embedding a θ-strongness embedding of
κ in V . Results from elementary seed theory show that we may assume without
loss of generality that the target model M of j is generated by the seed set Vθ,
namely that M = {j(f)(s) | f : V <ωκ → V, f ∈ V, s ∈ V <ωθ }. Of course,
as κ is a limit ordinal, it follows that Vκ is closed under finite sequences, so
that V <ωκ ⊆ Vκ. The same applies for Vθ, as long as θ is a limit ordinal. But
even if θ is an infinite successor ordinal, we may use flat pairing (instead of the
usual von Neumann pairing function) to see that finite sequences of Vθ may be
viewed as elements of Vθ. Consequently, V <ωθ ⊆ Vθ, and we may drop in the
following discussions the exponent <ω and write the target model M simpler
as M = {j(f)(s) | f : Vκ → V, f ∈ V, s ∈ Vθ}.

Theorem 5. Suppose that P is ≤κ-distributive and j : V →M is a θ-strongness
embedding of κ in V such that M = {j(f)(s) | f : Vκ → V, f ∈ V, s ∈ Vθ}.

1. If D ∈M is a dense open subset of j(P), then there is a D̄ ∈ ran(j) such
that D̄ is a dense subset of j(P) and D̄ ⊆ D.

2. The filter 〈j”G〉 ⊆ j(P) is an M -generic filter on j(P).
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3. The embedding j lifts uniquely to j : V [G]→M [j(G)], with j(G) = 〈j”G〉
necessarily.

Proof. The proof is similar to the proof of Theorem 4, except that we now have
a set of seeds, rather than a single seed only. To prove assertion 1, we again fix
a set D ∈M that is a dense open subset of j(P). It follows that D = j(j0)(s0)
for some function f0 : Vκ → V in V and for some seed s0 ∈ Vθ. We do not want
to take the intersection over all possible seeds s ∈ Vθ, since Vθ need not be an
element of ran(j). Instead, we are even more generous and use the fact that
V Vθ ⊆ j(Vκ) as θ < j(κ) and V Vθ ⊆M to define in M the set

D̄ =
⋂
{j(f0)(s) : s ∈ j(Vκ) and j(f0)(s) is a dense open subset of j(P)}

Note that this intersection is well-defined, since for at least one seed s ∈ j(Vκ),
namely s0, the set j(f0)(s) is really a dense open subset of j(P). As j(P) is
≤j(κ)-distributive in M , and j(Vκ) has size j(κ) is M , it follows that D̄ is a
dense open subset of j(P). The set D̄ is obviously a subset of D. As D̄ is
definable from j(f0), j(Vκ) and j(P), we have that D̄ ∈ ran(j), as desired.

Assertions 2 and 3 follow as before.

The argument of the proof of Theorem 5 does not rely on the specifics that
the target model M was generated by seeds s ∈ Vθ. All that we used was that
every element of M is expressible as j(f)(s) for some function f ∈ V and some
seed s ∈ j(E) where j(E) has size at most j(κ) in M . Suppose that j : V →M
is an elementary embedding with cp(j) = κ. We say that the target model M is
generated by the seed set S if there is some underlying set E ∈ V with S ⊆ j(E)
such that M = {j(f)(s) | f : E → V, f ∈ V, s ∈ S}. Using this terminology
we can state the following generalization of Theorem 5, which also generalizes
Theorem 4.

Theorem 6. Suppose that P is ≤κ-distributive and j : V →M is an elementary
embedding of κ with cp(j) = κ such that M is generated by the seed set S with
S ⊆ j(E) for some E ∈ V . Suppose furthermore that E has size at most κ in
V .

1. If D ∈M is a dense open subset of j(P), then there is a D̄ ∈ ran(j) such
that D̄ is a dense subset of j(P) and D̄ ⊆ D.

2. The filter 〈j”G〉 ⊆ j(P) is an M -generic filter on j(P).

3. The embedding j lifts uniquely to j : V [G]→M [j(G)], with j(G) = 〈j”G〉
necessarily.

Proof. Given the proof of Theorem 5, it is an easy exercise to prove this theorem.
To prove assertion 1, we fix any dense open set D ∈M , express D as j(f0)(s0)
for some function f0 : E → V in V and some s0 ∈ S ⊆ j(E). We are again
quite generous and quantify over all s ∈ j(E) to build the set D̄ in M . As E
has size at most κ, and P is ≤κ-distributive, it follows by elementarity that D̄
is a dense subset of j(P), as desired.
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There is an important subtlety in Theorem 5 that is relevant for the next
two sections, and that we now aim to discuss. The theorem shows that if P
is a ≤κ-distributive poset and j : V → M is a θ-strongness embedding with
j(κ) > θ and M = {j(f)(s) | f : Vκ → V, f ∈ V, s ∈ Vθ}, then j lifts uniquely
to j : V [G] → M [j(G)], with j(G) = 〈j”G〉. Does this mean that the lifted
embedding j : V [G]→M [j(G)] is a θ-strongness embedding in V [G]? In other
words, do we have that V V [G]

θ ⊆M [j(G)]?
If P is nontrivial forcing and P ∈ Vθ, then the answer is an emphatic No!

Of course, we know that Vθ ⊆ M , and thus Vθ[G] ⊆ M [G]. Moveover, from
P ∈ Vθ it even follows V V [G]

θ = Vθ[G]. We thus have V V [G]
θ = Vθ[G] ⊆ M [G],

but is M [G] a subclass of M [j(G)]? This question is equivalent to whether the
generic filter G is an element of M [j(G)]. But, it is easy to see that G is never
an element of M [j(G)]! For, if G would be an element of M [j(G)], then it would
there have size less than V Vθ , and thus have size less than j(κ) in M [j(G)]. But,
since j(P) is ≤j(κ)-distributive in M , this would mean that G ∈M , an obvious
contradiction as M ⊆ V and G is a V -generic filter for the nontrivial forcing P.
Consequently, G /∈M [j(G)] and thus M [G] 6⊆M [j(G)]. Moreover, since G has
rank less than θ in V [G], it follows that V V [G]

θ 6⊆ M [j(G)], and consequently
that the lifted embedding j : V [G]→M [j(G)] is not a θ-strongness embedding
in V [G].

Thus, even though we saw that the θ-strongness embedding j : V →M does
lift through ≤κ-distributive forcing, we now know that in general such a lift will
not be a θ-strongness embedding in V [G] anymore. But it might still be that κ
is θ-strong in V [G], and it is thus natural to ask the following question.

Question 1. Assume that κ is a strong cardinal. Is κ necessarily indestructible
by all ≤κ-distributive forcing?

We shall show in the next section that the answer is again an emphatic No!

3 Making A Strong Cardinal destructible by
highly closed forcing

Here is the main idea. As an example for highly closed forcing, let us consider the
poset Q = Add(θ, 1) where θ is some very large regular cardinal θ, and conditions
in Q have size less than θ. Let G ⊆ Q be V -generic. Let us assume that κ is
strong in V [G] and discuss some consequences. Fix thus any (θ+ 1)-strongness
embedding j : V [G] → M̄ with cp(j) = κ and j(κ) > θ. Since V V [G]

θ+1 ⊆ M̄ , we
see that G ∈ M̄ . As is always the case, if we let M =

⋃
ran(j � V ), then the

restriction j �V : V → M is elementary, and M̄ becomes the forcing extension
M [j(G)] so that we have j : V [G]→M [j(G)].

We may now ask the following question. Is M a subclass of V ? It is easy to
see that the answer to this question is No! For, as G ∈ M̄ = M [j(G)] and Q is
(much more than) <κ-closed in V , we see that j(Q) is <j(κ)-closed in M , and
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forcing with j(Q) could therefore not have added G. It follows that G ∈ M !
But G is V -generic, so G /∈ V and consequently M * V .

I view of the next theorem, we remark that if Q would have been any forcing
that had a closure point δ below κ, (or more generally forcing that had the
δ cover and δ approximation property for some cardinal δ < κ, see [Hamkins
2003]), then the answer to the previous question would have been Yes! Thus,
assuming that κ is strong in V [G], we would have concluded that M ⊆ V , but
also that M 6⊆ V . This obvious conflict is at the heart of the next theorem.

Theorem 7. After small forcing, a strong cardinal κ is destructible by Add(θ, 1)
for any regular θ ≥ κ. In fact, forcing with Add(θ, 1) destroys the (θ + 1)-
strongness of κ.

Proof. Let P be a small poset relative to κ. So |P| < κ. Without loss of
generality, let P ∈ Vκ. Let g ⊆ P be V -generic. Fix now any regular θ in V [g]
and let Q = Add(θ, 1). We will show that forcing with Q necessarily destroys
the (θ + 1)-strongness of κ.

Let G ⊆ Q be V [g]-generic. Suppose for contradiction that κ is (θ + 1)-
strong in V [g ∗G]. Then fix any (θ+ 1)-strongness embedding j : V [g ∗G]→ M̄

with cp(j) = κ and j(κ) > θ. As V V [G]
θ+1 ⊆ M̄ , we see that G ∈ M̄ . If we let

M =
⋃

ran(j � V ), then the restriction j � V : V → M is elementary and M̄
becomes the forcing extension M [j(g) ∗ j(G)] so that we have j : V [g ∗ G] →
M [j(g) ∗ j(G)].

As j(Q) is (much more than) <j(κ)-closed in M , and G ∈M [j(g)∗j(G)], we
see that forcing with j(Q) could not have added G. It follows that G ∈M [j(g)].
But P ∈ Vκ is small, so j(g) = j”g = g. So G ∈ M [g]. The crucial point
now is as follows. Since P ∗Q has a closure point below κ (namely the cardinal
|P| < κ), the fundamental theorem in [Hamkins 2003] implies that the restriction
j � V : V → M is a definable class in V , and consequently that M ⊆ V . This
implies that M [g] ⊆ V [g], and therefore that G ∈ V [g]. But this contradicts
that G ⊆ Q is V [g]-generic, which completes the proof.

Using the fact that measurability is equivalent to (κ+1)-strongness, we have
the following.

Corollary 8. After small forcing, a measurable cardinal κ is destructible by the
forcing Add(κ, 1).

The proof of Theorem 7 did not really depend on Q actually being the
particular forcing Add(θ, 1). In fact, we get the following corollary which shows
that no matter how highly closed a poset Q may be, it is possible that Q destroys
the strongness of κ.

Corollary 9. After small forcing, a strong cardinal κ is destructible by any
<κ-closed nontrivial set forcing. In fact, if such <κ-closed forcing necessarily
adds a subset to θ, then forcing with it destroys the (θ + 1)-strongness of κ.
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Proof. We follow the proof of Theorem 7 closely. Again, we first fix a small
poset P ∈ Vκ and let g ⊆ P be V -generic. Instead of using the poset Add(θ, 1),
we now fix the poset Q in V [g] which is <κ-closed and nontrivial. It follows that
there is a cardinal θ such that forcing with Q necessarily adds a new subset of θ.
So, let G ⊆ Q be V [g]-generic, and let A ⊆ θ be a subset of θ added by Q, so that
A ∈ V [g∗G] but A /∈ V [g]. Again, we suppose for contradiction that κ is (θ+1)-
strong in V [g ∗G]. Let thus j : V [g ∗G]→ M̄ be a (θ+1)-strongness embedding
in V [g ∗ G]. Note that A ∈ M̄ . Again, it follows that M̄ = M [j(g) ∗ j(G)]
where M =

⋃
ran(j � V ). The set A ⊆ θ is in fact an element of M [j(g)]

by elementarity and the <j(κ)-closure of j(Q). But, as before in the proof of
Theorem 7, we have that P ∗ Q̇ has a closure point below κ, which implies that
M ⊆ V . Consequently, M [g] ⊆ V [g] and therefore A ∈M [j(g)] = M [g] ⊆ V [g],
contradicting that A was added by the poset Q.

We just showed that it is possible that a strong cardinal κ is destroyed by
<κ-closed forcing, no matter how highly closed the forcing may be. In view of
the next section, it is thus natural to ask the following.

Question 2. Assume that κ is a strong cardinal. Can we make κ indestructible
by all ≤κ-closed forcing?

We shall show in Section 4 that the answer is (an emphatic) Yes! We shall
use a Laver-like forcing iteration P of length κ, defined relative to a Laver
function of a strong cardinal κ, such that forcing with P makes the strong
cardinal κ indestructible by all ≤κ-closed forcing. Moreover, the Gitik-Shelah
result presented by Victoria Gitman will generalize this result even further and
make κ indestructible by all ≤κ-weakly-closed forcing with the Prikry property.

4 Making a strong cardinal indestructible by all
≤κ-closed forcing

In Sections 1 and 2, we used the ran(j)-generic filter 〈j”G〉 ⊆ j(P) in order to
lift the elementary embedding j : V →M to j : V [G]→M [j(G)]. We used the
≤κ-distributivity of P to establish that for every dense open set D ⊆ j(P) with
D ∈ M , there is some dense set D̄ ∈ ran(j) of j(P) such that D̄ ⊆ D. This
meant that 〈j”G〉 was in fact a fully M -generic filter on j(P), which allowed
us to lift the embedding j. As we saw in Section 3, this method though is not
sufficient to preserve the θ-strongness of the cardinal κ. The particular problem
was that in general, the filter G ⊆ P is not an element of M [j(G)].

To solve this problem and make a strong cardinal κ indestructible by ≤κ-
closed forcing, we will use some preparatory forcing, namely an Easton support
κ-iteration P defined relative to a Laver function l : κ→ Vκ. The Laver function
will be able to anticipate any particular ≤κ-closed poset, so that if Q̇ is a P-name
of any ≤κ-closed poset, we may find a θ-strongness embedding j : V →M such
that j(P) factors as P∗ Q̇∗ Ṗtail. If G∗ g ⊆ P∗ Q̇ is V -generic, it will be our goal
to lift the embedding j in two steps in V [G∗ g] to j : V [G∗ g]→M [j(G)∗ j(g)].
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Since j(G) will equal G ∗ g ∗Gtail for some M [G ∗ g]-generic filter Gtail ⊆ Ptail,
it will be clear from the construction that G ∗ g is an element of M [j(G) ∗ j(g)],
and consequently that the lifted embedding will be a θ-strongness embedding in
V [G∗g]. The key problem though is: How can we manage to lift the embedding
in two steps in V [G ∗ g]? Here is a sketch of the idea that underlies the proof of
Theorem 11.

In the first lifting step, we shall lift through the preparatory forcing P. Since
j(P) factors as P ∗ Q̇ ∗ Ṗtail and G ∗ g ⊆ P ∗ Q̇ is fully V -generic, it suffices to
find in V [G ∗ g] an M [G ∗ g]-generic filter Gtail ⊆ Ptail. But we cannot apply
the techniques from Sections 1 and 2 directly, since Ptail will not be fully ≤j(κ)-
distributive, and 〈j”G〉 will thus not be sufficiently generic. Instead, we shall
use a single seed, namely κ, to define an elementary substructure X ≺M such
that {κ,P, Q̇, Ṗtail} ⊆ X and ran(j) ⊆ X. It will follow that Xκ ⊆ X in V , and
consequently that X[G ∗ g]κ ⊆ X[G ∗ g] in V [G ∗ g]. By an additional 2κ = κ+

assumption in V , it will follow that X[G∗g] contains only κ+ many dense subsets
of Ptail. Since Ptail will be (much more than) ≤κ-closed in X[G ∗ g], we will be
able to use diagonalization to build an X[G ∗ g]-generic filter Gtail ⊆ Ptail in
V [G ∗ g]. Moreover, it will follow from the high distributivity of Ptail somewhat
analogously as in Section 2, but now by using X[G ∗ g] ≺M [G ∗ g] rather than
the elementarity ran(j) ≺M , that in fact Gtail is a fully M [G ∗ g]-generic filter
on Ptail! This will be the key step that will allow us to let j(G) = G ∗ g ∗Gtail

and lift the embedding in V [G ∗ g] to j : V [G] → M [j(G)]. This will conclude
the first lifting step.

The second lifting step will be considerably easier as we only have to lift
the embedding j : V [G] → M [j(G)] through the ≤κ-closed forcing Q. The
≤κ-distributivity of Q will allow us to use the technique of Section 2 directly
and simply use the M [j(G)]-generic filter 〈j′′g〉 ⊆ j(Q) to lift j in V [G ∗ g] to
j : V [G ∗ g]→M [j(G) ∗ j(g)], with j(g) = 〈j′′g〉. This concludes the discussion
of the idea that underlies the proof of Theorem 11.

Strong cardinals admit a Laver function l, a kind of generalized ♦-sequence,
which anticipates any object in the universe.

Theorem 10. If κ is a strong cardinal, then there is a function l ...κ→ Vκ such
that for any x and θ with x ∈ Hθ+ there is a θ-strongness embedding j : V →M
with j(l)(κ) = x.

We call a function l ... κ→ Vκ as in the theorem above, a Laver function for
the strong cardinal κ.

Theorem 11. If κ is strong and 2κ = κ+, then there is a set forcing extension
in which the strongness of κ becomes indestructible by any ≤κ-closed forcing.

Proof. The definition of the iteration is very similar to the original Laver prepa-
ration of a supercompact cardinal, yet we will neither use a master condition
argument nor will we use closure of the target model to lift the embedding. Let
l be a Laver function for the strong cardinal κ, as in the theorem above. We use
l to define a Easton support iteration P of length κ. If Pγ is defined for γ < κ,
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and l(γ) happens to be a Pγ-name for a poset that is ≤γ-closed in V Pγ , then
we let the stage γ forcing Qγ be this poset; otherwise, Qγ is trivial forcing.

Suppose that G ⊆ P is V -generic and that Q is any ≤κ-closed poset in
V [G]. It suffices to show that κ is strong in V [G][g], where g ⊆ Q is V [G]-
generic. Fix a name Q̇ for Q which necessarily yields a ≤κ-closed poset. Fix
any ordinal θ above κ with Q̇ ∈ Hθ+ . Since l is a Laver function, there is a
θ-strongness embedding j : V → M such that j(l)(κ) = Q̇. Without loss of
generality, we may assume that M is generated by the seed set Vθ, namely that
M = {j(f)(s) | f : Vκ → V, f ∈ V, s ∈ Vθ}. Since P is defined relative to l and
M [G] agrees that Q̇ is a name for a ≤κ-closed poset, it follows that the stage κ
forcing in j(P) is precisely Q̇. The forcing factors therefore as j(P) = P∗Q̇∗Ṗtail.
We may assume that l”γ ⊆ Vγ for all γ ∈ dom(l). We may also assume that the
next element of the domain of j(l)(κ) is beyond iθ, so that Ptail is ≤iθ-closed
in M [G][g]. Lastly, we may also assume that θ = j(l′)(κ) for some function
l′ ... κ→ κ.

Step 1. In V [G ∗ g], lift the embedding j : V →M to j : V [G]→M [j(G)].

We shall build in V [G ∗ g] an M -generic filter j(G) ⊆ j(P). Since j(P) =
P ∗ Q̇ ∗ Ṗtail, and G ∗ g ⊆ P ∗ Q̇ is V -generic and hence M -generic, it suffices to
find an M [G ∗ g]-generic filter Gtail ⊆ Ptail. We cannot use diagonalization over
M [G ∗ g], since we have no closure of M [G ∗ g] to rely on. Instead, we consider
the structure X = {j(f)(κ) | f : κ→ V, f ∈ V } and we will work with X[G ∗ g]
in V [G ∗ g]. As usual, we have that X ≺ M with ran(j) ⊆ X and κ ∈ X.
The structure X thus contains the elements j(P), j(l),P, Q̇, and Ṗtail. It also
contains the ordinal θ and thus the set Vθ also. Since P ∈ X, and Q ∈ X[G], it
is a standard application of Tarski’s criterion to see that X[G] ≺M [G] and that
X[G ∗ g] ≺ M [G ∗ g]. The following claim is key and resembles the arguments
of Sections 1 and 2. It is the reason for our definition of X and X[G ∗ g].
Claim 1. If D ∈ M [G ∗ g] is a dense open subset of Ptail, then there is a
D̄ ∈ X[G ∗ g] such that D̄ is a dense subset of Ptail and D̄ ⊆ D.
Proof of Claim 1. Fix any D ∈ M [G ∗ g] which is a dense open subset of Ptail.
Since j : V → M is an extender embedding, we see that D = j(f0)(s0)G∗g for
some function f0 : Vκ → V with f0 ∈ V and some seed s0 ∈ V Vθ . Clearly, D
is definable from j(f0), G ∗ g and s0, but it may be that neither s0 nor D is an
element of X[G ∗ g]. In order to find the desired subset D̄ ∈ X[G ∗ g], we aim
to avoid the dependency on s0. We thus define in M [G ∗ g] the set

D̄ =
⋂
{j(f0)(s)G∗g | s ∈ V Vθ and j(f0)(s) is a dense open subset of Ptail}.

Note that this intersection is well-defined since for at least one seed s ∈ V Vθ ⊆
V
M [G∗g]
θ , namely s0, the set j(f0)(s)G∗g is really a dense open subset of Ptail.

The set D̄ is thus an element of M [G ∗ g]. Moreover, since Ptail is ≤iθ-
distributive in M [G ∗ g], the set D̄ is in fact a dense subset of Ptail. The
set D̄ is obviously a subset of D. The key point now is that D̄ is definable
from the elements j(f0), G ∗ g, V Vθ and Ptail, each an element of X[G ∗ g]. Since
X[G ∗ g] ≺M [G ∗ g], it follows that D̄ ∈ X[G ∗ g], which proves Claim 1.
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To complete Step 1, it suffices to find in V [G ∗ g] an X[G ∗ g]-generic filter
Gtail ⊆ Ptail. By the claim this filter will then be fully M [G ∗ g]-generic, and
the embedding j will thus lift in V [G ∗ g] to j : V [G]→M [j(G)] where j(G) =
G ∗ g ∗ Gtail. We shall use diagonalization over X[G ∗ g] to build Gtail. It is
a standard argument to see that Xκ ⊆ X in V . As P ⊆ X and P is κ-cc, it
follows that X[G]κ ⊆ X[G] in V [G]. Since Q is ≤κ-distributive, it follows that
X[G ∗ g]κ ⊆ X[G ∗ g] in V [G ∗ g]. Since X[G ∗ g] ≺ M [G ∗ g], it follows that
Ptail is (much more than) ≤κ-closed in X[G ∗ g]. Lastly, we need to count in
V [G ∗ g] the maximal antichains of Ptail that exist in X[G ∗ g]. As usual, since
Ptail has size j(κ) and P ∗ Q̇ doesn’t increase the size of P(j(κ)), it suffices to
count P(j(κ)) ∩X in the ground model V . Since every A ∈ X with A ⊆ j(κ)
is represented by a function from κ to P(κ), we see that P(j(κ)) ∩X has size
2κ in V . Consequently there are at most (2κ)V many maximal antichains of
Ptail that exist in X[G ∗ g]. Since (2κ)V = (κ+)V ≤ (κ+)V [G∗g], we see that
we can enumerate in V [G ∗ g] all maximal antichains of X[G ∗ g] of Ptail as a
κ+-sequence. In view of the next theorem, note that this is the only place in
the proof where one relies on the assumption that 2κ = κ+ in V . We can now
use diagonalization, applied to X[G ∗ g], to build a descending κ+-sequence of
conditions in X[G ∗ g] ∩ Ptail which meets every maximal antichain of Ptail that
exists in X[G ∗ g]. Let Gtail ⊆ Ptail be the filter generated by this descending
sequence. Since Gtail is X[G ∗ g]-generic by construction, it follows from the
claim that in fact Gtail ⊆ Ptail is an M [G ∗ g]-generic filter on Ptail. If we
let j(G) = G ∗ g ∗ Gtail, we see that the embedding j lifts in V [G ∗ g] to
j : V [G]→M [j(G)]. This completes Step 1.

Step 2. In V [G ∗ g], lift the embedding to j : V [G ∗ g]→M [j(G) ∗ j(g)] .

This second lifting step is significantly easier. Since we already lifted the
embedding to j : V [G] → M [j(G)], it makes sense to consider in V [G ∗ g] the
set j”g. As always, this directed set generates a filter 〈j”g〉 ⊆ j(Q) which meets
every dense subset D ∈ ran(j) of j(Q). In other words, the filter 〈j”g〉 is a
ran(j) -generic filter on j(Q). The following claim shows that in fact this filter
is M [j(G)]-generic.
Claim 2. If D ∈ M [j(G)] is a dense open subset of j(Q), then there is a
D̄ ∈ ran(j) such that D̄ is a dense subset of j(Q) and D̄ ⊆ D.
Proof of Claim 2. Fix any D ∈ M [j(G)] which is a dense open subset of j(Q).
Since j : V → M is an embedding where M is generated by the seed set Vθ,
it follows that D = j(f0)(s0)j(G) for some function f0 : Vκ → V with f0 ∈ V
and some seed s0 ∈ V Vθ . Clearly, D is definable from j(f0), j(G) and s0, but it
may be that s0 is not an element of ran(j). In order to find the desired subset
D̄ ∈ ran(j), we aim to avoid the dependency on s0. We thus define in M [j(G)]
the set

D̄ =
⋂
{j(f0)(s)j(G) | s ∈ j(V Vκ ) and j(f0)(s) is a dense open subset of j(Q)}.

Note that this intersection is well-defined since for at least one seed s ∈ V Vθ ⊆
j(V Vκ ), namely s0, the set j(f0)(s)j(G) is really a dense open subset of j(Q).
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Since D̄ is defined in M [j(G] and j(Q) is ≤j(κ)-distributive there, we see that
the set D̄ ∈M [G∗g] is a dense subset of j(Q). The set D̄ is obviously a subset of
D. The key point now is that D̄ is definable from the elements j(f0), j(G), j(V Vκ )
and j(Q), each an element of ran(j). Since ran(j) ≺ M [j(G)], it follows that
D̄ ∈ ran(j). This proves Claim 2.

If we let j(g) = 〈j”g〉, we therefore see that the embedding j lifts in V [G∗ g]
to j : V [G ∗ g]→M [j(G) ∗ j(g)]. This completes Step 2.

Since P ∗ Q̇ has rank less than θ and Vθ ⊆ M , we see that V V [G∗g]
θ =

Vθ[G∗g] ⊆M [G∗g]. The filter G∗g is an initial segment of j(G) by construction,
and so G ∗ g is an element of M [j(G)]. It follows that V V [G∗g]

θ ⊆ M [G ∗ g] ⊆
M [j(G) ∗ j(g)], and consequently that j : V [G ∗ g] → M [j(G) ∗ j(g)] is a θ-
strongness embedding in V [G∗g]. This completes the proof of the theorem.

So, how can we get rid of the additional 2κ = κ+ assumption? Here it goes.

Theorem 12. If κ is strong, then there is a set forcing extension preserving
the strongness of κ and in which 2κ = κ+.

Proof. We use the same Easton support iteration P as defined in Theorem 11.
But, instead of forcing with an arbitrary poset Q, we let Q = Add(κ+, 1), the
canonical forcing to force 2κ = κ+. Clearly, Q is ≤κ-closed, and we use a θ-
strongness embedding j : V → M such that j(l)(κ) = Q̇. Let G ∗ g ⊆ P ∗ Q̇ be
any V -generic filter. I claim that V [G ∗ g] is the desired forcing extension. We
clearly have 2κ = κ+ in V [G∗g]. In order to see that κ remains strong, we follow
the argument of the previous proof exactly. In Step 1, when we counted the
maximal antichains of Ptail that existed in X[G∗g] we had used the assumption
(2κ)V = (κ+)V to obtain the conclusion (2κ)V ≤ (κ+)V [G∗g]. But, for the
particular poset Q = Add(κ+, 1), we of course can obtain the same conclusion
even without any assumption on the size of 2κ in V . The remainder of the proof
is identical.

Theorems 11 and 12 hence imply the goal indestructibility theorem of this
talk.

Theorem 13. If κ is strong, then there is a set forcing extension in which the
strongness of κ becomes indestructible by any ≤κ-closed forcing.

11


