
A COUNTABLE ORDINAL DEFINABLE SET OF REALS

WITHOUT ANY ORDINAL DEFINABLE ELEMENTS

1. Introduction

In 2010 Garabed Gulbenkian asked the following question on MathOverflow.

Question 1.1. Is every countable OD-set of reals in HOD?

The question turned out to be open and it was solved 4 years later by Kanovei
and Lyubetsky [KL].

Observation 1.2. Every finite OD-set of reals is in HOD.

Proof. Suppose S is an OD-set of reals of size some n ∈ ω. A real r ∈ S is defined
as the m-th element of S in the lexicographical order for some m < n. �

The observation above makes a fundamental use of the lexicographical order on
the reals. Indeed, it is consistent to have a two element OD-set (of sets of reals)
neither of whose elements is OD. In a forcing extension of L by two mutually generic
Sacks reals r and s, the set consisting of the L-degrees of r and s is definable but
has no ordinal definable elements [GL87].

Observation 1.3. It is consistent that there is an uncountable OD-set of reals
without an OD element.

Proof. Let L[G] be a forcing extension of L by Cohen forcing. Let S ∈ L[G] be
the set of all non-constructible reals, which is definable without parameters. The
set S cannot have any OD elements because any OD-real must be in L by the
homogeneity of Cohen forcing.

Note that every real r ∈ L induces an automorphism of the Cohen poset via
bit-wise addition. This means that there are continuum many Cohen reals in L[G],
and hence S is uncountable. �

Theorem 1.4 (Kanovei-Lyubetsky). It is consistent that there is a countable OD-
set of reals without any OD-elements.

Kanovei and Lyubetsky used a poset constructed by Jensen in the 1970s to
show that it is consistent to have a ∆1

3 non-constructible real. By Shoenfield’s
Absoluteness, every Σ1

2 or Π1
2-real is constructible. Jensen constructed in L a ccc

subposet P of Sacks forcing, using ♦ to seal maximal antichains, with the following
properties [Jen70]. In any model of set theory, the set of all L-generic reals for P
is Π1

2-definable, a property which is also true of Cohen forcing. But unlike Cohen
extensions of L which have uncountably many L-generic Cohen reals (see above),
an L-generic extension by Jensen’s forcing P adds a unique L-generic real, which
is therefore ∆1

3-definable. Kanovei and Lyubetsky extended the “uniqueness of the
generic real” property of P to show that the ω-length finite-support product P<ω
adds precisely the L-generic reals that appear on the coordinates of an L-generic
filter for P<ω.
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2 A COUNTABLE OD SET OF REALS WITHOUT AN OD ELEMENT

Let G ⊆ P<ω be L-generic. In L[G], the collection S of all P-generic reals is
precisely the ω-many reals coming from the coordinates of G. So S is countable. A
standard automorphism argument for finite-support products shows that no element
of S can be OD. Suppose that the n-th coordinate of G is ordinal definable by
ϕ(x, α) in L[G]. Let ẋn be the canonical name for the n-th coordinate of the
generic filter for P<ω, and let p ∈ G force that ẋn is defined by ϕ(x, α̌). By density,
there is m > n such that G(m) � dom(p(n)) = p(n). Let π be an automorphism
of P<ω which switches coordinates n and m of the product. Observe that by our
choice of m, p ∈ H = π " G. Since L[G] = L[H], it must be the case that ϕ(x, α)
defines (ẋn)H 6= (ẋn)G, which is impossible.

2. Perfect posets

Definition 2.1. A tree T ⊆ <ω2 is perfect if for every node t ∈ T , there is s ⊇ t in
T which splits in T , that is s_0 and s_1 are both in T .

Definition 2.2. We say that a collection P of perfect trees ordered by inclusion is
a perfect poset if

• <ω2 ∈ P,
• whenever T ∈ P and s ∈ T , then Ts ∈ P,
• P is closed under finite unions.

So the smallest perfect poset is all finite unions of (<ω2)s for s ∈ <ω2.

Lemma 2.3. Suppose P is a perfect poset and G ⊆ P is V -generic. Then
⋂
T∈G T

is a real r and G = {T ∈ P | r ∈ [T ]}.
Proof. Suppose to the contrary that there are incompatible nodes s, t ∈

⋂
T∈G T .

Fix some T ∈ G and note that s ∈ T by assumption. Consider the set

D = {S ≤ T | s /∈ S or t /∈ S}.
Let’s argue that D is dense below T . So fix T̄ ≤ T . If either s /∈ T̄ or t /∈ T̄ , then
we are done. So assume s, t ∈ T̄ . In this case, T̄s ≤ T̄ and t /∈ T̄s. So there is some
S ∈ D ∩ G, but this is a contradiction. So r is indeed a real. Now suppose that
r ∈ [T ]. We will argue that T ∈ G. Let S ∈ G force that ṙ ∈ Ť , where ṙ is the
canonical name for r. We claim that S ≤ T , and hence T ∈ G. So suppose not.
Then there is some s ∈ S \ T , which means that Ss ∩ T = ∅. But then Ss ≤ S
cannot force that ṙ ∈ [T ]. �

To every perfect poset P, we can associate the poset Q(P) whose elements are
pairs (T, n) with T ∈ P and n < ω ordered so that (S,m) ≤ (T, n) whenever S ⊆ T ,
m ≥ n, and T ∩n2 = S∩n2. A generic filter G ⊆ Q(P) adds a perfect tree T which
is the union of T ∩ n2 for every condition (T, n) ∈ Q(P).

We will show how to extend a perfect poset P, using Q(P), to a larger perfect
poset P∗ with the property that for some fixed countable collection C of maximal
antichains of P, every A ∈ C remains pre-dense in P∗.

Suppose M is a countable transitive model of “ZFC−+P(ω) exists” and P ∈M
is a perfect poset. Clearly Q(P) ∈M . We will force with the ω-length finite-support
product Q(P)<ω over M . So fix some M -generic G ⊆ Q(P)<ω, and consider the
extension M [G]. Let Tn be the perfect tree added by G on coordinate n. Let

U = {(Tn)s | n < ω and s ∈ Tn}.
Let P∗ be the closure under finite unions of P ∪ U. Clearly P∗ is a perfect poset.
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Lemma 2.4. {Tn | n < ω} is a maximal antichain in P∗ and U is dense in P∗.

Proof. First, let’s argue that the Tn are incompatible. Indeed, if m 6= n, then
Tn ∩ Tm is finite. We will show that conditions p ∈ Q(P) with p(i) = (Ti, ki) such
that Tm ∩ Tn is finite are dense in Q(P). Fix any q ∈ Q(P) with q(i) = (Si, ki). By
going to a stronger condition, we can assume without loss that km = kn = k. For
every node s on level k of Tn, let ts be the first splitting node above it. If ts_0 is
not in Tm, we thin out (Tn)s to (Tn)ts_0

. Similarly, if ts_1 is not in Tm, we thin out
accordingly. So finally, suppose that both ts_0 and ts_1 are in Tm, then we thin out
(Tn)s to (Tn)ts_0

and (Tm)s to (Tm)ts_1
. Now we strengthen q to p with q(i) = p(i)

for i 6= n,m, q(n) = (T̄m, k), where T̄m is the result of the appropriate thinning out
of all subtrees (Tn)s and q(m) = (T̄m, k), where T̄m is the appropriate thinning out
of substrees (Tm)s. Note that p exists by closure under finite unions. Clearly p has
the desired property.

Now observe that for any T ∈ P, the set of conditions p in Q(P)<ω such that
(T, 0) appears on some coordinate of p is clearly dense because of finite-support.
So there is some Tn below every T ∈ P. It follows that {Tn | n < ω} is a maximal
antichain in P∗ and U is dense in P∗. �

Lemma 2.5. Every maximal antichain A ∈ M of P remains pre-dense in P∗.
Indeed if A is a maximal antichain in P, then every tree Tn has a level k such that
for every node s on level k of Tn, (Tn)s is below some element of A.

Proof. Fix a maximal antichain A ∈ M of P and a tree Tn. Consider the set D of
all conditions p ∈ Q(P)<ω such that p(n) = (T, k) and for every s on level k of T we
have Ts ≤ As for some As ∈ A. If D is dense in Q(P)<ω, then we are done because
it follows that for every s on level k of Tn, (Tn)s ≤ Ts is below an element of A.
So let’s argue that D is dense. So fix a condition q ∈ Q(P)<ω with q(n) = (T ′, k).
Fix a node s on level k of T ′. Since A is maximal in P, T ′s is compatible with some
R′ ∈ A. Let Rs ≤ R′, T ′s. Repeat this for every node s on level k of T ′. Now let
T be the tree obtained by replacing each T ′s with Rs in T ′. Let r ≤ q be defined
so that r(i) = q(i) for all i 6= n, and r(n) = (T, k). Clearly r ∈ D. Now fix some
(Tn)s ∈ U. Let k be the level from the hypothesis. If s sits on level k or below, then
let s′ be the node in Tn extending s on level k. Since (Tn)s′ is below As′ ∈ A, it
follows that (Tn)s is compatible with As′ . If s sits above level k, then clearly (Tn)s
is below an element of A. �

Note that an antichain A ∈ M of P may no longer be an antichain in P∗ because
incompatible elements in P can potentially become compatible in P∗.

Now let’s consider the ω-length finite-support product P<ω of the perfect poset
P and the product P∗<ω of its extension P∗.

Lemma 2.6. Every maximal antichain A ∈M of P<ω remains pre-dense in P∗<ω.

The proof is an easy generalization of the proof of Lemma 2.5.
We are now ready to construct the Jensen forcing P in L, which has the following

properties:

• P is a perfect poset of size ω1.
• P has the ccc.
• If G ⊆ P<ω is L-generic, then the L-generic reals for P in L[G] are precisely

the generic reals on the coordinates of G.
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3. Jensen’s poset

Before we begin, let’s make the following definition. Let’s call a countable tran-
sitive model M |= “ZFC− + P(ω)” suitable if M = Lξ for some ordinal ξ. For
instance, the collapse of any countable elementary submodel of Lω2 will be suit-
able. Let’s also fix a canonical ♦-sequence 〈Sα | α < ω1〉. Observe that a suitable
model M correctly constructs 〈Sα | α < ωM1 〉.

We will construct the poset P in ω1-many steps as the union of an increasing
chain 〈Pα | α < ω1〉 of countable perfect posets using ♦. Let P0 be the smallest
perfect poset (or any countable perfect poset). At limit stages, we take unions. So
suppose that Pα has been defined. We let Pα+1 = Pα, unless the following happens.
Suppose Sα codes a well-founded, extensional binary relation E ⊆ α× α such that
the collapse of E is a suitable model Mα with Pα ∈Mα and α = ωMα

1 . In this case,
we take the L-least Mα-generic filter G ⊆ Q(Pα)<ω and let Pα+1 = P∗α (the closure
under finite unions of Pα ∪ Uα) as constructed in Mα[G].

By Proposition 2.6, every maximal antichain of P<ωα in Mα remains pre-dense
in P<ωα+1. Now let’s argue that every maximal antichain of P<ωα in Mα remains
pre-dense in the final poset P<ω. It suffices to note that the models Mα form an

increasing sequence. Indeed, if α < β, then Mα ∈ Mβ because β = ω
Mβ

1 , and
therefore, by suitability, Mβ has Sα as an element and can collapse it to obtain
Mα. This shows that every maximal antichain of P<ωα that exists in Mα is sealed.

Lemma 3.1. The ω-length finite support product P<ω has the ccc.

Proof. Fix a maximal antichain A ∈ P<ω. Let N ≺ Lω2
be a transitive elementary

submodel of size ω1 with A ∈ N . We can decompose N as the union of a continuous
elementary chain of countable structures

X0 ≺ X1 ≺ · · · ≺ Xα ≺ · · · ≺ N
with A ∈ X0. By the properties of ♦, there is some α such that α = ω1 ∩ Xα,
Pα = P ∩ Xα, and Sα codes Xα. Let Mα be the transitive collapse of Xα. Then
Pα is the image of P under the collapse, Ā = A ∩ Xα is the image of A, and α
is the image of ω1. So at stage α in the construction of P, we chose a forcing
extension Mα[G] of Mα by Q(Pα)<ω and let Pα+1 = P∗α as constructed in Mα[G].
Thus, by our observation above, Ā remains pre-dense in P<ω, and hence Ā = A is
countable. �

Lemma 3.2. A real r is L-generic for P and if and only if for every α, r is a
branch through some T αn ∈ Uα.

Proof. The condition is clearly necessary because {T αn | n < ω} remains pre-dense
in P. So let’s argue that every r which satisfies the hypothesis is L-generic for P.
Fix a maximal antichain A of P. Then A appears in some Mα in the construction
of P. Let r be a branch through T αn ∈ Uα. By Lemma 2.5, there is a level k in T αn
such that for every s ∈ T αn on level k, (T αn )s ≤ As ∈ A. Since r ∈ [T αn ], it follows
that there is s on level k of T αn such that r ∈ [As]. �

It follows that the collection of all L-generic reals for P is definable because
everything in the construction of P is definable. In fact, it is not difficult to see
that the collection of all L-generic generic reals for P is (light-face) Π1

2.
It remains to argue that the product has the uniqueness of generic reals property.

We will start with the following definitions.
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4. Uniqueness property for products of Jensen reals

Given any poset Q, we can think of a Q-name σ for a real as a collection

{Cn | n < ω}

of maximal antichains such that every Cn = Cn0tCn1 and σG(n) = i for a V -generic
filter G ⊆ Q if and only if G ∩ Cni 6= ∅. Conversely, any collection {Cn | n < ω} of
maximal antichains with this property gives a Q-name for a real.

Example 4.1. Suppose P is a perfect poset. The P-generic real ẋ is given by the
sequence {Cni}, where each Cni consists of the single condition

pni = {s ∈ <ω2 | len(s) > n→ s(n) = i}.

Similarly, the canonical name ẋk for the generic real on the k-th coordinate of P<ω
is given by the sequence {Cni}, where Cni consists of the single condition pni with
dom(p) = {k} and pni(k) = {s ∈ <ω2 | len(s) > n→ s(n) = i}.

Definition 4.2. Suppose Q is a poset. Let σ and τ be two Q-names for a real
given by sequences {Cni} and {Dni} respectively. Given p ∈ Q, we define that

• p directly forces σ(n) = i if p is below some q ∈ Cni,
• p directly forces s ⊆ σ, where s ∈ <ω2, if for all n < len(s), p directly forces
σ(n) = s(n),

• p directly forces σ 6= τ if there are incomparable strings s, t ∈ <ω2 such that
p directly forces s ⊆ σ and t ⊆ τ ,

• p directly forces σ /∈ [T ], where T is a perfect tree, if there is s ∈ <ω2 \ T
such that p directly forces that s ⊆ σ.

We need the notion of direct forcing to go back and forth between what is forced
by some Pα and the final Jensen poset P. Since each Pα is just a subposet of P
which might even be mistaken about compatibility, the forcing relations for the two
posets have no reason to agree. But direct forcing is clearly absolute between the
stages Pα and the final poset P.

It is not difficult to see that if a statement is forced, then it is dense that it is
directly forced.

Proposition 4.3. Let Q be a any perfect poset. Suppose σ is a Q<ω-name for a
real such that for some k < ω, we have 1l 
 σ 6= ẋk. Then the set

D = {q ∈ Q<ω | q directly forces σ 6= ẋk}

is dense.

Proof. Fix any condition r ∈ Q<ω. Then there must be a condition q ≤ r and
s 6= t ∈ n2 such that q forces that s ⊆ ẋκ and t ⊆ σ. We can assume without
loss that q(k) ⊆ (<ω2)s, so that q directly forces that s ⊆ ẋκ. Next, choose q0 ≤ q
such that q0 is below some element of C0t(0) (this is possible since C0 is a maximal
antichain). Next, choose q1 ≤ q0 such that q1 is below some element of C1t(1).
Continue in this manner, until we obtain qn below some element of Cnt(n), where
n = len(t)− 1. Clearly qn directly forces that σ 6= ẋk. �

For the next crucial theorem, suppose that M is a countable suitable model,
P ∈ M is a perfect poset, and P∗ is constructed as above in a forcing extension
M [G] by Q(P)<ω.
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Theorem 4.4. Suppose that σ is a P<ω-name for a real such that each

D(k) = {r ∈ P<ω | r directly forces σ 6= ẋκ}

is dense in P<ω. Then for every Tn ∈ U, conditions directly forcing that σ /∈ [Tn]
are dense in P∗<ω.

Proof. Fix a condition p ∈ P∗<ω and n ∈ ω. Since U<ω is dense in P∗<ω, we can
assume without loss that p ∈ U<ω. We need to find q ≤ p such that q directly forces
σ /∈ [Tn]. We will illustrate the argument with a concrete, generalizable example.
So suppose for concreteness that

n = 1 and p = 〈(T3)t3 , (T1)t1 , (T7)t7〉.

So there must be a condition p̄ ∈ G with p̄(i) = (Ti,mi) such that for i = 1, 3, 7,
there is si ∈ mi2 with ti ⊆ si. Consider the set D of all conditions q̄ ≤ p̄ in Q(P)<ω,
with q̄(i) = (Ūi, ki), for which there is an associated condition

aq̄ = 〈W̄0, W̄1, . . . , W̄j〉

in P<ω satisfying:

(1) W̄0 = (Ū3)s̄3 , W̄1 = (Ū1)s̄1 , W̄2 = (Ū7)s̄7 for some nodes s̄i ⊇ si on level ki
for i = 1, 3, 7.

(2) aq̄ directly forces σ /∈ [(Ū1)t] for every node t on level k1 of Ū1.

We will argue that D is dense below p̄ in Q(P)<ω. So fix some r ≤ p̄ in Q(P)<ω

with r(i) = (Ui, ki). Let W0 = (U3)s̄3 , W1 = (U1)s̄1 , and W2 = (U7)s̄7 , where s̄i are
some nodes on level ki above si for i = 1, 3, 7. Let Wi for i ≥ 2 be the remaining
subtrees (U1)t for nodes t 6= s̄1 on level k1 of U1. Let

a′ = 〈W0, . . . ,Wj′〉,

where j′ is the last index we end up with. By our assumption, we can find a
condition

a = 〈W̄0, . . . , W̄j′ , . . . , W̄j〉
below a′ such that a directly forces σ 6= ẋk for every 0 ≤ k ≤ j′. So for every
0 ≤ k ≤ j′, there are incompatible nodes s and t such that a directly forces s ⊆ σ
and t ∈ W̄k. Without loss of generality, we can restrict W̄k to (W̄k)t so that a
directly forces σ /∈ [W̄k]. Let Ū1 be the tree obtained by replacing (U1)s̄1 with W̄1

and replacing the remaining (U1)t with the corresponding W̄i in U1. Let Ū3 be the
tree obtained by replacing (U3)s̄3 with W̄0 in U3. Let Ū7 be the tree obtained by
replacing (U7)s̄7 with W̄2 in U7. Let Ūi = Ui for the remaining i. Let q̄ be such
that q̄(i) = (Ūi, ki) and let a = aq̄. Clearly aq̄ directly forces σ /∈ [(Ū1)t] for every
t on level k1 of Ū1. Thus, we have verified that D is dense below p̄.

So there must be some condition q̄ ∈ G ∩ D. It follows that (T3)s̄3 is contained
in W̄0, (T7)s̄7 is contained in W̄2, and (T1)s̄1 is contained in W̄1. So let

q = 〈(T3)s̄3 , (T1)s̄1 , (T7)s̄7 , W̄3, . . . , W̄j〉.

Clearly q ≤ p, and also clearly q ≤ aq̄. So q directly forces σ /∈ [T1] because T1 is
contained in the union of the (Ū1)t for nodes t on level k1. �

Theorem 4.5 (Kanovei-Lyubetsky). Suppose H ⊆ P<ω is L-generic. If r ∈ L[H]
is L-generic for P, then r = xk for some k < ω.
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Proof. Let’s suppose to the contrary that this is not the case. Then there is a real
r 6= xk for all k < ω, which is L-generic for P. Let σ be a P<ω-name for r such that
1l 
 ṙ 6= xk for all k < ω. It follows that the sets

D(k) = {p ∈ P<ω | p directly forces σ 6= ẋκ}
are dense in P<ω.

Choose some transitive N ≺ Lω2
of size ω1 with σ ∈ N . We can decompose N

as the union of an elementary chain of countable substructures

X0 ≺ X1 ≺ · · · ≺ Xα ≺ · · · ≺ N
with σ ∈ X0. By the properties of ♦, there is some α such that α = ω1 ∩ Xα,
Pα = P ∩ Xα, and Sα codes Xα. Let Mα be the collapse of Xα. Then Pα is the
image of P under the collapse and α is the collapse of ω1. Clearly the name σ is
fixed by the collapse because all antichains of P<ω are countable. So at stage α
of the construction of P, we chose a forcing extension Mα[G] by Q(Pα)<ω and let
Pα+1 = P∗α as constructed in Mα[G]. By elementarity, Mα satisfies that all sets

D(k) = {p ∈ Pα | p directly forces σ 6= ẋk}
are dense in Pα. Thus, by Theorem 4.4, for every n < ω, P<ωα+1 has a maximal
antichain An consisting of conditions q which directly force σ /∈ [Tn]. Since H must
meet every An, it holds in L[H] that σH = r is not a branch through any Tn. But
this contradicts our assumption that r is L-generic for P because 〈Tn | n < ω〉
remains a maximal antichain of P. �
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