Jensen's forcing at an inaccessible

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

Rutgers Logic Seminar April 10, 2023

Victoria Gitman

Rutgers 1 / 28

・ロト ・回ト ・ヨト ・ヨト

This is joint work with Sy-David Friedman.

2

・ロト ・四ト ・ヨト ・ヨト

Jensen's forcing

Jensen's forcing is a subposet of Sacks forcing that is constructed using the guessing principle \Diamond .

- Elements are perfect trees ordered by the subtree relation: $T \leq S$ whenever $T \subseteq S$.
- Has the ccc.
- Adds a unique generic real.

Variables in the construction of Jensen's forcing allow for many forcings with the above properties. Jensen's construction of the forcing in L has the additional property:

• The generic real is a Π^1_2 -definable singleton in the forcing extension.

・ロト ・個ト ・ヨト ・ヨト

Jensen's forcing and unique generics

Products and (carefully defined) iterations of Jensen's forcing also have "unique generics" properties.

Notation:

- J: Jensen's forcing (or any similarly constructed forcing)
- $\mathbb{J}^{<\alpha}$: finite support α -length product of Jensen's forcing for $\alpha \geq \omega$ (ccc)
- J_n : *n*-length iteration of Jensen's forcing for $n < \omega$ (ccc)

Theorem: (Lyubetsky, Kanovei) In a forcing extension by $\mathbb{J}^{\leq \alpha}$, the only generic reals for \mathbb{J} are the α -many slices of the generic filter.

Theorem: (Abraham) In a forcing extension by \mathbb{J}_n , there is a unique generic *n*-length sequence of reals.

イロト イヨト イヨト イヨト

Applications of Jensen's forcing

Theorem: (Jensen) It is consistent that there is a Π_2^1 -definable singleton non-constructible real.

- In a forcing extension L[r] by \mathbb{J} , r is Π_2^1 -definable.
- Every Σ_2^1 -definable real is in *L* by Shoenfield's Absoluteness.

Theorem: (Lyubetsky, Kanovei) There is a countable ordinal definable set of reals without any definable members.

• The set of generic reals for \mathbb{J} in a forcing extension by $\mathbb{J}^{<\omega}$.

Theorem: (Friedman, G., Kanovei) There is a model of second-order arithmetic Z_2 with the Choice Scheme in which \prod_{2}^{1} -Dependent Choice Scheme fails.

The model is the reals of a symmetric submodel of a forcing extension by a tree iteration of Jensen's forcing.

・ロト ・ 四ト ・ ヨト ・ ヨト

Perfect posets

Definition: An infinite tree $T \subseteq 2^{<\omega}$ is perfect if every node of T has a splitting node above it.

Proposition: If T and S are perfect trees such that $T \cap S$ contains a perfect tree, then there is a maximal such perfect tree denoted $T \wedge S$.

A subposet \mathbb{P} of Sacks forcing is perfect if:

- $(2^{<\omega})_s \in \mathbb{P}$ for every $s \in 2^{<\omega}$. For every $T, S \in \mathbb{P}$:
- $T \cup S \in \mathbb{P}$ (closed under unions),
- $T \wedge S \in \mathbb{P}$ (closed under meets).

If trees T and S are not compatible in \mathbb{P} , then they cannot become compatible

in any larger perfect poset extending \mathbb{P} .

Proposition: Suppose that \mathbb{P} is a perfect poset and $G \subseteq \mathbb{P}$ is *V*-generic.

Let $r = \bigcap_{T \in G} T$. Then in V[G]:

- r is a cofinal branch through every tree in G.
- If $r \in [T]$ for some $T \in \mathbb{P}$, then $T \in G$.
- r and G are definable from each other.

Smallest perfect poset \mathbb{P}_{\min} : close $\{(2^{<\omega})_s \mid s \in 2^{<\omega}\}$ under unions.

The fusion poset $\mathbb{Q}(\mathbb{P})$

Suppose that \mathbb{P} is a perfect poset.

 $\mathbb{Q}(\mathbb{P})$: elements are pairs (T, n) with $T \in \mathbb{P}$ and $n < \omega$ ordered by $(T, n) \leq (S, m)$ if $n \geq m$ and $T \cap 2^m = S \cap 2^m$.

Fusion arguments with trees from \mathbb{P} can be expressed by meeting dense sets of $\mathbb{Q}(\mathbb{P})$.

Proposition: Suppose that $G \subseteq \mathbb{Q}(\mathbb{P})$ is V-generic. Then in V[G],

- $\mathscr{T} = \bigcup_{(T,n) \in G} T \cap 2^n$ is a perfect tree,
- $\mathscr{T} \subseteq T$ for every condition $(T, n) \in G$.

Notation:

```
\mathbb{Q}(\mathbb{P})^{<\omega}: finite support \omega-length product of the \mathbb{Q}(\mathbb{P}).
```

・ロト ・個ト ・ヨト ・ヨト

Growing perfect posets with generic perfect trees

Set-up

- $\bullet \ \mathbb{P}$ is a perfect poset
- $\mathbb{Q}(\mathbb{P})$ is a fusion poset for \mathbb{P}
- $G \subseteq \mathbb{Q}(\mathbb{P})^{<\omega}$ is V-generic
- \mathcal{T}_n is the generic perfect tree added by the *n*-th slice of *G*

 $\ln V[G]$

 \mathbb{P}^* : close $\{\mathscr{T}_n \mid n < \omega\} \cup \mathbb{P}$ under meets and unions.

Properties of \mathbb{P}^*

Proposition: If $T \in \mathbb{P}$ and $\mathscr{T}_n \wedge T$ is a perfect tree, then for some s, $(\mathscr{T}_n)_s \subseteq T$. **Proof**:

- Proof:
 - Fix $t \in \mathscr{T}_n \wedge T$.
 - Let $p \in G$, with p(n) = (R, k), such that $p \Vdash t \in \dot{\mathscr{T}}_n \land T$.
 - Since $\mathscr{T}_n \subseteq R$, $t \in \mathbb{R}$.
 - Fix $q \leq p$, with $q(n) = (S, m) \leq (R, k)$, such that m > lev(t).
 - There is $s \ge t$ on level m of S such that $U = S_s \wedge T$ is a perfect tree.
 - Let \overline{S} be S where we replace S_s with U.
 - $\bar{S} \in \mathbb{P}$ by closure under unions.
 - Let $\bar{q} \leq q$ such that $\bar{q}(n) = (\bar{S}, m)$ and $\bar{q}(i) = q(i)$ for all $i \neq n$.
 - Conditions \bar{q} are dense below p, so some $\bar{q} \in G$.
 - $(\mathscr{T}_n)_s \subseteq T$. \Box

Properties of \mathbb{P}^* (continued)

Proposition:

- (1) $\{(\mathscr{T}_n)_s \mid n < \omega, s \in \mathscr{T}_n\}$ is dense in \mathbb{P}^* .
- (2) $\{\mathscr{T}_n \mid n < \omega\}$ is a maximal antichain of \mathbb{P}^* .
- (3) Every maximal antichain of \mathbb{P} from V remains maximal in \mathbb{P}^* .

Proof:

- (1) By previous proposition.
- (2) For $m \neq n$, $\mathscr{T}_m \cap \mathscr{T}_n$ is bounded.

Properties of \mathbb{P}^* (continued)

(3) Fix a maximal antichain \mathcal{A} of \mathbb{P} from V. Suffices to show that every $(\mathcal{T}_n)_t$ is compatible with an element of \mathcal{A} .

- Fix $(\mathcal{T}_n)_t$.
- Let $p \in G$ such that $p \Vdash t \in \dot{\mathscr{T}}_n$.
- Fix $q \leq p$ such that q(n) = (S, m) and m > lev(t).
- Fix $s \ge t$ on level *m* of *S*.
- Choose $A \in \mathcal{A}$ such that A is compatible with S_s , let $U \subseteq A, S_s$.
- Let \overline{S} be S where we replace S_s with U.
- Let $\bar{q} \leq q$ such that $\bar{q}(n) = (\bar{S}, m)$ and $\bar{q}(i) = q(i)$ for all $i \neq n$.
- Conditions \bar{q} are dense below p, so some $\bar{q} \in G$.
- $(\mathscr{T}_n)_s \subseteq U \subseteq A \in \mathcal{A}$. \Box

Suitable models

Work in *L*.

Let $\vec{D} = \{D_{\xi} \mid \xi < \omega_1\}$ be the canonical \diamondsuit -sequence.

Definition: A model *M* is suitable if

- $M = L_{\alpha}$ for some countable α
- $M \models \text{ZFC}^- + P(\omega)$ exists.

Observations:

- The Mostowski collapse *M* of any countable $X \prec L_{\omega_2}$ is suitable.
- If *M* is suitable and $\delta = (\omega_1)^M$, then $\langle D_{\xi} | \xi < \delta \rangle \in M$.

Jensen's forcing: J

- J: union of a chain $\mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \cdots \subseteq \mathbb{P}_{\xi} \subseteq \cdots$ of length ω_1 of perfect posets. $\mathbb{P}_0 = \mathbb{P}_{min}$
- $\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ at limits λ .
- Suppose \mathbb{P}_{ξ} has been defined.
- If D_{ξ} codes a suitable model M_{ξ} such that $\mathbb{P}_{\xi} \in M_{\xi}$ and $(\omega_1)^{M_{\xi}} = \xi$:
 - Let G_{ξ} be the *L*-least M_{ξ} -generic filter for $\mathbb{Q}(\mathbb{P}_{\xi})^{<\omega}$.
 - $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}^*$ as constructed in $M_{\xi}[G_{\xi}]$.

Otherwise, $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}$.

Sealing Lemma: Every maximal antichain of \mathbb{P}_{ξ} from M_{ξ} remains maximal in \mathbb{J} .

Notes:

Alternative choices of the \diamond -sequence and the models M_{ξ} can yield a different Jensen's forcing.

If we don't work in L,

- lose low complexity of generics
- keep uniqueness properties of generics

イロン イロン イヨン イヨン 三日

Finite iterations and tree iterations of Jensen's forcing

Finite iterations \mathbb{J}_n

- Jensen's forcings can be constructed in a forcing extension by J because ccc forcing of size ω₁ preserves ◊.
- In a forcing extension V[r] by J, use models M_ξ[r], where M_ξ is given by ◊ in V, to construct a Jensen's forcing.

Tree iterations $\mathbb{P}(\mathbb{J}, \mathcal{T})$

- Fix a tree \mathcal{T} of height ω .
- $\mathbb{P}(\mathbb{J},\mathcal{T})$
 - ▶ Conditions: functions f_T from a finite subtree T of T into $\bigcup_{n < \omega} J_n$ such that if $s \le t$ in T, then $f(t) \upharpoonright \text{len}(s) = f(s)$.
 - Order: $f_S \leq f_T$ if $S \supseteq T$ and $f_S(t) \leq f_T(t)$ for every $t \in T$.
 - ▶ Generic filter: tree isomorphic to *T* whose nodes on level *n* are generic for J_n.

・ロト ・個ト ・ヨト ・ヨト

Generalizing Jensen's forcing to an inaccessible κ

Perfect κ -trees are not as nicely behaved as perfect trees because of limit levels.

- No meets.
- No unions.

The forcing should be $<\kappa$ -closed.

- At limit stages, we have to close up unions under $<\kappa$ -length sequences.
- Does this unseal maximal antichains?

Perfect κ -trees

Suppose that κ is an inaccessible cardinal.

A perfect κ -tree is a tree $T \subseteq 2^{<\kappa}$ such that:

- T has size κ (T is a κ -tree).
- Every node of T has a splitting node above it (T is splitting).
- For every limit $\lambda < \kappa$ if $s \in 2^{\lambda}$ and $s \upharpoonright \xi \in T$ for every $\xi < \lambda$, then $s \in T$ (*T* is closed).
- For every limit λ < κ if s ∈ 2^λ and for cofinally many ξ < λ, s ↾ ξ splits, then s splits (the splitting nodes of T are closed).

Proposition: Suppose that $\{T_{\xi} \mid \xi < \beta\}$, for $\beta < \kappa$, is a \subseteq -decreasing sequence of perfect κ -trees. Then $T = \bigcap_{\xi < \beta} T_{\xi}$ is a perfect κ -tree.

Badly behaved perfect κ -trees

Proposition: There are perfect κ -trees whose intersection does not contain a maximal perfect κ -tree.

Proposition: There are ω -many perfect κ -trees whose union is not a perfect κ -tree.

κ -perfect posets

Suppose that κ is an inaccessible cardinal.

A collection \mathbb{P} of perfect κ -trees ordered by \subseteq is a κ -perfect poset if:

- $2^{<\kappa} \in \mathbb{P}$.
- If $T \in \mathbb{P}$ and $t \in T$, then $T_t \in \mathbb{P}$.
- If $\{T_{\xi} \mid \xi < \beta\} \subseteq \mathbb{P}$, with $\beta < \kappa$ is a decreasing sequence, then $T = \bigcap_{\xi < \beta} T_{\xi} \in \mathbb{P}$ (< κ -closure property).
- Suppose $T \in \mathbb{P}$, $\alpha < \kappa$ is a successor, and $\{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}$. Then $T' = \bigcup_{s \in 2^{\alpha}} T^{(s)} \in \mathbb{P}$ (weak union property).

κ -perfect posets (continued)

Proposition: Suppose \mathbb{P} is a κ -perfect poset and $G \subseteq \mathbb{P}$ is V-generic. Let $A = \bigcap_{T \in G} T$. Then in V[G]:

- A is cofinal branch through every tree in G.
- If $A \in [T]$ for some $T \in \mathbb{P}$, then $T \in G$.
- A and G are definable from each other.

Smallest κ -perfect poset \mathbb{P}_{\min} : close $\{(2^{<\kappa})_s \mid s \in 2^{<\kappa}\}$ under $<\kappa$ -intersection property and weak union property.

- $\mathbb{P}_0 = \{ (2^{<\kappa})_s \mid s \in 2^{<\kappa} \}$
- $\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ for limits λ

Suppose \mathbb{P}_{ξ} has been defined.

 $\mathbb{P}'_{\xi+1}$ consists of all $T' = \bigcup_{s \in 2^{\alpha}} T^{(s)}$ for $T \in \mathbb{P}_{\xi}$, successor $\alpha < \kappa$, and $\{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}_{\xi}$.

 $\mathbb{P}_{\xi+1}$ consists of all $T = \bigcap_{\xi < \beta} T_{\xi}$, for $\beta < \kappa$ and \subseteq -decreasing $\{T_{\xi} \mid \xi < \beta\} \subseteq \mathbb{P}'_{\xi+1}$.

イロン イロン イヨン イヨン 三日

κ -perfect posets (continued)

Clean Levels Lemma: Every tree $T \in \mathbb{P}_{\min}$ has a level α such that for every $t \in T \cap 2^{\alpha}$, $T_t = (2^{<\kappa})_t$.

・ロト ・回ト ・ヨト ・ヨト

The fusion poset $\mathbb{Q}(\mathbb{P})$

Suppose that \mathbb{P} is a κ -perfect poset.

 $\mathbb{Q}(\mathbb{P})$: elements are pairs (T, α) , with $T \in \mathbb{P}$ and $\alpha < \kappa$ successor, ordered by $(T, \alpha) \leq (S, \beta)$ if $\alpha \geq \beta$ and $T \cap 2^{\beta} = S \cap 2^{\beta}$.

Proposition: The poset $\mathbb{Q}(\mathbb{P})$ is $<\kappa$ -closed.

Proposition: Suppose $G \subseteq \mathbb{Q}(\mathbb{P})$ is *V*-generic. Then in *V*[*G*]:

- $\mathscr{T} = \bigcup_{(T,\alpha) \in G} T \cap 2^{\alpha}$ is a perfect κ -tree.
- $\mathscr{T} \subseteq T$ for every condition $(T, \alpha) \in G$.

Notation:

 $\mathbb{Q}(\mathbb{P})^{<\kappa}$: bounded support κ -length product of the $\mathbb{Q}(\mathbb{P})$.

Growing κ -perfect posets with generic perfect κ -trees

Set-up

- \mathbb{P} is a κ -perfect poset
- $\mathbb{Q}(\mathbb{P})$ is a fusion poset for \mathbb{P}
- $G \subseteq \mathbb{Q}(\mathbb{P})^{<\kappa}$ is V-generic
- \mathscr{T}_{ξ} is the generic perfect κ -tree added by the ξ -th slice of G

 $\ln V[G]$

 $\mathbb{P}^*: \text{ close } \{(\mathscr{T}_{\xi})_t \mid \xi < \kappa, t \in \mathscr{T}_{\xi}\} \cup \mathbb{P} \text{ under } <\kappa\text{-intersection property and weak union property.}$

- $\mathbb{P}_{\mathbf{0}} = \{ (\mathscr{T}_{\xi})_t \mid \xi < \kappa, t \in \mathscr{T}_{\xi} \} \cup \mathbb{P}$
- $\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ for limits λ
- Suppose \mathbb{P}_{ξ} has been defined.

 $\mathbb{P}_{\xi+1}' \text{ consists of all } T' = \bigcup_{s \in T \cap 2^{\alpha}} T^{(s)} \text{ for } T \in \mathbb{P}_{\xi}, \, \alpha < \kappa \text{ successor, and} \\ \{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}_{\xi}.$

 $\mathbb{P}_{\xi+1} \text{ consists of all } \mathcal{T} = \bigcap_{\xi < \beta} \mathcal{T}_{\xi} \text{ for } \beta < \kappa \text{ and } \subseteq \text{-decreasing } \{ \mathcal{T}_{\xi} \mid \xi < \beta \} \subseteq \mathbb{P}'_{\xi+1}.$

イロン イロン イヨン イヨン 三日

Growing κ -perfect posets with generic perfect κ -trees (continued)

Clean Levels Lemma: Every tree $T \in \mathbb{P}^*$ has a level α such that for every $t \in T \cap 2^{\alpha}$,

- $T_t = (\mathscr{T}_{\xi})_t$ for some $\xi < \kappa$ or
- $T_t \in \mathbb{P}$.

Proposition:

- $\{(\mathscr{T}_{\xi})_{s} \mid \xi < \kappa, s \in \mathscr{T}_{\xi}\}$ is dense in \mathbb{P}^{*} .
- $\{\mathscr{T}_{\xi} \mid \xi < \kappa\}$ is a maximal antichain of \mathbb{P}^* .
- Every maximal antichain from V remains maximal in \mathbb{P}^* .

κ -suitable models

Work in L and fix a canonical $\Diamond_{\kappa^+}(\operatorname{Cof}(\kappa))$ -sequence $\vec{D} = \langle D_{\xi} | \xi \in \operatorname{Cof}(\kappa) \rangle$.

A model *M* is κ -suitable if:

- $M = L_{\alpha}$ for some $|\alpha| = \kappa$
- $M^{<\kappa} \subseteq M$,
- $M \models \text{ZFC}^- + P(\kappa)$ exists.

Observations:

- The Mostowski collapse *M* of any $X \prec L_{\kappa^{++}}$, with $X^{<\kappa} \subseteq X$ and $|X| = \kappa$, is κ -suitable.
- If *M* is κ -suitable and $\delta = (\kappa^+)^M$, then $\langle D_{\xi} | \xi < \delta \rangle \in M$.
- If *M* is κ -suitable and $\mathbb{P} \in M$ is $<\kappa$ -closed, then there is an *M*-generic filter for \mathbb{P} .
 - Diagonalize to meet all dense sets
 - Use closure to get through limit stages

<ロ> (四) (四) (三) (三) (三) (三)

Jensen's forcing at an inaccessible κ : $\mathbb{J}(\kappa)$

 $\mathbb{J}(\kappa): \text{ union of a chain } \mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \cdots \subseteq \mathbb{P}_{\xi} \subseteq \cdots \text{ of length } \kappa^+ \text{ of } \kappa\text{-perfect posets.}$ $\mathbb{P}_0 = \mathbb{P}_{\min}$

Suppose \mathbb{P}_{ξ} has been defined.

If $\xi \in \operatorname{Cof}(\kappa)$ and D_{ξ} codes a κ -suitable model M_{ξ} such that $\mathbb{P}_{\xi} \in M_{\xi}$ and $(\kappa^+)^{M_{\xi}} = \xi$:

- Let G_{ξ} be the *L*-least M_{ξ} -generic filter for $\mathbb{Q}(\mathbb{P}_{\xi})^{<\kappa}$.
- $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}^*$ as constructed in $M_{\xi}[G_{\xi}]$.

Otherwise, $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}$.

If
$$cf(\lambda) = \kappa$$
:
 $\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$

If $cf(\lambda) < \kappa$:

 \mathbb{P}_{λ} : close $\bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ under $< \kappa$ -intersection property and weak union property.

Let $\mathscr{T}_{\nu}^{(\xi)}$ for $\xi < \kappa^+$ and $\nu < \kappa$ be the perfect κ -trees added in $M_{\xi}[G_{\xi}]$.

Jensen's forcing at an inaccessible κ : $\mathbb{J}(\kappa)$ (continued)

Clean Levels Lemma: Every tree $T \in \mathbb{J}(\kappa)$ has a level α such that for every $t \in 2^{\alpha} \cap T$,

- $T_t = (2^{<\kappa})_t$,
- $T_t = (\mathscr{T}_{\nu}^{(\xi)})_t$ for some $\xi < \kappa^+$ and $\nu < \kappa$,
- $T_t = \bigcap_{\xi < \alpha} (\mathscr{T}_{\rho_{\xi}}^{(\mu_{\xi})})_t$, with $\alpha < \kappa$, for some \subseteq -decreasing $\{ (\mathscr{T}_{\rho_{\xi}}^{(\mu_{\xi})})_t \mid \xi < \alpha \}$.

Sealing Lemma: Every maximal antichain of \mathbb{P}_{ξ} from M_{ξ} remains maximal in $\mathbb{J}(\kappa)$.

(日) (四) (E) (E) (E) (E)

Properties of $\mathbb{J}(\kappa)$

Theorem: The forcing $\mathbb{J}(\kappa)$

- is $<\kappa$ -closed,
- has the κ^+ -cc,
- adds a unique generic subset of κ .

Notation:

- $\mathbb{J}(\kappa)^{<\kappa}$: bounded support κ -length product of $\mathbb{J}(\kappa)$
- $\mathbb{J}(\kappa)_n$: finite iteration of length *n* of $\mathbb{J}(\kappa)$
- Given a tree \mathcal{T} of height ω , $\mathbb{P}(\mathbb{J}(\kappa), \mathcal{T})$: tree iteration of $\mathbb{J}(\kappa)$ along \mathcal{T}

Theorem: In a forcing extension by $\mathbb{J}(\kappa)^{<\kappa}$, the only subsets of κ generic for $\mathbb{J}(\kappa)$ are the κ -many slices of the generic filter.

Theorem: In a forcing extension by $\mathbb{P}(\mathbb{J}(\kappa), \mathcal{T})$, the only generic filters for \mathbb{J}_n are those coming from the nodes of the generic tree on level n.

Corollary: A forcing extension by $\mathbb{J}(\kappa)_n$ has a unique generic *n*-length sequence of subsets of κ .

Kelley-Morse and the choice principles for classes

Theorem: There is a model of Kelley-Morse set theory with the Choice Scheme in which the Dependent Choice Scheme fails.

The model is the $V_{\kappa+1}$ of a symmetric submodel of a forcing extension by a tree iteration of $\mathbb{J}(\kappa)$.