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Let's review forcing: partial orders

Forcing is a technique developed by Paul Cohen in the 1960's for expanding a
set-theoretic universe to a larger universe some desired properties.

Set-up
@ Universe V = ZFC
@ Forcing P € V: partial order with largest element 1 p

Dense sets and generic filters
A set D C P is dense if for every p € P, there is g € D with g < p. ,
A set G C Pis a filter:

e lecG.

o (upward closure) If p € G and p’ > p, then p’ € G.

o (compability) If p,q € G, then r € G such that r < p, q.
A filter G C P is V-generic if it meets every dense set D € V of P: DN G # 0.

The universe V has NO V-generic filters for P.
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Let’s review forcing: building blocks

Set-up
o Universe V = ZFC
o Forcing P € V
o V-generic filter G C P

P-names
A P-name o is set of pairs (7, p), where 7 is a P-name and p € P.

P-names are constructed by recursion on rank.

Special P-names
o Givenac V, 3= {(h1)| b€ a}.
° G={(p,p) | peP}
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Let’s review forcing: forcing extension V[G]

V(6]

Set-up
@ Universe V = ZFC
o Forcing P € V
o Generic filter G C P

From a P-name to a set via G

oc ={716 | {(1,p) € and p € G}.

Constructed by recursion on rank.

The forcing extension V[G] = {o¢ | 0 € V is a P-name}.
o VC VI[G]: ¥ = a.
e Ge V[G]: G;c=G.
e V[G] E ZFC
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Let’s review forcing: forcing theorem

The forcing relation “p forces ¢(c)”
p Ik p(o): for every V-generic filter G if p € G, then V[G] = p(0¢).

The forcing theorem
Fix a formula ¢(x).

@ The relation p Ik ¢(o) is definable.

rank recursion
> plko € 7: there is a dense set of conditions g < p for which there is (p, r) € 7 with

g<randgql-o=p.
» plro=7:plkoCrand plk7Co.
> pl-o C 7: whenever {p,r) € o and ¢’ < p, r, there is ¢ < q’ with gIFp € 7.
recursion on complexity of formulas
> plEpAY: plE@and pl-a.
> pl —p: there is no g < p with g IF .
> plEVxp(x): plko(r) for every P-name 7.

@ If V[G] = p(0¢), then there is p € G such that p IF (o).
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Popular forcing notions: Cohen forcing

Add(w,1): adds a new real

Conditions: binary sequences p : D — 2 with D C w finite. p=1101
Order: g < p if g extends p. g=1110 11
V[G]: r=JG is a new real o

Suppose k is a cardinal.
Add(w, k): adds (at least) k-many reals
Conditions: functions p : D — 2, where D is a finite subset of
w X K.
Order: g < p if g extends p.
VI[G]:
o |J G gives k-many new reals.
0 2Y >k

Suppose k, d are cardinals.
Add(6, x): adds (at least) xk-many subsets of 4.
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Popular forcing notions: collapse forcing

Suppose k is a cardinal.
Coll(w, k): adds a bijection between w and

Conditions: injective functions p : D — x with D C w finite.
Order: g < p if g extends p.

V[G]: f =UG :w — k is a bijection

Coll.(w, ): adds a bijection between w and k

Conditions: injective functions p : n — k with n < w.

Order: g < p if g extends p.

V[G]: f =UG :w — k is a bijection

Observation: Coll,(w, k) is a dense subset of Coll(w, x).

Theorem: If a forcing P is a dense subset of a forcing Q, then they have the same

forcing extensions.

o If V[G] is a forcing extension by P, then there is H € V[G] such that V[G] = V[H]

and H C Q is a V-generic filter.

e If V[H] is a forcing extension by Q, then there is G € V[H] such that V[G] = V[H]
and G C Q is a V-generic filter.

Victoria Gitman A gentle introduction to class forcing Logik Kolloquium 7/28



Products and iterations of forcing notions

Products

Suppose {P, | o < 8} are forcing notions indexed by ordinals o < S.
A product P =[], _;
Conditions: (pa | @ < B) with ps € P,.

P, is a natural forcing notion.

@ Common supports: finite, bounded, full.
o Example: Add(w,x) =]],_,. Add(w,1) with finite support.
)

Usage: adding several objects to a forcing extension.

a<lkK

Iterations
Suppose P is a forcing notion, G C P is V-generic, and Q is a forcing notion in V[G].
V has a P-name @ for Q Every element of V[G] has a P-name in V.

In V, we define a forcing notion P+ () such that forcing with P % Q is the same as forcing
with PP followed by forcing with Q.

o Conditions: (p,q) with pe P and pl- g € Q.
o Order: (p,q) <(r,8)ifp<randpl-g<s.

o Generalizes to ordinal length iterations with various supports.
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Classes in set theory

A class is (first-order) definable with parameters collection of sets.

Examples

@ V: collection of all sets

@ Ord: collection of all ordinals
o Card: collection of all cardinals
@ Reg: collection of all regular cardinals

> A cardinal k is regular if no @ < K can map cofinally into k.
o Continuum function: C : Card — Card such that C(x) = 2".
o L: Godel's constructible universe

@ HOD: collection of all sets hereditarily definable from ordinal parameters

> Takes work to prove that HOD is definable.
» HOD [ ZFC
» HOD is an important sub-universe of V.

o A global well-order function: bijection W : Ord — V.
> Doesn't have to exist.
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Forcing with class partial orders

We need to use class forcing if we want V[G] to be globally different from V.

Examples
@ Force 2" # k™ at all regular cardinals
[1,.creg Add(r, ") with Easton support.

o Force V[G] = HOD

> We can code information about sets into the continuum function.

Suppose r: w — 2 is a real.

Let {rxn | n < w} be w-many “sufficiently spaced out” cardinals.

Code r into the continuum function by forcing 27" = k7 if r(n) = 0 and 2%n > ;7
otherwise.

vyvy

o Force a global well-order.

» Add(Ord,1): binary sequences p : D — 2 with D C Ord.
> Doesn't add sets.

@ Force that there is no global well-order.

An Ord-length iteration where at every cardinal stage a we force with Add(«,1)
(Easton support).
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The right setting for class forcing

Class forcing is fundamentally about classes.
o A generic filter for a class partial order is a class.
@ The properties of the partial order depend on which classes exist around it.
First-order set theory
@ Sets are elements of the model.
o Classes are definable (with parameters) collections of sets.
o Classes are objects in the meta-theory.
Second-order set theory
o Classes are elements of the model.
o We can quantify over classes.
o We can study general properties of classes.

@ The theory determines which classes exist.
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Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: Two-sorted logic
o Separate variables and quantifiers for sets and classes
o Convention: upper-case letters for classes, lower-case letters for sets

@ Notation:

> ):9,: first-order X ,-formula
> Y1 . p-alternations of class quantifiers followed by a first-order formula

Semantics: A model is a triple ¥ = (V, €,C).

@ V consists of the sets. ¢ m
\4

@ C consists of the classes.

@ Every setis a class: V CC.

@ C C V forevery C € C - C is determined by the
sets c € C.
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Second-order axioms

Set axioms - ZFC

Class axioms
@ class extensinality
class replacement: every class function when restricted to a set is a set.

global well-order: there exists a class global well-order function.

°
°
o first-order comprehension: every first-order formula defines a class.
o ETR: elementary transfinite recursion

°

¥ !-comprehension: every ¥:-formula defines a class.
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Second-order theories;: GBC

GBc: Godel-Bernays set theory without global well-order
o class extensionality, class replacement, first-order comprehension
o If V |=ZFC and C consists of the definable collections of V/, then (V, €,C) = GBc.

GBC: Godel-Bernays set theory
o GBc, global well-order

o If C consists of the definable collections of L, then (L, €,C) = GBC.
@ Every model (V, €,C) |= GBc has a class forcing extension with the same sets
satisfying GBC.
> Force with Add(Ord, 1).
GBC is equiconsistent with ZFC

GBC is conservative over ZFC - every assertion about sets provable in GBC is
already provable in ZFC.
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Second-order set theories: ETR
Suppose ¥ = (V,€,C) &= GBC.
Definition: A meta-ordinal is a well-order (I', <) € C.

@ Examples: Ord, Ord + Ord, Ord - w.

@ Notation: For a € I', [ | a is the restriction of the well-order to <-predecessors of a.

Cs G,
Definition: Suppose A € C is a class. A sequence of classes
(C, | a€ A) is a single class C such that
G, ={x|(ax) e C}. c
Definition: Suppose I' € C is a meta-ordinal. A solution along 0 o
I to a first-order recursion rule o(x, b, F) is a sequence of
classes S such that for every b € T, Sy = ¢(x, b, S | b). S,
Elementary Transfinite Recursion ETR: For every v
meta-ordinal ', every first-order recursion rule ¢(x, b, F) has a
solution along I'. S

%/—’S“) b r

Theorem: GBC + ETR proves Con(GBC).
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Second-order set theories: fragments of ETR

ETRr: Elementary transfinite recursion for a fixed I'.
@ ETRord.w, ETRora, ETR

Theorem: (Williams) If I > w® is a (meta)-ordinal, then GBC + ETRy.., implies
Con(GBC + ETRy).
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Second-order set theories: the comprehension hierarchy to Kelley-Morse

The hierarchy
e GBC
o GBC + ETRora
GBC + ETR
GBC + Z}-comprehension

GBC + X}-comprehension

o KM Kelley Morse - GBC + X:-comprehension for every n < w
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Finally class forcing

Set-up
@ Universe ¥ = (V, €,C) = GBc
o Class forcing P € C: partial order with largest element 1

Generic filters
A filter G C P is ¥'-generic if it meets every dense class D € C of P: DN G # ().

The universe ¥ has NO ¥-generic filters for P.

Class P-names
A class P-name I' € C is class of pairs (T, p), where 7 is a P-name and p € P.

Special class P-names
e Given AcC, A= {(b1)| be A}.
o G={(pp)|peP).
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The class forcing extension

Set-up
o Universe ¥ = (V,€,C) = GBc
o Class forcing P € C
@ V-generic filter G C P

The class forcing extension ¥ [G] = (V[G], €,C[G])
e C[G] ={l¢|T €Cis a class P-name}
e CCC[G]: Ag = A.
e G €C[G]: Ge=G.
e V[G] = GBc???
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Quick aside on set theories without powerset

ZFC™: ZFC without the powerset axiom

If T is any second-order set theory, then T is T with ZFC replaced by ZFC™.

o F = = DA
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Preserving the axioms (or not)

Set-up
@ Universe ¥ = (V, €,C) = GBc (or GBC or KM)
o Class forcing P € C
o V-generic filter G C P
o 7[G] = (V[G], &,C[G])
Example: P = Add(w, Ord)
@ Conditions: functions p: D — 2, where D C w x Ord.
@ P adds Ord-many reals.
@ The powerset axiom fails in V[G].
e V[G]ZFC
e V[G]=GBc™ (or GBC™ or KM™)
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Preserving the axioms (or not): continued
Example: P = Coll,(w, Ord)
o Conditions: injective functions p : n — Ord with n < w.
P does NOT add sets.
P adds a class bijection F : w — Ord.
The class replacement axiom fails in 7 [G].
V[G] = V = ZFC.
¥ [G]~GBc.
Example: P = Coll(w, Ord)
o Conditions: injective functions p : D — Ord with D C w finite.

@ For every cardinal k, P adds a set bijection f,. : w — K.

P adds a class bijection F : w — Ord.

V[G]EZFC

V[G]EZFC™.

V[G]£EGBe™.

Theorem: (Holy, Krapf, Liicke, Njegomir, Schlicht) Suppose ¥ = (V, €,C) = GBc.

There are class forcing P, Q € C such that P is a dense subset of QQ, but they have
different forcing extensions.
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Nice class forcing: pretame and tame

Definition: (Friedman) A class forcing P is pretame if for every class sequence (Dx | x € a) € C of dense classes of P, indexed by elements of a set a,
and condition p € P, there is a condition g < p and a sequence (dx | x € a) of subsets of P such that each dy C Dy is pre-dense below g in P.

Definition: (Friedman) A class forcing P is tame if it is pretame and for every p € P, there is ¢ < p and ordinal o such that whenever
D= {(Dg, Di() | x € a} € C, for a set a, is a sequence of pre-dense partitions below g, then the class

{r € P | D is equivalent below r to some partition £ € V¢, }

is dense below g.
Theorem: (Stanley) Suppose ¥ = (V, €,C) = GBc (or GBC) and P € C is a class
forcing notion.

o If P is pretame, then all forcing extensions ¥[G] of P satisfy GBc™ (or GBC™).

o If all forcing extensions ¥[G] of P satisfy GBc™ (or GBC™), then P is pretame.
Theorem: (Friedman) Suppose ¥ = (V, €,C) |= GBc (or GBC) and P € C is a class
forcing notion.

o If P is tame, then all forcing extensions ¥[G] satisfy GBc (or GBC).

o If all forcing extensions ¥ [G] of P satisfy GBc (or GBC), then P is tame.

Theorem: (Antos) Suppose ¥ = (V,€,C) = KM and P € C is a class forcing notion.
o If P is pretame, then all forcing extensions ¥[G] of IP satisfy KM ™.
o If P is tame, then all forcing extension ¥[G] of P satisfy KM.
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Definability of the forcing relation (or not)

Suppose ¥ = (V,€,C) = GBc and P € C is a class forcing.

Definition: Suppose ¥ = (V, €,C) = GBc and P € C is a class forcing.
The Class Forcing Theorem holds for P if there is a solution to the rank recursion
defining the forcing relation for atomic formulas.

@ plk o € 7: there is a dense set of conditions g < p for which there is (p, r) € 7 with
g<randqgl-o=p.

o plFo=7:plkoCrand plk-7Co.

@ pl-o C 7: whenever (p,r) € 0 and ¢’ < p,r, thereis g < ¢’ with gl-p e 7.
The Class Forcing Theorem for P implies that forcing relations for all second-order
formulas are definable.

o plk o €T: there are densely many g < p for which there is (r,r) € [ with g < r
and gl-o=r.

plEo A pl-yand pl- .
p IF = there is no g < p with g IF ¢.

plFVxp(x): plk () for every P-name 7.
plEVX @(X): plF p(A) for every class P-name A.
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The Class Forcing Theorem fails, but pretame forcing is still nice

Theorem: (Holy, Krapf, Liicke, Njegomir, Schlicht) In a models of GBC, the Class
Forcing Theorem can fail for some class forcing.

Theorem: (Stanley) In models of GBc, the Class Forcing Theorem holds for all pretame
class forcing.
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The Class Forcing Theorem is equivalent to ETR.q

Theorem: (G., Hamkins, Holy, Schlicht, Williams).
@ In models of GBC + ETRo.4, the Class Forcing Theorem holds for all class forcing.

o If ¥ |= GBC and satisfies that the Class Forcing Theorem holds for all class forcing,
then ¥ = ETRora.-
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Ground model definability

Theorem: (Laver, Woodin) The ground model V is uniformly definable with a parameter
from V in any set-forcing extension V[G].

Theorem: (Antos) Suppose V = ZFC. There is a class forcing P such that the ground
model V is not definable in any forcing extension V[G] by PP, even with a parameter from
V[G].

o P is the product [], g,

Theorem: (G., Johnstone) There is a model ¥ = (V, €,C) = KM such that the classes
C of the ground model ¥ are not definable in any forcing extension

¥ [G] = (V[G], €,C[G]) by Add(Ord, 1), even with a parameter from C[G].

(Assuming existence of inaccessible cardinal.)

Theorem: (Asperd) There is a model ¥ = (V. €,C) = KM such that the classes C of
the ground model ¥ are not definable in any forcing extension ¥ [G] = (V[G], €,C[G])
by Add(w, 1), even with a parameter from C[G].

(Assuming existence of very very large cardinals.)

Add(a, 1) with Easton support.
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The Class Intermediate Model Theorem

Intermediate Model Theorem: (Solovay) If V |=ZFC and W = ZFC is an
intermediate model between V' and its set-forcing extension V[G] (V C W C VI[G]),
then W = V[H] is a set-forcing extension of V.

Definition: Suppose T is a second-order set theory.
The Intermediate Model Theorem holds for T if whenever ¥ |= T and # |= T is an
intermediate model between ¥ and its class-forcing extension ¥ [G] = T, then # is a
class-forcing extension of 7.
Theorem: (Antos, Friedman, G.) The Intermediate Model Theorem fails for:

e GBC

o KM
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