An overview of virtual large cardinals

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

> Forcing Workshop University of Konstanz

> > July 21, 2023

The large cardinal hierarchy in L

A cardinal κ is:

- inaccessible if it is a regular strong limit.
- weakly compact if every coloring f : [κ]² → 2 has a homogeneous set of size κ.
- ineffable if every coloring $f : [\kappa]^2 \to 2$ has a stationary homogeneous set.
- completely ineffable if there is a non-empty collection S of stationary subsets of κ such that for every coloring f : [A]² → 2 and A ∈ S, there is B ⊆ A in S homogeneous for f.
- ω-Erdős if every coloring f : [κ]^{<ω} → 2 has homogeneous set of order-type ω.
- α -Erdős ($\omega < \alpha < \omega_1$) if every coloring $f : [\kappa]^{<\omega} \to 2$ has homogeneous set of order-type α .

The large large cardinal hierarchy

measurable cardinal κ : there is an embedding $j : V \to M$ with crit $(j) = \kappa$.

• set embeddings: for every $\lambda > \kappa$, there is $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$

 λ -strong cardinal κ : there is an embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$ and $V_{\lambda} \subseteq M$.

- set embedding: $j_{\lambda}: V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$ and $V_{\lambda} \subseteq M_{\lambda}$
- can assume $j(\kappa) > \lambda$ (proof uses Kunen's inconsistency)

strong cardinal κ : λ -strong for every $\lambda > \kappa$.

 λ -supercompact cardinal κ : there is an embedding $j : V \to M$ with $\operatorname{crit}(j) = \kappa$ and $M^{\lambda} \subseteq M$.

- equivalently $j \upharpoonright \lambda \in M$
- set embedding: $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$ and $M_{\lambda}^{\lambda} \subseteq M_{\lambda}$
- can assume $j(\kappa) > \lambda$

supercompact cardinal κ : λ -supercompact for every $\lambda > \kappa$.

イロト イポト イヨト イヨト 二日

The large large cardinal hierarchy (continued)

extendible cardinal κ : for every $\kappa < \lambda$, there is β_{λ} and an embedding $j_{\lambda} : V_{\lambda} \to V_{\beta_{\lambda}}$ with crit $(j_{\lambda}) = \kappa$.

 $C^{(n)}$ -extendible cardinal κ $(1 \le n < \omega)$: for every $\kappa < \lambda \in C^{(n)}$, there is $\beta_{\lambda} \in C^{(n)}$ and an embedding $j_{\lambda} : V_{\lambda} \to V_{\beta_{\lambda}}$ with crit $(j_{\lambda}) = \kappa$.

- $C^{(n)} = \{ \alpha \in \text{Ord} \mid V_{\alpha} \prec_{\Sigma_n} V \}$
- extendible cardinals are $C^{(1)}$ -extendible
- can assume $j_{\lambda}(\kappa) > \lambda$

Vopěnka's Principle: Every proper class of first-order structures in the same language has two structures which elementarily embed.

- (Bagaria) for every $1 \le n < \omega$ there is a proper class of $C^{(n)}$ -extendible cardinals
- (Bagaria) for every $1 \le n < \omega$ there is a $C^{(n)}$ -extendible cardinal
- can assume structures are $\langle V_{\lambda}, \in, R \rangle$, where R is a unary predicate
- can assume language is finite

イロト イポト イヨト イヨト 二日

The largest large cardinal hierarchy (too large?)

rank-into-rank cardinal κ : there is an embedding $j : V_{\lambda} \to V_{\lambda}$ with $\operatorname{crit}(j) = \kappa$.

- λ is limit or $\lambda = \overline{\lambda} + 1$
- Kunen's inconsistency: there is no non-trivial embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$

Berkeley cardinal δ : for every transitive set M, with $\delta \subseteq M$, and $\gamma < \delta$, there is an embedding $j: M \to M$ with $\gamma < \operatorname{crit}(j) < \delta$.

- inconsistent with ZFC
- consistent with ZF?

club Berkeley cardinal δ : for every transitive set M, with $\delta \subseteq M$, and club $C \subseteq \delta$, there is an embedding $j: M \to M$ with crit $(j) \in C$.

イロン イ団と イヨン イヨン

Large cardinal embeddings in a forcing extension

Question: What happens if we ask that embeddings characterizing a given large cardinal exist in a forcing extension of V?

Versions of measurability

- In a forcing extension V[G]:
 - there is an embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$ and $M \subseteq V$.
 - (Usuba) κ is measurable!
 - generically measurable: there is an embedding $j: V \to M \subseteq V[G]$ with $crit(j) = \kappa$.
 - equiconsistent with a measurable cardinal
 - κ can be a small cardinal like ω_1
 - generically setwise measurable: for every $\lambda > \kappa$, there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda} \in V[G]$ with crit $(j_{\lambda}) = \kappa$.
 - (Nielsen) equiconsistent with a virtually measurable cardinal!
 - virtually measurable: for every $\lambda > \kappa$, there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$ and $M_{\lambda} \subseteq V$.
 - equivalently $M_{\lambda} \in V$
 - κ is completely ineffable and more
 - consistent with L

Large cardinal embeddings in a forcing extension (continued)

Versions of strongness

For every $\lambda > \kappa$, in a forcing extension V[G]:

- generically strong: there is an embedding $j: V \to M \subseteq V[G]$ with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$, and $V_{\lambda} \subseteq M$.
 - at least measurable in consistency strength
- generically setwise strong: there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda} \in V[G]$ with $\operatorname{crit}(j_{\lambda}) = \kappa, j(\kappa_{\lambda}) > \lambda$, and $V_{\lambda} = V_{\lambda}^{M_{\lambda}}$.
 - (Dimopolous, G., Nielsen) equivalent to a virtually strong cardinal!
- virtually strong: there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa, j_{\lambda}(\kappa) > \lambda, M_{\lambda} \subseteq V$, and $V_{\lambda} \subseteq M_{\lambda}$.
- virtually* strong: there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda} \in V[G]$ with $\operatorname{crit}(j_{\lambda}) = \kappa$, $j_{\lambda}(\kappa) > \lambda$, and $V_{\lambda} = V_{\lambda}^{M_{\lambda}}$, but M_{λ} need not be well-founded.
 - defined by Wilson
 - (G.) weaker than a virtually strong cardinal

・ロト ・個ト ・ヨト ・ヨト

Large cardinal embeddings in a forcing extension (continued)

Versions of supercompactness

For every $\lambda > \kappa$, in a forcing extension V[G]:

- generically supercompact: there is an embedding $j : V \to M \subseteq V[G]$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda$, and $j \upharpoonright \lambda \in M$.
- virtually supercompact: there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$, $j_{\lambda}(\kappa) > \lambda$, $M_{\lambda} \subseteq V$, and $M_{\lambda}^{\lambda} \subseteq M_{\lambda}$ in V.
 - equivalently $M_{\lambda} \in V$
 - consistent with L
- generically setwise supercompact: there is an embedding j_λ : V_λ → M_λ ∈ V[G] with crit(j_λ) = κ, j_λ(κ) > λ, and M^λ_λ ⊆ M_λ in V[G].
 - defined by Schlicht and Nielsen
 - (Usuba) equiconsistent with a virtually extendible cardinal

・ロト ・個ト ・ヨト ・ヨト

Large cardinal embeddings in a forcing extension (continued)

Versions of extendibility

For every $\lambda > \kappa$, in a forcing extension V[G]:

- virtually extendible: there is an embedding $j : V_{\lambda} \to V_{\beta_{\lambda}}$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.
 - consistent with L

• generically extendible: there is an embedding $j: V_{\lambda} \to V_{\beta}^{V[G]}$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.

- recently defined by Ikegami and Vänäänen
- (Ikegami, Vänäänen) strong compactness cardinal for second-order Boolean-valued logic
- (Usuba) equiconsistent with a virtually extendible cardinal

・ロト ・四ト ・ヨト ・ヨト

Virtual versus generic large cardinals

Virtual

- set embeddings
- the target M is in V
- the target M has closure in V
- completely ineffable and more
- consistent with L

Generic

- class or set embeddings
- the target M may not be a subset of V

イロト イポト イヨト イヨト

- the target M has closure in V[G]
- could be a small cardinal like ω₁
- usually high consistency strength

There is a virtual embedding between first-order structures M and N if they elementarily embed in a forcing extension.

Proposition: There is a virtual isomorphism between the reals \mathbb{R} and the rationals \mathbb{Q} . **Proof**:

- Force with $\operatorname{Coll}(\omega, \mathbb{R})$ to make \mathbb{R} countable in the forcing extension V[G].
- In V[G], \mathbb{R}^{V} is a countable dense linear order without endpoints. \Box

Absoluteness lemma for countable embeddings

Lemma: (Silver) Suppose M and N are first-order structures such that

- *M* is countable,
- there is an embedding $j: M \to N$.

Suppose W is a transitive (set or class) model of (a large enough fragment of) ZFC such that

- $M, N \in W$,
- M is countable in W.

Then for any finite $\bar{a} \subseteq M$, W has an embedding $j^* : M \to N$ agreeing with j on \bar{a} , and (where applicable) crit(j) =crit (j^*) .

Proof:

- Enumerate $M = \{a_n \mid n < \omega\}$ in W. Let $M \upharpoonright n = \{a_i \mid i < n\}$.
- Let T be the tree of all partial finite isomorphisms

 $f: M \upharpoonright n \to N$,

satisfying the requirements, ordered by extension.

- M embeds into N if and only if T has a cofinal branch.
- T is ill-founded in V, and hence in W. \Box

イロン イロン イヨン イヨン 三日

Virtual embeddings and collapse extensions

Lemma: Suppose M and N are first-order structures and some set-forcing extension has an embedding $j : M \to N$. Then for every finite $\bar{a} \subseteq M$, $V^{\text{Coll}(\omega,M)}$ has an embedding $j^* : M \to N$ agreeing with j on \bar{a} and (where applicable) $\operatorname{crit}(j) = \operatorname{crit}(j^*)$.

Proof: Suppose a set-forcing extension V[G] has an elementary $j: M \to N$.

- Let $|M|^V = \delta$.
- Consider a further extension V[G][H] by $Coll(\omega, \delta)$.
- $j \in V[G][H]$ and M is countable in V[G][H].
- $V[H] \subseteq V[G][H]$ has the embedding $j^* : M \to N$ (by Absoluteness lemma). \Box

virtually Berkeley cardinal δ : for every transitive set M, with $\delta \subseteq M$, and $\gamma < \delta$, there is a virtual embedding $j : M \to M$ with $\gamma < \operatorname{crit}(j) < \delta$.

virtually club Berkeley cardinal δ : for every transitive set M, with $\delta \subseteq M$, and club $C \subseteq \delta$, there is a virtual embedding $j : M \to M$ with $crit(j) \in C$.

Theorem: (Wilson)

- Virtually club Berkeley cardinals are precisely the ω -Erdös cardinals.
- The least ω -Erdős cardinal is the least virtually Berkeley cardinal.

Corollary:

- Virtually club Berkeley cardinals are consistent with L.
- There is NO virtual Kunen's inconsistency!

virtually rank-into-rank cardinal κ : there is a virtual embedding $j: V_{\lambda} \to V_{\lambda}$ with $\operatorname{crit}(j) = \kappa$.

• λ is not restricted by Kunen's inconsistency.

Theorem: (G., Schindler) The least ω -Erdős cardinal is a limit of virtually rank-into-rank cardinals.

Virtually $C^{(n)}$ -extendible cardinals

virtually $C^{(n)}$ -extendible cardinal κ : for every $\kappa < \lambda \in C^{(n)}$, there is a virtual embedding $j_{\lambda}: V_{\lambda} \to V_{\beta_{\lambda}}$ with $\operatorname{crit}(j_{\lambda}) = \kappa, j_{\lambda}(\kappa) > \lambda$, and $\beta_{\lambda} \in C^{(n)}$.

weakly virtually $C^{(n)}$ -extendible cardinal κ : for every $\kappa < \lambda \in C^{(n)}$, there is a virtual embedding $j_{\lambda} : V_{\lambda} \to V_{\beta_{\lambda}}$ with crit $(j_{\lambda}) = \kappa$ and $\beta_{\lambda} \in C^{(n)}$.

Theorem: (G., Schindler) If κ is virtually rank-into-rank, then V_{κ} is a model of proper class many virtually $C^{(n)}$ -extendible cardinals.

Theorem: (G.) If there is a weakly virtually extendible cardinal which is not virtually extendible, then there is a virtually rank-into-rank cardinal.

Corollary: If there are NO virtually rank-into-rank cardinals, then a cardinal is weakly virtually $C^{(n)}$ -extendible if and only if it is virtually $C^{(n)}$ -extendible.

Corollary: A weakly virtually $C^{(n)}$ -extendible cardinal is equiconsistent with a virtually $C^{(n)}$ -extendible cardinal.

Question: If there is a weakly virtually extendible cardinal which is not virtually extendible, is there a virtually Berkeley cardinal?

(日) (四) (日) (日) (日) (日)

Virtual Vopěnka's Principle: Every proper class of first-order structures in the same language has two structures which virtually elementarily embed.

Theorem: (G., Hamkins) Virtual Vopenka's Principle holds if and only if for every $n < \omega$, there is a proper class of weakly virtually $C^{(n)}$ -extendible cardinals.

Theorem: (G., Hamkins) It is consistent that Virtual Vopěnka's Principle holds, but there are no virtually supercompact cardinals.

イロト イポト イヨト イヨト

Virtual Vopěnka's Principle for finite languages

Virtual Vopěnka's Principle for finite languages: Every proper class of first-order structures in the same finite language has two structures which virtually elementarily embed.

Theorem: (Dimopolous, G., Nielsen) Virtual Vopěnka's Principle for finite languages holds if and only if for every $n < \omega$, there is a weakly virtually $C^{(n)}$ -extendible cardinal.

Theorem: (G., Nielsen) It is consistent that the Virtual Vopěnka's Principle fails and the virtual Vopěnka's Principle for finite languages holds.

Theorem: (Nielsen) If for every $n < \omega$, there is a weakly virtually $C^{(n)}$ -extendible cardinal, but for some $n < \omega$, there is no virtually $C^{(n)}$ -extendible cardinal, then there is a virtually Berkeley cardinal.

Corollary: If there are NO virtually Berkeley cardinals, then the following are equivalent:

- virtual Vopěnka's Principle
- virtual Vopěnka's Principle for finite languages
- for every $n < \omega$ there is a virtually $C^{(n)}$ -extendible cardinal

・ロト ・四ト ・ヨト ・ヨト

Virtually supercompact cardinals

virtually supercompact cardinal κ : for every $\lambda > \kappa$, there is a virtual embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with crit $(j_{\lambda}) = \kappa$, $j_{\lambda}(\kappa) > \lambda$, and $M_{\lambda}^{\lambda} \subseteq M_{\lambda}$.

Theorem: (G., Schindler) A cardinal κ is virtually supercompact if and only if it is remarkable.

Theorem: (G., Schindler) A virtually extendible cardinal is a limit of virtually supercompact cardinals.

setwise generically supercompact cardinal κ : for every $\lambda > \kappa$, in a forcing extension V[G], there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$ and $M_{\lambda}^{\lambda} \subseteq M_{\lambda}$ in V[G].

Theorem: (Usuba) The following are equiconsistent.

- virtually extendible cardinal
- (ω_1 or ω_2 is a) generically setwise supercompact cardinal
 - $\kappa > \omega_2$ is generically setwise supercompact implies $0^{\#}$.
- generically extendible cardinal

・ロト ・四ト ・ヨト ・ヨト

Virtually strong cardinals

virtually strong cardinal κ : for every $\lambda > \kappa$, there is a virtual embedding $j : V_{\lambda} \to M$ with crit $(j) = \kappa$, $j(\kappa) > \lambda$, and $V_{\lambda} \subseteq M$.

weakly virtually strong cardinal κ : for every $\lambda > \kappa$, there is a virtual $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa$ and $V_{\lambda} \subseteq M$.

Theorem: (Nielsen) If a cardinal is weakly virtually strong cardinal, but not not virtually strong, then it is virtually rank-into-rank.

Corollary: Weakly virtually strong cardinals are equiconsistent with virtually strong cardinals.

Theorem: (G., Schindler) A cardinal is virtually supercompact if and only if it is virtually strong.

generically setwise strong cardinal κ : for every $\lambda > \kappa$, in a forcing extension V[G], there is an embedding $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda$, and $V_{\lambda} = V_{\lambda}^{M}$.

Theorem: (G., Dimopolous, Nielsen) A cardinal is virtually strong if and only if it is generically setwise strong.

イロト イポト イヨト イヨト 二日

virtually measurable cardinal κ : for every $\lambda > \kappa$, there is a virtual embedding $j: V_{\lambda} \to M$ with crit $(j) = \kappa$.

generically setwise measurable cardinal κ : for every $\lambda > \kappa$, in a forcing extension V[G], there is an embedding $j : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$.

Theorem: (Nielsen) Generically setwise measurable cardinals are equiconsistent with virtually supercompact cardinals.

Proof: A generically setwise measurable cardinal κ is weakly virtually strong in *L*. \Box

Theorem: (G.) It is consistent that there is a generically setwise measurable cardinal which is not weakly virtually strong.

イロン イヨン イヨン イヨン

virtually* strong cardinal κ : (Wilson) for every $\lambda > \kappa$, in a forcing extension V[G], there is an embedding $j_{\lambda} : V_{\lambda} \to M_{\lambda}$ with $\operatorname{crit}(j_{\lambda}) = \kappa$ and $V_{\lambda} = V_{\lambda}^{M_{\lambda}}$, but M_{λ} need not be well-founded.

Theorem: (G.)

- A cardinal κ is κ + 1-virtually* strong if and only if it is completely ineffable.
- virtually* strong cardinals are weaker than virtually measurable cardinals.

Weak Vopěnka's Principle: Technical weakening of Vopěnka's Principle.

Theorem: (Wilson) Weak Vopěnka's Principle holds if and only if for every $n < \omega$, there is a $C^{(n)}$ -strong cardinal.

Theorem: (Wilson) Virtual Weak Vopenka's Principle holds if and only if for every $n < \omega$, there is a weakly virtually* $C^{(n)}$ -strong cardinal.

・ロト ・回ト ・ヨト ・ヨト

Applications

The model $L(\mathbb{R})$

- start the *L*-construction with $\mathbb R$ instead of \emptyset
- satisfies **ZF**
- assuming large cardinals, satisfies the Axiom of Determinacy.

Even though forcing easily changes the theory of V, it is consistent (from large cardinals) that the theory of $L(\mathbb{R})$ cannot be changed by forcing.

Theorem: (Woodin) If there is a supercompact cardinal, then there is a model in which theory of $L(\mathbb{R})$ cannot be changed by forcing.

Theorem: (Schindler) The assertion that the theory of $L(\mathbb{R})$ cannot be changed by proper forcing is equiconsistent with a remarkable (virtually supercompact) cardinal.

A set of reals is <u>universally Baire</u> if for every continuous function from a compact Hausdorff space to the reals, its <u>preimage</u> has the <u>Baire</u> property.

- include Σ_1^1 -sets and Π_1^1 -sets
- Lebesgue measurable
- Baire property
- assuming large cardinals, perfect set property

Theorem: (Schindler, Wilson) The assertion that every universally Baire set has the perfect set property is equiconsistent with a virtually Shelah for supercompactness cardinal.

イロト イポト イヨト イヨト

The virtual large cardinal hierarchy: consistency strength

Victoria Gitman

An overview of virtual large cardinals

Konstanz 25 / 25