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This is joint work with Sy-David Friedman and Vladimir Kanovei.
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Why second-order arithmetic

Models of second-order arithmetic have two types of objects:

numbers

sets of numbers (reals).

A second-order arithmetic axiom system postulates what kind of sets of numbers (reals)
exist.

Given a theorem in analysis, we can ask what kind of reals need to exist in order to be
able to prove it.

Second-order arithmetic provides an incredibly effective measuring stick for answering
such questions.

(Most) classical results in analysis are provable within one of the main second-order
arithmetic systems and indeed are equivalent to some such system (over a weak base
system).
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Second-order arithmetic

Syntax: Two-sorted logic

Separate variables and quantifiers for numbers and sets of numbers.

Convention: lower-case letters for numbers, upper-case letters for sets of numbers.

Notation:
I Σ0

n - first-order Σn-formula
I Σ1

n - n-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is M = 〈M,+,×, <, 0, 1,S〉.
M is the collection of numbers.

S is the collection of sets of numbers: if A ∈ S, then A ⊆ M.

Example: the full standard model M = 〈ω,+,×, <, 0, 1,P(ω)〉.
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Axiom systems
First-order axioms

PA−

(Induction axiom) ∀X ((0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ))→ ∀n n ∈ X )

Arithmetical comprehension ACA0

Comprehension scheme for first-order formulas: for all n, Σ0
n-CA0

if ϕ(n,A) is a first-order formula, then {n | ϕ(n,A)} is a set.

? Example: If 〈M,+,×, <, 0, 1〉 |= PA and S consists of definable subsets of M, then

M = 〈M,+,×, <, 0, 1,S〉 |= ACA0.

? Every model of PA is naturally also a model of ACA0.

? ACA0 is conservative over PA.

Elementary Transfinite Recursion ATR0

ACA0

Every first-order recursion on sets along a well-order has a solution.
I A well-order is a linear order Γ whose every subset has a minimal element.
I A solution to a recursion is a code of a function F : dom(Γ)→ S.

A code for F is F̄ = {〈n,m〉 | n ∈ dom(Γ, ) m ∈ F (n)}

? Can iterate Turing jump.

? Can build an internal constructible universe L.
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Axiom systems (continued)

Σ1
n-comprehension Σ1

n-CA0

Σ1
n-comprehension: If ϕ(n,A) is a Σ1

n-formula, then {n | ϕ(n,A)} is a set.

? Σ1
1-CA0 is stronger than ATR0.
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Full second-order arithmetic Z2

Full second-order comprehension: for all n, Σ1
n-comprehension.

Example: If V |= ZF, then the full standard model M V = 〈ω,+,×, <, 0, 1,P(ω)〉 |= Z2.

Gödel’s constructible universe L

Suppose V |= ZF.

L0 = ∅
Lα+1 is the set of all subsets of Lα definable over Lα.

Lλ =
⋃
α<λ Lα for a limit λ.

L =
⋃
α∈Ord Lα.

V
L

Suppose M = 〈M,+,×, <, 0, 1,S〉 |= Z2 and Γ ∈ S is a well-order.

M can construct the L-hierarchy along Γ (uses ATR0).

There is a set coding a sequence of L∆ for ∆ ≤ Γ obeying the definition of L.

A model of Z2 has its own constructible universe LM !

Theorem: (Shoenfield Absoluteness) If ϕ is a Σ1
2-assertion, then M |= ϕ iff LM |= ϕ.

In LM interpret ϕ as an assertion about numbers and reals.
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ω-models and β-models of second-order arithmetic

Definition: A model of second-order arithmetic is an ω-model if it has the standard
first-order part: M = 〈ω,+,×, <, 0, 1,S〉.

Definition: A β-model of second-order arithmetic is an ω-model
M = 〈ω,+,×, <, 0, 1,S〉 that is correct about well-foundedness:

for every relation Γ ∈ S, M |= Γ is well-founded iff Γ is well-founded.

An ω-model of second-order arithmetic can be wrong about well-foundedness because it is missing a witnessing subset.

Example: If V |= ZF, then M V = 〈ω,+,×, <, 0, 1,P(ω)〉 is a β-model of Z2.

Example: Suppose M = 〈ω,+,×, <, 0, 1,S〉 is a β-model of Z2.

M is correct about ordinals.

M is correct about the constructible universe L up to its height.
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Set choice principles
Choice Scheme

“If for every n, there is a set X witnessing ϕ(n,X ,A), then there is a single set Z
collecting witnesses for every n.”

Choice scheme Σ1
n-AC: A scheme consisting of assertions for every Σ1

n-formula
ϕ(n,X ,A),

∀n ∃Xϕ(n,X , a)→ ∃Z ∀nϕ(n,Zn,A),

where Zn = {m | (n,m) ∈ Z} is the n-th slice of Z .

Σ1
∞-AC: for all n, Σ1

n-AC.

Example: If V |= ZF + ACω, then M V = 〈ω,+,×, <, 0, 1,P(ω)〉 is a β-model of
Z2 + Σ1

∞-AC.

Dependent Choice Scheme

“Every relation on sets without terminal nodes has an infinite branch.”

Dependent choice scheme Σ1
n-DC: A scheme consisting of assertions for every

Σ1
n-formula ϕ(X ,Y ,A),

∀X ∃Y ϕ(X ,Y ,A)→ ∃Z ∀nϕ(Zn,Zn+1,A).

Σ1
∞-DC: for all n, Σ1

n-DC.

Example: If V |= ZF + DC, then M V = 〈ω,+,×, <, 0, 1,P(ω)〉 is a β-model of
Z2 + Σ1

∞-DC.
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Choice principles in Z2

Theorem: Z2 proves Σ1
2-AC.

Proof: Suppose M |= Z2 and M |= ∀n ∃X ϕ(n,X ), where ϕ is Σ1
2.

By Shoenfield Absoluteness, LM has a witness for every Σ1
2-assertion ϕ(n,X ).

Choose the least LM -witness X and use comprehension to collect.

Theorem: (Mansfield, Simpson) Z2 proves Σ1
2-DC.

Strategy for constructing models with a failure of choice

Construct a forcing extension V [G ] having a submodel N |= ZF with a definable
failure of choice.

Let M N = 〈ω,+,×, <, 0, 1,P(ω)N〉.
Necessarily produces a β-model.
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Quick review of forcing

Suppose V |= ZFC and P is a forcing notion: partial order with largest element 1l.

Dense sets and generic filters

D ⊆ P is dense if for every p ∈ P, there is q ∈ D with q ≤ p.

G ⊆ P is a filter:

(upward closure) If p ∈ G and p′ ≥ p, then p′ ∈ G .

(compability) If p, q ∈ G , then r ∈ G such that r ≤ p, q.

Note: If G 6= ∅, then 1l ∈ G .

r

p′

p q

A filter G ⊆ P is V -generic if it meets every dense set D ∈ V of P: D ∩ G 6= ∅.

Theorem: V has no V -generic filters for P.

The forcing extension V [G ] is constructed from V together with an external V -generic
filter G .
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Quick review of forcing (continued)
P-names: names for elements of V [G ].

Defined recursively so that a P-name σ consists of pairs 〈τ, p〉: p ∈ P and τ is a P-name.

Special P-names

Given a ∈ V , ǎ = {〈b̌, 1l〉 | b ∈ a}.
Ġ = {〈p̌, p〉 | p ∈ P}.

Forcing extension V [G ]

Suppose G ⊆ P is V -generic and σ is a P-name. The
interpretation of σ by G : σG = {τG | 〈τ, p〉 ∈ σ and p ∈ G}.
Defined recursively.

The forcing extension V [G ] = {σG | σ is a P-name in V }.
V ⊆ V [G ]: ǎG = a.

G ∈ V [G ]: ĠG = G .

V [G ] |= ZFC

V
V [G ]

•G

Forcing relation p 
 ϕ(σ)

Whenever G is V -generic and p ∈ G , then V [G ] |= ϕ(σG ).

Theorem: (definability of the forcing relation) For a fixed first-order formula ϕ(x), the
relation p 
 ϕ(σ) is definable.
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Useful forcing notions

Add(ω, κ) - Add κ-many subsets to ω

Conditions: functions p : D → 2, where D is a finite
subset of ω × κ.

Order: p ≤ q if p extends q.

? If G ⊆ Add(ω, κ) is V -generic, then in V [G ], 2ω ≥ κ.
0
1
1

0

1

1

0

1

1
ω

κ

Add(ω1, κ) - Add κ-many subsets to ω1

Conditions: functions p : D → 2, where D is a countable subset of ω1 × κ.

Order: p ≤ q if p extends q.

Coll(ω, κ) - Collapse κ to ω

Conditions: functions p : D → κ, where D is a finite subset of ω.

Order: p ≤ q if p extends q.

? If G ⊆ Coll(ω, κ) is V -generic, then in V [G ], κ is a countable ordinal.
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Useful forcing notions (continued)

Sacks forcing S - Add a generic real

Conditions: Perfect trees T ⊆ 2<ω: every node has a splitting node above it.

Order: T ≤ S if T is a subtree of S .

? If G is V -generic for S, then there is a real b ∈ V [G ] such that T ∈ G iff b is a
branch of T .

? The generic real b determines G .
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Products and iterations of forcing notions
Products

Suppose Pα for α < β are forcing notions.

A product P = Πα<βPα is also a natural forcing notion.

Conditions: 〈pα | α < β〉 with pα ∈ Pα.

Common supports: finite, bounded, full.

Example: Add(ω, κ) = Πα<κAdd(ω, 1) with finite support.

Usage: adding several objects to a forcing extension.

Iterations

Suppose P is a forcing notion, G ⊆ P is V -generic, and Q is a forcing notion in V [G ].

V has a P-name Q̇ for Q. Every element of V [G ] has a P-name in V .

In V , we can define a forcing notion P ∗ Q̇ such that forcing with P ∗ Q̇ is the same as
forcing with P followed by forcing with Q.

Conditions: (p, q̇) with p ∈ P and p 
 q̇ ∈ Q̇.

Order: (p, q̇) ≤ (r , ṡ) if p ≤ r and p 
 q̇ ≤ ṡ.

n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: S ∗ Ṡ, where Ṡ is the name for the Sacks forcing of the forcing extension.
Sacks forcing of V [G ] is different from Sacks forcing of V because V [G ] has new perfect trees.
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Symmetric submodels of forcing extensions
Set-up

P is a forcing notion.

G is a group of automorphisms of P.
F is a normal filter of subgroups of G.

I (upward closure) If H1 ∈ F and H2 ⊇ H1, then H2 ∈ F .
I (closure under intersections) If H1, H2 ∈ F , then H1 ∩ H2 ∈ F .
I (normality) If H ∈ F and π ∈ G, then πHπ−1 ∈ F .

G ⊆ P is V -generic

Definition: If σ is a P-name and π ∈ G, then π(σ) = {〈π(τ), π(p)〉 | 〈τ, p〉 ∈ σ}.

Proposition: For every p ∈ P, p 
 ϕ(σ) iff π(p) 
 ϕ(π(σ)).

Definition: Suppose σ is a P-name.

σ is symmetric if there is H ∈ F such that every π ∈ H
fixes σ: π(σ) = σ.

σ is hereditarily symmetric if σ is symmetric and all
P-names occurring hereditarily in σ are also symmetric.

HS be the collection of all hereditarily symmetric names.

N = {σG | σ ∈ HS} is a symmetric submodel of V [G ].

Theorem: N |= ZF.

V [G ]
VN
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The Feferman-Lévy symmetric model

We work in the constructible universe L.

The forcing P
Finite-support product Πn<ωColl(ω, ωn). ωn is n-th cardinal.

Let G ⊆ P be L-generic and let Gm = G � Πn<mColl(ω, ωn).

Automorphisms of P
G is the group of all product automorphisms Φ = Πn<ωφn, where φn is an
automorphism of Coll(ω, ωn).

F is generated by subgroups Hn = {Φ | Φ(n) = Id for i < n}.

The symmetric submodel N

Theorem: The subsets of ordinals in N are precisely those added by initial stages of the
product: S ⊆ Ord is in N iff S ∈ V [Gm] for some m < ω.

The following holds in N:

Each ωL
n is countable.

ωL
ω is the first uncountable cardinal. ωω is countable in V [G ].
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Independence of Π1
2-AC from Z2

Theorem: (Feferman, Lévy) Π1
2-AC can fail in a β-model of Z2.

Proof: Let N be the Feferman-Lévy symmetric submodel.
Let M N = 〈ω,+,×, <, 0, 1,P(ω)N〉 |= Z2.

Every Lωn is coded in M N , but Lωω is not coded in M N .

We cannot collect the (codes of) Lωn .

The assertion
∀n ∃X = Lωn → ∃Z ∀n Zn = Lωn

fails in M N .

The assertion “X codes Lωn” is Π1
2:

X codes Lα︸ ︷︷ ︸
Π1

1

∧∀Y (Y codes Lβ with β > α︸ ︷︷ ︸
Π1

1

−→ Lβ thinks α = ωn︸ ︷︷ ︸
Π1

0

). �
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Independence of Π1
2-DC from Z2 + Σ1

∞-AC

Theorem (Friedman, G., Kanovei) Π1
2-DC can fail in a β-model of Z2 + Σ1

∞-AC.

History

Simpson claims proof in abstract in Notices of American Mathematical Society in
1973, but proof is lost.

Kanovei publishes proof in Russian journal in 1979.

We prove the theorem independently and ask Kanovei to join us on the paper when
we learn about the 1979 result.

Strategy

Construct a symmetric submodel N of some forcing extension V [G ] such that in N:
I ACω holds,
I DC fails for a Π1

2-definable relation on the reals.

Let M N = 〈ω,+,×, <, 0, 1,P(ω)N〉.
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Classical symmetric submodel of ACω + ¬DC (Jensen)

0 1 2 ξ ξ+1. . .

. . .

00 01 02 0ξ

000 001 0ξ0 0ξ1 0ξ2 0ξξ

ξ+10 ξ+11 ξ+12 ξ+1ξ+1

ξ+1ξ+10

The forcing P - “Add(ω1, ω
<ω
1 )”

Adds a tree isomorphic to ω<ω1 whose nodes are V -generic for Add(ω1, 1).

Conditions: p : D → 2, where D is a countable subset of ω<ω1 × ω1.

Order: p ≤ q if p extends q.

P is countably closed: every descending ω-sequence of conditions has a lower bound.

p ≤ · · · ≤ pn ≤ pn−1 ≤ · · · ≤ p1 ≤ p0

Let G ⊆ P be V -generic.
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Classical symmetric submodel of ACω + ¬DC (Jensen)

Automorphisms of P
Every automorphism π of the tree ω<ω1 extends to an automorphism π∗ of P.

G is the group of all such automorphisms π∗.

A countable tree T ⊆ ω<ω1 is good if it has no infinite branch.

Given a good tree T , let HT be the group of all π∗ with π point-wise fixing T .

F is generated by all such subgroups HT .

The symmetric submodel N

Suppose σ ∈ HS and T is a good tree such that π∗(σ) = σ for all π∗ ∈ HT . Then we say
that T witnesses that σ is symmetric.

If T is a good tree, let GT be the restriction of G to nodes of T .

Theorem: S ⊆ Ord is in N iff S ∈ V [GT ] for some good tree T .
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Classical model of ACω + ¬DC (continued)
Preliminaries

Let Ṫ be the canonical P-name for the tree of Cohen subsets of ω1 added by P.

Ṫ is hereditarily symmetric, and hence T = (Ṫ )G ∈ N.

Lemma: DC fails in N.

Proof sketch:

Suppose that b ∈ N is an infinite branch through T .

Let σ ∈ HS be a P-name for b, witnessed by a good tree T .

Use that eventually b lies outside of T to derive a contradiction. �

Lemma: ACω holds in N.

Proof sketch:

Let F = {Fn | n < ω} ∈ N be a family of non-empty sets.

Let σ ∈ HS be a P-name for F , witnessed by a good tree S .
Build a descending sequence of conditions p0 ≥ p1 ≥ · · · ≥ pi ≥ · · · such that:

I pi 
 τi ∈ σ(i) for some τi ∈ HS, witnessed by a good tree Ti .
I For i < j , Ti ∩ Tj = S.

Let τ ∈ HS be a P-name for the sequence of the τi , as witnessed by T =
⋃

i<ω Ti .

Let p ≤ pi for all i < ω.

p 
“τ is a choice function for σ”. �

Obstacle: T is not a tree of reals.
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A variation on the classical model (Friedman, G.)

The forcing P - “Add(ω, ω<ω1 )”

Adds a tree isomorphic to ω<ω1 whose nodes are V -generic for Add(ω, 1).

Conditions: p : D → 2, where D is a finite subset of ω<ω1 × ω.

Order: p ≤ q if p extends q.

P has the ccc: countable chain condition - every antichain is countable.

Automorphisms of P
Same as before.

The symmetric model N

DC fails in N.

ACω holds in N (use ccc instead of countable closure).

Obstacle: Why is T definable over PN(ω)?

Domain
I How do we pick out which generic reals for Add(ω, 1) lie on the tree?
I Forcing with Add(ω, 1) adds 2ω-many generic reals.

Order
I How do we know how the generic reals are ordered in T ?
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A model of ZF + ACω + ¬Π1
2-DC

The forcing P
Let 〈Pn | n < ω〉 be a sequence of forcing iterations such that:

I Pn is an iteration of length n,
I a generic filter for Pn is determined by an n-length sequence of reals,
I for m > n, Pm � n = Pn,
I The collection of all generic n-length sequences of reals for Pn is Π1

2-definable.

Conditions: p : Dp →
⋃

n<ω Pn such that:
I Dp is a finite subtree of ω<ω1 ,
I for all s ∈ Dp , p(s) ∈ Plen(s),
I for s ⊆ t in Dp , p(s) = p(t) � len(s).

Order: p ≤ q if Dp ⊇ Dq and for all s ∈ Dq,
p(s) ≤ q(s).

P is an “iteration along the tree ω<ω1 ”.

Suppose G ⊆ P is V -generic.

An n-length sequence of reals in V [G ] is
V -generic for Pn if and only if it comes from a
node of the tree added by G .

P has the ccc.

p0 q0 r0

〈p0, ṗ1〉 〈p0, q̇1〉

〈p0, q̇1, ṙ1〉
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A model of ZF + ACω + ¬Π1
2-DC

Automorphisms of P
Same as before.

The symmetric model N

DC fails in N.

Using that P has the ccc, it follows that ACω holds in N.

The tree T
Domain: Π1

2-definable.

Order: extension.

Obstacle: Find 〈Pn | n < ω〉 with desired properties.
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Jensen’s forcing J

Constructed in L using the ♦-principle.

Sub-forcing of Sacks forcing (conditions are perfect trees T ⊆ 2<ω).

Adds a unique generic real over L. Add(ω, 1) adds 2ω -many generic reals.

Has the ccc.

The forcing J is constructed as a chain of countable partial orders of length ω1 using ♦
to seal antichains along the way.

Products of J

The “uniqueness of generic reals” property of J extends to products.

Theorem: (Lyubetsky, Kanovei) If G is L-generic for the finite-support product Πn<ωJ,
then the only L-generic reals for J in L[G ] are those on the coordinates of G .
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The tree iteration of Jensen’s forcing

Let Jn for n < ω be the n-length iterations of J.

Jn adds a generic n-length sequence of reals.

Let T be the tree iteration using the sequence 〈Jn | n < ω〉.

The forcing T adds a tree T isomorphic to ω<ω1 :
nodes on level n are L-generic sequences of reals for Jn.

The “uniqueness of generic reals” property of J extends to tree iterations.

Main Theorem: (Friedman, G.) If G is L-generic for the tree iteration T along the tree
ω<ω1 , then the only L-generic sequences of reals for Jn are those on the nodes of the
generic tree T .

The domain of T is Π1
2-definable.

The order is extension.
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The main theorem in ZFC

Theorem: There is a β-model of Z2 + Σ1
∞-AC in which Π1

2-DC fails.

Proof:

Let T ∈ L be the forcing used in the proof of the Main Theorem.

Let G ⊆ T be V -generic.

L[G ] ⊆ V [G ].

V [G ] has a β-model M |= Z2 + Σ1
∞-AC + ¬Π1

2-DC.

M has a countable β-sub-model with the same properties.

The submodel is coded by a real.

By Shoenfield Absoluteness, V has a β-model M̄ |= Z2 + Σ1
∞-AC + ¬Π1

2-DC.
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The set theory of second-order arithmetic

Set theory without powerset ZFC−

ZFC without powerset

Collection Scheme instead of the Replacement Scheme

Well-ordering principle instead of the Axiom of Choice
Well-ordering principle: every set can be well-ordered.

Let HC be the assertion that every set is countable.

Theorem: The following theories are bi-interpretable.

Z2 + Σ1
∞-AC

ZFC− + HC

Proof:

Suppose M = 〈M,+,×, <, 0, 1,S〉 |= Z2 + Σ1
∞-AC.

I View each extensional well-founded relation R ∈ S as coding a transitive set.
I Define a membership relation E on the collection of all such relations R (modulo

isomorphism).
I The resulting first-order structure NM = 〈N,E〉 |= ZFC− + HC.

Suppose N = 〈N,E〉 |= ZFC− + HC.
I The structure M = 〈ωN ,+,×, <, 0, 1,P(ω)N 〉 |= Z2 + Σ1

∞-AC.
I NM ∼= N . �
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What we lose without powerset

The theory ZFC− lacks many nice properties of ZFC.

(Zarach and G., Hamkins, Johnstone) The Replacement Scheme and Collection
Scheme are not equivalent.

(Zarach) Various formulations of the Axiom of Choice are not equivalent.

(G., Johnstone) Ground model definability (a model is definable with parameters in
its forcing extensions) can fail.
Ground model definability: A model is definable with parameters in its forcing extensions.

(Antos, Friedman, G.) The Intermediate Model Theorem can fail.
Intermediate Model Theorem: Intermediate models between a model and its forcing extensions are forcing extensions.
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DC-Scheme

DC-Scheme

“Every definable relation without terminal nodes has an infinite branch.”

A scheme consisting of assertions for every formula ϕ(x , y , a),

∀x∃y ϕ(x , y , a)→ ∃z∀n < ωϕ(z(n), z(n + 1), a).

Theorem: (G., Friedman, Kanovei) The DC-Scheme can fail over a model of ZFC−.

Proof:

Let L[G ] be the forcing extension from the Main Theorem and let N be the
symmetric submodel.

The DC-Scheme fails in HN
ω1

(hereditarily countable sets). �
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Reflection Scheme

Reflection Scheme:

“Every formula with parameters is reflected by a transitive set.”

A scheme consisting of assertions for every formula ϕ(x) and set a:

There is a transitive model M, with a ∈ M, which reflects V with respect to ϕ(x).

Theorem: ZFC proves the Reflection Scheme.

Proof: Arbitrarily high rank initial segments Vα reflect ϕ(x) �.

Theorem: Over ZFC−, the Reflection Scheme is equivalent to the assertion that there is
a class forcing notion which forces Global Choice without adding sets.

Theorem: (G., Johnstone, Hamkins) Over ZFC−, the Reflection Scheme is equivalent to
the DC-Scheme.

Theorem: (G., Friedman, Kanovei) The Reflection Scheme can fail over a model of
ZFC−.

Global Choice: There exists a class well-ordering of the universe.
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Weak Reflection Scheme

Weak Reflection Scheme (Freund)

“Reflection Scheme for sentences”.

A scheme of assertions for every sentence ϕ,

If ϕ holds, then there is a transitive model in which ϕ holds.

Theorem: The Weak Reflection Scheme holds in the model HN
ω1

, where N is the
symmetric submodel from the proof of the Main Theorem.

Proof:

Fix a sentence ϕ such that HN
ω1
|= ϕ.

The forcing extension L[G ] can construct a countable transitive model m such that
m |= ϕ.

A countable transitive model can be coded by a real.

The existence of m is a Σ1
2-assertion and therefore absolute to N by Shoenfield

Absoluteness. �
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Questions

Question: (Freund) Does ZFC− imply the Weak Reflection Scheme?

Because of Shoenfield Absoluteness, our strategy cannot answer this question.

Question: Can the Reflection Scheme fail in a model of ZFC− with uncountable
cardinals?
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Thank you!
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