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Why second-order arithmetic

Models of second-order arithmetic have two types of objects:
@ numbers

@ sets of numbers (reals).

A second-order arithmetic axiom system postulates what kind of sets of numbers (reals)
exist.

Given a theorem in analysis, we can ask what kind of reals need to exist in order to be
able to prove it.

Second-order arithmetic provides an incredibly effective measuring stick for answering
such questions.

(Most) classical results in analysis are provable within one of the main second-order
arithmetic systems and indeed are equivalent to some such system (over a weak base
system).
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Second-order arithmetic

Syntax: Two-sorted logic
@ Separate variables and quantifiers for numbers and sets of numbers.

o Convention: lower-case letters for numbers, upper-case letters for sets of numbers.
o Notation:

> Z?, - first-order X ,-formula
» Y. . n-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is # = (M, +, x,<,0,1,S).
@ M is the collection of numbers.
@ S is the collection of sets of numbers: if A€ S, then A C M.
o Example: the full standard model .# = (w, +, X, <, 0,1, P(w)).
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Axiom systems
First-order axioms
o PA™
o (Induction axiom) VX ((0 € X AVn(ne X = n+1¢€ X)) = Vnne X)

Arithmetical comprehension ACAy
o Comprehension scheme for first-order formulas: for all n, ¥%-CA,
if ©(n, A) is a first-order formula, then {n | ©(n, A)} is a set.
* Example: If (M, +, x,<,0,1) = PA and S consists of definable subsets of M, then

M= (M, +,x,<,0,1,S) = ACA,.

+ Every model of PA is naturally also a model of ACAy.
+x ACAy is conservative over PA.

Elementary Transfinite Recursion ATRg
o ACA,
@ Every first-order recursion on sets along a well-order has a solution.

> A well-order is a linear order I' whose every subset has a minimal element.
> A solution to a recursion is a code of a function F : dom(l') — S.

A code for Fis F = {(n,m) | n € dom(T,)m € F(n)}
* Can iterate Turing jump.
* Can build an internal constructible universe L.
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Axiom systems (continued)

¥ !-comprehension $1-CAg

* YCAg is stronger than ATRy.

@ Y !-comprehension: If p(n, A) is a Xi-formula, then {n | ¢(n, A)} is a set.

=] 5 = E DAy
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Full second-order arithmetic Z»

Full second-order comprehension: for all n, £i-comprehension.

Example: If V = ZF, then the full standard model MY = (w,+, x,<,0,1, P(w)) | Z».

Godel’s constructible universe L
Suppose V = ZF.
o Lg=10
Lo+1 is the set of all subsets of L, definable over L,,.
o Ly =,cy La foralimit A
® L=U,com La-
Suppose # = (M, +, x,<,0,1,8) = Z> and I € S is a well-order.

@ ./ can construct the L-hierarchy along I' (uses ATR).

@ There is a set coding a sequence of La for A < T obeying the definition of L.

A model of Z, has its own constructible universe L%

Theorem: (Shoenfield Absoluteness) If ¢ is a T3-assertion, then .Z = ¢ iff L% = .

In L% interpret ¢ as an assertion about numbers and reals.
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w-models and B-models of second-order arithmetic

Definition: A model of second-order arithmetic is an w-model if it has the standard
first-order part: 4 = (w,+, xX,<,0,1,S).

Definition: A 3-model of second-order arithmetic is an w-model
M = {w,+,x,<,0,1,8) that is correct about well-foundedness:

for every relation I € S, .# =T is well-founded iff I is well-founded.
An w-model of second-order arithmetic can be wrong about well-foundedness because it is missing a witnessing subset.
Example: If V |= ZF, then .#" = (w,+, x,<,0,1, P(w)) is a B-model of Z,.
Example: Suppose .#Z = (w,+, x,<,0,1,8) is a S-model of Z,.
@ ./ is correct about ordinals.

@ ./ is correct about the constructible universe L up to its height.
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Set choice principles
Choice Scheme

“If for every n, there is a set X witnessing ¢(n, X, A), then there is a single set Z
collecting witnesses for every n.”

Choice scheme Y1-AC: A scheme consisting of assertions for every ¥ .-formula
¢(n, X, A),
Vn3Xe(n, X,a) = IZVnp(n, Z,, A),
where Z, = {m | (n,m) € Z} is the n-th slice of Z.
L-AC: for all n, T1-AC.

Example: If V |= ZF + AC,,, then .Z" = (w,+, x,<,0,1, P(w)) is a 3-model of
Zo + 21 -AC.
Dependent Choice Scheme
“Every relation on sets without terminal nodes has an infinite branch.”
Dependent choice scheme X}-DC: A scheme consisting of assertions for every
Y 1-formula (X, Y, A),
VX 3Y (X, Y,A) = 3ZVnp(Z,, Zni1, A).
Y1.-DC: for all n, X}-DC.
Example: If V |= ZF + DC, then .#" = (w,+, x, <,0,1, P(w)) is a 3-model of

1
Zo + Z -DC.
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Choice principles in Z»

Theorem: Z, proves ¥3-AC.
Proof: Suppose .# |= 7, and .# |=¥n3X ¢(n, X), where ¢ is ¥3.
o By Shoenfield Absoluteness, L has a witness for every ¥3-assertion o(n, X).

o Choose the least L% -witness X and use comprehension to collect.
Theorem: (Mansfield, Simpson) Z, proves ¥3-DC.

Strategy for constructing models with a failure of choice

o Construct a forcing extension V[G] having a submodel N |= ZF with a definable
failure of choice.

o Let ./#" = (w,+, x,<,0,1, P(w)").

@ Necessarily produces a 3-model.
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Quick review of forcing

Suppose V | ZFC and P is a forcing notion: partial order with largest element 1.
Dense sets and generic filters
D C P is dense if for every p € P, there is g € D with g < p. ,
G C Pis a filter:

o (upward closure) If p € G and p’ > p, then p' € G.

o (compability) If p,q € G, then r € G such that r < p, q.

Note: If G # 0, then 1€ G.
A filter G C P is V-generic if it meets every dense set D € V of P: DN G # 0.

Theorem: V has no V-generic filters for P.

The forcing extension V[G] is constructed from V together with an external V-generic
filter G.
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Quick review of forcing (continued)
P-names: names for elements of V[G].
Defined recursively so that a P-name o consists of pairs (7, p): p € P and 7 is a P-name.
Special P-names
o Givenac V, 3= {(b1)|bc a}.
o G={(p,p) | peP}.
Forcing extension V[G]
Suppose G C P is V-generic and o is a P-name. The
interpretation of o by G: o¢ = {7¢ | (,p) €0 and p € G}. Vel
Defined recursively.
The forcing extension V[G]| = {o¢ | o is a P-name in V'}.
o VCVIG]: 3 = a.
e G e V[G]: Gc=G.
e V[G] E ZFC
Forcing relation p |- (o)
Whenever G is V-generic and p € G, then V[G] = ¢(0¢).

Theorem: (definability of the forcing relation) For a fixed first-order formula ¢(x), the
relation p I+ ¢(o) is definable.
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Useful forcing notions

Add(w, k) - Add k-many subsets to w

e Conditions: functions p : D — 2, where D is a finite
subset of w X k.

@ Order: p < q if p extends q.
* If G C Add(w, ) is V-generic, then in V[G], 2 > k.

Add(wi, k) - Add k-many subsets to w
o Conditions: functions p : D — 2, where D is a countable subset of w; X k.

@ Order: p < q if p extends q.

Coll(w, k) - Collapse  to w
o Conditions: functions p : D — k, where D is a finite subset of w.
@ Order: p < q if p extends q.
* If G C Coll(w, k) is V-generic, then in V[G],  is a countable ordinal.
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Useful forcing notions (continued)

Sacks forcing S - Add a generic real
o Conditions: Perfect trees T C 2<“: every node has a splitting node above it.
@ Order: T < S if T is a subtree of S.

* If G is V-generic for S, then there is a real b € V[G] such that T € G iff bis a
branch of T.

* The generic real b determines G.

RN X > N
NN y 7\ y
AR 7 AN 7

0000 0001 0010 0011 0110 0111 1100 1101 0000 0001 0010 0011 1100 1101
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Products and iterations of forcing notions
Products

Suppose P, for a < /3 are forcing notions.

A product P = N, <3P, is also a natural forcing notion.

Conditions: (p, | @ < B) with p, € Pq.

@ Common supports: finite, bounded, full.

o Example: Add(w, k) = MNa<xAdd(w,1) with finite support.

@ Usage: adding several objects to a forcing extension.

Iterations

Suppose P is a forcing notion, G C P is V-generic, and Q is a forcing notion in V[G].
V has a P-name Q for Q. very element of V[G] has a B-name in V.

In V, we can define a forcing notion P« Q such that forcing with P % Q is the same as
forcing with P followed by forcing with Q.

e Conditions: (p,§) with p € P and pIF- g € Q.

@ Order: (p,q) <(r,8)ifp<randpl-g<s.

@ n-step iterations are defined similarly (infinite iterations can be defined as well).
Example: S xS, where S is the name for the Sacks forcing of the forcing extension.

Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.
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Symmetric submodels of forcing extensions
Set-up
o P is a forcing notion.

@ G is a group of automorphisms of P.

e .7 is a normal filter of subgroups of G.
> (upward closure) If H; € % and H» O Hi, then Hy € Z#.
> (closure under intersections) If Hy, Hy € %, then Hi N H, € Z.
> (normality) If H € % and 7 € G, then THr 1 € 7.

o G CPis V-generic
Definition: If o is a P-name and 7 € G, then 7(0) = {(w(7),7(p)) | (7, p) € o}.
Proposition: For every p € P, p I ¢(o) iff w(p) IF p(7(0)).
Definition: Suppose o is a P-name.

@ o is symmetric if there is H € .% such that every m € H

fixes o: w(c) = 0. vigg NV

@ o is hereditarily symmetric if o is symmetric and all
P-names occurring hereditarily in o are also symmetric.

@ HS be the collection of all hereditarily symmetric names.
N = {o¢ | o € HS} is a symmetric submodel of V[G].

Theorem: N = ZF.
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The Feferman-Lévy symmetric model

We work in the constructible universe L.
The forcing P

o Finite-support product My« Coll(w,wn). wyis n-th cardinal.

o Let G C PP be L-generic and let G, = G | My<mColl(w, wy).
Automorphisms of P

@ G is the group of all product automorphisms ® = N, ¢,, where ¢, is an
automorphism of Coll(w, wy).

o .7 is generated by subgroups H, = {® | ®(n) = Id for j < n}.
The symmetric submodel N

Theorem: The subsets of ordinals in N are precisely those added by initial stages of the
product: S C Ord is in N iff S € V[Gp] for some m < w.

The following holds in N:

o Each wk is countable.

@ wl is the first uncountable cardinal. we is countable in V{Gl.
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Independence of M3-AC from Z;

Theorem: (Feferman, Lévy) M3-AC can fail in a 3-model of Z,.

Proof: Let N be the Feferman-Lévy symmetric submodel.
Let /" = (w,+, x,<,0,1, P(w)") = Zo.
o Every L, is coded in .#", but L, is not coded in .#Z".
@ We cannot collect the (codes of) L,,,.
@ The assertion
vn3iX =L,, - 3ZVnZ, = L.,
fails in .M.
o The assertion “X codes L,," is M}:
X codes Lo AVY (Y codes Lg with 8 > o — Lg thinks o = wy). O
————

1
m m Mg
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Independence of I‘I%—DC from Zo + Z})O—AC

Theorem (Friedman, G., Kanovei) M3-DC can fail in a 3-model of Z, + X1.-AC.

History
@ Simpson claims proof in abstract in Notices of American Mathematical Society in
1973, but proof is lost.
o Kanovei publishes proof in Russian journal in 1979.
@ We prove the theorem independently and ask Kanovei to join us on the paper when
we learn about the 1979 result.

Strategy
@ Construct a symmetric submodel N of some forcing extension V[G] such that in N:
» AC, holds,
» DC fails for a M}-definable relation on the reals.

o Let ./#" = (w,+, x,<,0,1, P(w)").
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Classical symmetric submodel of AC,, + =DC (Jensen)

000 Q01 0£0 Q&1 \0€2

433 £+1€+10

€410 £+11 £+12

The forcing P - “"Add(wy,w )"
@ Adds a tree isomorphic to w;® whose nodes are V-generic for Add(ws, 1).
o Conditions: p: D — 2, where D is a countable subset of w;“ X ws.

@ Order: p < g if p extends g.

@ P is countably closed: every descending w-sequence of conditions has a lower bound.

P SpnSPr-1 S-S P po
o Let G C P be V-generic.
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Classical symmetric submodel of AC,, + =DC (Jensen)

Automorphisms of P

@ Every automorphism 7 of the tree w;® extends to an automorphism 7* of P.
@ G is the group of all such automorphisms 7*.

@ A countable tree T C w;“ is good if it has no infinite branch.

o Given a good tree T, let Hr be the group of all 7™ with 7 point-wise fixing T.
@ .7 is generated by all such subgroups Hr.

The symmetric submodel N

Suppose o € HS and T is a good tree such that 7*(0) = o for all ¥ € Hr. Then we say
that T witnesses that o is symmetric.

If T is a good tree, let Gt be the restriction of G to nodes of T.
Theorem: S C Ord is in N iff S € V[Gr] for some good tree T.
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Classical model of AC,, + —~DC (continued)

Preliminaries
o Let 7 be the canonical P-name for the tree of Cohen subsets of w; added by P.
o .7 is hereditarily symmetric, and hence .7 = (7 )¢ € N.

Lemma: DC fails in N.
Proof sketch:
@ Suppose that b € N is an infinite branch through 7.
o Let o € HS be a P-name for b, witnessed by a good tree T.
@ Use that eventually b lies outside of T to derive a contradiction. [J

Lemma: AC, holds in N.
Proof sketch:
o Let F={F,| n<w} € N be a family of non-empty sets.
o Let o € HS be a P-name for F, witnessed by a good tree S.
@ Build a descending sequence of conditions pg > p1 > --- > p;i > --- such that:
> p; Ik 7; € o(i) for some 7; € HS, witnessed by a good tree T;.
» Fori<j, T;,NT;=S.
Let 7 € HS be a P-name for the sequence of the 77, as witnessed by T = |
Let p < p;iforall i < w.
@ p "7 is a choice function for ¢". [J

T;.

i<w

Obstacle: .7 is not a tree of reals.
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A variation on the classical model (Friedman, G.)

The forcing P - “Add(w,ws*)"
o Adds a tree isomorphic to w;* whose nodes are V-generic for Add(w, 1).
e Conditions: p: D — 2, where D is a finite subset of w; X w.
o Order: p < g if p extends g.
@ P has the ccc: countable chain condition - every antichain is countable.
Automorphisms of P
Same as before.
The symmetric model N
o DC failsin N.

o AC,, holds in N (use ccc instead of countable closure).

Obstacle: Why is .7 definable over P"(w)?
@ Domain

> How do we pick out which generic reals for Add(w, 1) lie on the tree?
> Forcing with Add(w, 1) adds 2“-many generic reals.

o Order

» How do we know how the generic reals are ordered in 77
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A model of ZF + AC,, + =MN}-DC

The forcing P
@ Let (P, | n < w) be a sequence of forcing iterations such that:

> P, is an iteration of length n,

> a generic filter for P, is determined by an n-length sequence of reals,

> for m>n, Py | n =P,

> The collection of all generic n-length sequences of reals for P, is I'I%—definable.

Conditions: p: D, — |J, ., Pn such that:
> D, is a finite subtree of w;®,
> for all s € Dp, p(s) € Plen(s) o
> for s C tin Dp, p(s) = p(t) | len(s). {Po, Gu, 1)
@ Order: p < qif D, O Dy and for all s € Dq,
p(s) < q(s)- {po, p1)
P is an “iteration along the tree w;“".

Suppose G C P is V-generic.

An n-length sequence of reals in V[G] is
V-generic for P, if and only if it comes from a
node of the tree added by G.

@ P has the ccc.
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A model of ZF + AC,, + -MNi-DC

Automorphisms of P
Same as before.

The symmetric model N
e DC failsin N.
@ Using that P has the ccc, it follows that AC,, holds in N.

The tree T
o Domain: Mi-definable.

@ Order: extension.

Obstacle: Find (P, | n < w) with desired properties.
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Jensen’s forcing J

Constructed in L using the {-principle.

Sub-forcing of Sacks forcing (conditions are perfect trees T C 2<¢).
Adds a unique generic real over L. add(w, 1) adds 2% -many generic reals.

Has the ccc.

The forcing J is constructed as a chain of countable partial orders of length w;y using <>
to seal antichains along the way.

Products of J
The “uniqueness of generic reals” property of J extends to products.

Theorem: (Lyubetsky, Kanovei) If G is L-generic for the finite-support product M,<.,J,
then the only L-generic reals for J in L[G] are those on the coordinates of G.
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The tree iteration of Jensen's forcing

Let J, for n < w be the n-length iterations of J.
Jn adds a generic n-length sequence of reals.
Let T be the tree iteration using the sequence (J, | n < w).

The forcing T adds a tree 7 isomorphic to wy®:
nodes on level n are L-generic sequences of reals for J,.

The “uniqueness of generic reals” property of J extends to tree iterations.

Main Theorem: (Friedman, G.) If G is L-generic for the tree iteration T along the tree
w; ¥, then the only L-generic sequences of reals for J” are those on the nodes of the
generic tree 7.

@ The domain of 7 is Mi-definable.

@ The order is extension.
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The main theorem in ZFC

Theorem: There is a A-model of Z, + 1 .-AC in which M3-DC fails.
Proof:
o Let T € L be the forcing used in the proof of the Main Theorem.
o Let G C T be V-generic.
L[G] C V[G].
o V[G] has a B-model .# |= 7, + £L,-AC + —M3-DC.

@ ./ has a countable 8-sub-model with the same properties.

@ The submodel is coded by a real.
@ By Shoenfield Absoluteness, V has a -model .Z |= Zy + X1.-AC + —N3-DC.
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The set theory of second-order arithmetic
Set theory without powerset ZFC™
o ZFC without powerset
@ Collection Scheme instead of the Replacement Scheme

o Well-ordering principle instead of the Axiom of Choice

Well-ordering principle: every set can be well-ordered.
Let HC be the assertion that every set is countable.

Theorem: The following theories are bi-interpretable.

o Zr+ YL -AC
e ZFC™ + HC
Proof:

@ Suppose .4 = (M, +, x,<,0,1,8) = Z, + 5.-AC.
> View each extensional well-founded relation R € S as coding a transitive set.

> Define a membership relation E on the collection of all such relations R (modulo
isomorphism).

> The resulting first-order structure N4 = (N, E) |= ZFC~ + HC.
@ Suppose N = (N,E) = ZFC~ + HC.

> The structure .# = (wN, +, x,<,0,1, P(w)N) = Zy + £ _-AC.

» N7 =2 N. O
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What we lose without powerset

The theory ZFC™ lacks many nice properties of ZFC.

@ (Zarach and G., Hamkins, Johnstone) The Replacement Scheme and Collection
Scheme are not equivalent.

@ (Zarach) Various formulations of the Axiom of Choice are not equivalent.

@ (G., Johnstone) Ground model definability (a model is definable with parameters in
its forcing extensions) can fail.

Ground model definability: A model is definable with parameters in its forcing extensions.

o (Antos, Friedman, G.) The Intermediate Model Theorem can fail.

Intermediate Model Theorem: Intermediate models between a model and its forcing extensions are forcing extensions.
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DC-Scheme

DC-Scheme
“Every definable relation without terminal nodes has an infinite branch.”
A scheme consisting of assertions for every formula ¢(x, y, a),

Vx3dy o(x,y,a) = 3zVn < wp(z(n), z(n + 1), a).

Theorem: (G., Friedman, Kanovei) The DC-Scheme can fail over a model of ZFC™.
Proof:

o Let L[G] be the forcing extension from the Main Theorem and let N be the
symmetric submodel.

o The DC-Scheme fails in HJY, (hereditarily countable sets). [J
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Reflection Scheme

Reflection Scheme:
“Every formula with parameters is reflected by a transitive set.”
A scheme consisting of assertions for every formula ¢(x) and set a:

There is a transitive model M, with a € M, which reflects V with respect to ¢(x).

Theorem: ZFC proves the Reflection Scheme.
Proof: Arbitrarily high rank initial segments V., reflect ¢(x) 0.

Theorem: Over ZFC™, the Reflection Scheme is equivalent to the assertion that there is
a class forcing notion which forces Global Choice without adding sets.

Theorem: (G., Johnstone, Hamkins) Over ZFC™, the Reflection Scheme is equivalent to
the DC-Scheme.

Theorem: (G., Friedman, Kanovei) The Reflection Scheme can fail over a model of
ZFC™.

Global Choice: There exists a class well-ordering of the universe.
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Weak Reflection Scheme

Weak Reflection Scheme (Freund)
“Reflection Scheme for sentences”.

A scheme of assertions for every sentence ¢,
If © holds, then there is a transitive model in which ¢ holds.

Theorem: The Weak Reflection Scheme holds in the model HLVI, where N is the
symmetric submodel from the proof of the Main Theorem.
Proof:
o Fix a sentence ¢ such that HY = .
@ The forcing extension L[G] can construct a countable transitive model m such that
mE .
@ A countable transitive model can be coded by a real.

@ The existence of m is a X}-assertion and therefore absolute to N by Shoenfield
Absoluteness. [J
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Questions

Question: (Freund) Does ZFC™ imply the Weak Reflection Scheme?
Because of Shoenfield Absoluteness, our strategy cannot answer this question.

Question: Can the Reflection Scheme fail in a model of ZFC™ with uncountable
cardinals?
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Thank you!
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