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Abstract. The principle of open determinacy for class games—two-player

games of perfect information with plays of length ω, where the moves are cho-

sen from a possibly proper class, such as games on the ordinals—is not prov-
able in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if

these theories are consistent, because provably in ZFC there is a definable open

proper class game with no definable winning strategy. In fact, the principle of
open determinacy and even merely clopen determinacy for class games implies

Con(ZFC) and iterated instances Conα(ZFC) and more, because it implies

that there is a satisfaction class for first-order truth, and indeed a transfinite
tower of truth predicates Trα for iterated truth-about-truth, relative to any

class parameter. This is perhaps explained, in light of the Tarskian recur-
sive definition of truth, by the more general fact that the principle of clopen

determinacy is exactly equivalent over GBC to the principle of elementary

transfinite recursion ETR over well-founded class relations. Meanwhile, the
principle of open determinacy for class games is provable in the stronger the-

ory GBC + Π1
1-comprehension, a proper fragment of Kelley-Morse set theory

KM.

1. Introduction

The past half-century of set theory has revealed a robust connection between infini-
tary game theory and fundamental set-theoretic principles, such as the existence
of certain large cardinals. The existence of strategies in infinite games has often
turned out to have an unexpected set-theoretic power. In this article, we should
like to exhibit another such connection in the case of games of proper class size, by
proving that the principle of clopen determinacy for class games is exactly equiv-
alent to the principle of elementary transfinite recursion ETR along well-founded
class relations. Since this principle implies Con(ZFC) and iterated instances of
Conα(ZFC) and more, the principles of open determinacy and clopen determinacy
both transcend ZFC in consistency strength.
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We consider two-player games of perfect information, where two players alter-
nately play elements from an allowed space X of possible moves, which in our case
may be a proper class, such as the class of all ordinals X = Ord. Together, the
players build an infinite sequence ~α = 〈α0, α1, α2, . . .〉 in Xω, which is the play
resulting from this particular instance of the game. The winner is determined by
consulting a fixed class of plays A ⊆ Xω, possibly a proper class: if ~α ∈ A, then
the first player has won this play of the game, and otherwise the second player has
won. A strategy for a player is a (class) function σ : X<ω → X, which tells a player
how to move next, given a finite position in the game. Such a strategy is winning
for that player, if playing in accordance with the strategy leads to a winning play of
the game, regardless of how the other player has moved. The game is determined,
if one of the players has a winning strategy. We may formalize all talk of classes
here in Gödel-Bernays GBC set theory, or in ZFC if one prefers to regard classes
as definable from parameters.

The case of open games, generalizing the finite games, is an attractive special
case, which for set-sized games has been useful in many arguments. Specifically, a
game is open for a particular player, if for every winning play of the game for that
player, there occurred during the course of play a finite position where the winning
outcome was already ensured, in the sense that all plays extending that position are
winning for that player. This is equivalent to saying that the winning condition set
for that player is open in the product topology on Xω, where we put the discrete
topology on X. Similarly, a game is clopen, if it is open for each player; these are
the games for which every play of the game has a finite stage where the outcome is
already known.

It is a remarkable elementary fact, the Gale-Stewart theorem [GS53], that in the
context of set-sized games, every open game is determined. In order to discuss the
problems that arise in the context of proper-class games, let us briefly sketch two
classic proofs of open determinacy for set games. Suppose that we have a game
that is open for one of the players, with an open winning condition A ⊆ Xω for
that player, where X is the set of possible moves.

For the first proof of open determinacy, suppose that the open player does not
have a winning strategy in the game. So the initial position of the game is amongst
the set of positions from which the open player does not have a winning strategy.
The closed player may now simply play so as to stay in that collection, because
if every move from a position p leads to a winning position for the open player,
then the open player can unify those strategies into a single winning strategy from
position p. This way of playing is a winning strategy for the closed player, because
no such position can be an already-won position for the open player. Therefore,
the game is determined.

For a second proof, we use the elegant theory of ordinal game values. Namely,
define that a position p in the game has value 0, if it is an already-won position
for the open player, in the sense that every play extending p is in A. A position p
with the open player to move has value α + 1, if α is minimal such that the open
player can play to a position p a x with value α. A position p with the closed
player to play has a defined value only when every possible subsequent position
p a y already has a value, and in this case the value of p is the supremum of those
values. The key observation is that if a position has a value, then the open player
can play so as to decrease the value, and the closed player cannot play so as to
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increase it or make it become undefined. Thus, by means of this value-reducing
strategy, the open player can win from any position having a value, because the
decreasing sequence of ordinals must eventually hit 0; and the closed player can win
from any position lacking an ordinal value, by maintaining the play on unvalued
positions. So the game is determined, because the initial position either has a value
or is unvalued. (The topic of ordinal game values appears widely in the literature,
but for a particularly accessible discussion of the concrete meaning of small-ordinal
game values, we refer the reader to [EH14, EHP].)

Both of these proofs of open determinacy become problematic in ZFC and also
GBC when X is a proper class. The problem with the first proof is subtle, but
note that winning strategies are proper class functions σ : X<ω → X, and so for
a position p to have a winning strategy for a particular player is a second-order
property of that position. Thus, in order to pick out the class of positions for which
the open player has a winning strategy, we would seem to need a second-order
comprehension principle, which is not available in ZFC or GBC. The proof can,
however, be carried out in GBC + Π1

1-comprehension, as explained in theorem 10.
The problem with the ordinal-game-value proof in the proper class context is a little
more clear, since in the inductive definition of game values, one takes a supremum
of the values of p a x for all x ∈ X, but if X is a proper class, this supremum
could exceed every ordinal. It would seem that we would be pushed to consider
meta-ordinal game values larger than Ord. So the proofs just don’t seem to work
in ZFC or GBC.

What we should like to do in this article is to consider more seriously the case
where X is a proper class. In this case, as we mentioned, the strategies σ : X<ω →
X will also be proper classes, and the winning condition A ⊆ Xω may also be a
proper class.

Question 1. Can we prove open determinacy for class games?

For example, does every definable open class game in ZFC admit a definable winning
strategy for one of the players? In GBC, must every open class game have a winning
strategy? We shall prove that the answers to both of these questions is no. Our
main results are the following.

Main Theorems.

(1) In ZFC, there is a first-order definable clopen proper-class game with no
definable winning strategy for either player.

(2) In GBC, the existence of a winning strategy for one of the players in the
game of statement (1) is equivalent to the existence of a satisfaction class
for first-order set-theoretic truth.

(3) Consequently, the principle of clopen determinacy for class games in GBC
implies Con(ZFC) and iterated consistency assertions Conα(ZFC) and more.

(4) Indeed, the principle of clopen determinacy for class games is equivalent
over GBC to the principle ETR of elementary transfinite recursion, which is
a strictly weaker theory (assuming consistency) than GBC+Π1

1-comprehension,
which is strictly weaker than Kelley-Morse KM set theory.

(5) Meanwhile, open determinacy for class games is provable in GBC + Π1
1-

comprehension.

These claims will be proved in theorems 2, 3, 9 and 10. Note that because GBC
includes the global choice principle, every proper class X is bijective with the class
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of all ordinals Ord, and so in GBC one may view every class game as a game on
the ordinals. We shall also prove other theorems that place ETR and hence clopen
determinacy into their setting in second-order set theory beyond GBC.

2. A broader context

Let us place the results of this article in a broader context. The need to consider
clopen determinacy for class games has arisen in recent developments in large cardi-
nal set theory and forcing axioms, which sparked our interest. Specifically, Audrito
and Viale [AV, Aud16], generalizing the uplifting cardinals and resurrection axioms
of [HJ14, HJ], introduced the (α)-uplifting cardinals, the HJ(α)-uplifting cardinals,
and the iterated resurrection axioms RAα(Γ), all of which are defined in terms of
winning strategies in certain proper-class-sized clopen games. Audrito and Viale
had at first formalized their concepts in Kelley-Morse set theory, which is able to
prove the requisite determinacy principles. The main results of this paper identify
the minimal extensions of Gödel-Bernays set theory able satisfactorily to treat these
new large cardinals and forcing axioms.

After having proved our theorems, however, we noticed the connection with
analogous results in second-order arithmetic, where there has been a vigorous in-
vestigation of the strength of determinacy over very weak theories. Let us briefly
survey some of that work. First, there is a natural affinity between our theorem 9,
which shows that clopen determinacy is exactly equivalent over GBC to the princi-
ple of elementary transfinite recursion ETR over well-founded class relations, with
the 1977 dissertation result of Steel (see [Sim09, Thm V.8.7]), showing that clopen
determinacy for games on the natural numbers is exactly equivalent in reverse math-
ematics to the theory of arithmetical transfinite recursion ATR0. Simpson reported
in conversation with the second author that Steel’s theorem had had a strong in-
fluence on the beginnings of the reverse mathematics program. In both the set and
class contexts, we have equivalence of clopen determinacy with a principle of first-
order transfinite recursion. In the case of games on the natural numbers, however,
Steel proved that ATR0 is also equivalent with open determinacy, and not merely
clopen determinacy, whereas the corresponding situation of open determinacy for
class games is not yet completely settled; the best current upper bound provided
by theorem 10.

After Steel, the reverse mathematics program proceeded to consider the strength
of determinacy for games having higher levels of complexity. Tanaka [Tan90] estab-
lished the equivalence of Π1

1-comprehension and Σ0
1∧Π0

1-determinacy, as well as the
equivalence of Π1

1-transfinite recursion and ∆0
2-determinacy, both over RCA0. The

subsequent paper [Tan91] showed that Σ0
2-determinacy is equivalent over RCA0 to a

less familiar second-order axiom Σ1
1-MI, known as the axiom of Σ1

1-monotone induc-
tive definition1. MedSalem and Tanaka [MT07] considered ∆0

3-determinacy, proving
it in ∆1

3-comprehension plus Σ1
3-induction, and showing that it does not follow from

∆1
3-comprehension alone. MedSalem and Tanaka [MT08] settled the exact strength

of ∆0
3-determinacy over the theory RCA0 + Π1

3-transfinite induction by introducing

1A function Γ : P (ω) → P (ω) is called a monotone operator (over ω) if whenever X ⊆ Y ,

then Γ(X) ⊆ Γ(Y ). The axiom of Σ1
1-monotone inductive definition asserts that for every Σ1

1-

monotone operator Γ (meaning {(x,X) | x ∈ Γ(X)} is Σ1
1), there exists a sequence 〈Γα | α ≤ σ〉

for some ordinal σ such that Γα = Γ(
⋃
β<α Γβ) for all α ≤ σ and such that Γσ =

⋃
α<σ Γα, so

that Γσ is a fixed point of the operator Γ.
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a new axiom for iterating Σ1
1-inductive definitions. Philip Welch [Wel11] charac-

terized the ordinal stage by which the strategies for Σ0
3 games appear in the con-

structible hierarchy, continuing the program initiated by Blass [Bla72], who showed
that every computable game has its strategy appearing before the next admissible
ordinal. He also shows that Π1

3-comprehension proves not just Π0
3-determinacy, but

that there is a β-model of Π0
3-determinacy. Montalbán and Shore [MS12] estab-

lished a precise bound for the amount of determinacy provable in full second-order
arithmetic Z2. They showed that for each fixed n, Π1

n+2-comprehension proves de-
terminacy for n-length Boolean combinations of Π0

4-formulas, but Z2 cannot prove
∆0

4-determinacy.
Although there is a clear analogy between our theorems concerning clopen de-

terminacy for proper-class games and the analysis of clopen determinacy on the
natural numbers, nevertheless, one should not naively expect a tight connection
between the determinacy of Σ0

n definable games in second-order arithmetic, say,
with that of Σ0

n definable class games in the Lévy hierarchy. The reason is that
determinacy for first-order definable Σ0

n sets of reals in the arithmetic hierarchy
is provable in ZFC, and with sufficient large cardinals, determinacy runs through
the second-order projective hierarchy Σ1

n as well, but determinacy for first-order
definable games in set theory is simply refutable in ZF already at the level of ∆0

2 in
the Lévy hierarchy, in light of theorem 5. Rather, one should expect a connection
between the analysis of Σ0

n determinacy in arithmetic and the corresponding level
of the proper-class analogue of the Borel hierarchy for subclasses of Ordω, which
we discuss in section 7. There are several fundamental disanalogies for determinacy
in second-order arithmetic in comparison with second-order set theory that lead us
to expect differences in the resulting theory, among them the facts that (i) Ordω

is not separable in the product topology whereas Baire space ωω is separable; (ii)
wellfoundedness for class relations is first-order expressible in set theory, whereas
it is Π1

1-complete in arithmetic; and finally, (iii) individual plays of a game on Ord
are first-order objects in set theory, making the payoff collection a class, whereas
in arithmetic a play of a game is already a second-order object and the payoff
collection is a third-order object.

3. The truth-telling game

Let us now prove the initial claims of the main theorem.

Theorem 2. In ZFC, there is a particular definable clopen proper-class game, for
which no definition and parameter defines a winning strategy for either player.

The proof therefore provides in ZFC a completely uniform counterexample to
clopen determinacy, with respect to definable strategies, because the particular
game we shall define has no definable winning strategy for either player in any
model of set theory. Theorem 2 is a theorem scheme, ranging over the possible
definitions of the putative winning strategy. We shall prove the theorem as a
consequence of the following stronger and more revealing result.

Theorem 3. There is a particular first-order definable clopen game, whose determi-
nacy is equivalent in GBC to the existence of a satisfaction class for first-order set-
theoretic truth. Consequently, in GBC the principle of clopen determinacy for class
games implies Con(ZFC), as well as iterated consistency assertions Conα(ZFC) and
much more.
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Proof. To begin, we introduce the truth-telling game, which will be a definable open
game with no definable winning strategy. The truth-telling game has two players,
the interrogator and the truth-teller, who we may imagine play out the game in
a court of law, with the truth-teller in the witness box answering tricky pointed
questions posed by the opposing counsel, in the style of a similar game described by
Adrian Mathias [Mat15] in the context of extensions of PA in arithmetic. On each
turn, the interrogator puts an inquiry to the the truth-teller concerning the truth
of a particular first-order set-theoretic formula ϕ(~a) with parameters. The truth-
teller must reply to the inquiry by making a truth pronouncement either that it is
true or that it is false, not necessarily truthfully, and in the case that the formula
ϕ is an existential assertion ∃xψ(x,~a) declared to be true, then the truth teller
must additionally identify a particular witness b and pronounce also that ψ(b,~a)
is true. So a play of the game consists of a sequence of such inquiries and truth
pronouncements.

The truth-teller need not necessarily answer truthfully to win! Rather, the truth-
teller wins a play of the game, provided merely that she does not violate the re-
cursive Tarskian truth conditions during the course of play. What we mean, first,
is that when faced with an atomic formula, she must pronounce it true or false in
accordance with the actual truth or falsity of that atomic formula; similarly, she
must pronounce that ϕ ∧ ψ is true just in case she pronounces both ϕ and ψ sepa-
rately to be true, if those inquiries had been issued by the interrogator during play;
she must pronounce opposite truth values for ϕ and ¬ϕ, if both are inquired about;
and she must pronounce ∃xϕ(x,~a) to be true if and only if she ever pronounces
ϕ(b,~a) to be true of any particular b (the forward implication of this is already
ensured by the extra pronouncement in the existential case of the game). This is
an open game for the interrogator, because if the truth-teller ever should violate
the Tarskian conditions, then this violation will be revealed at finite stage of play,
and this is the only way for the interrogator to win.

We remind the reader that a satisfaction class or truth predicate for first-order
truth is a class Tr of pairs 〈ϕ,~a〉 consisting of a formula ϕ and a list of parameters
~a assigned to the free variables of that formula, which obeys the Tarskian recursive
definition of truth (for simplicity we shall write the pair simply as ϕ(~a), suppressing
the variable assignment, but keep in mind that these are mentions of formulas rather
than uses). So in the atomic case, we’ll have (a = b) ∈ Tr if and only if a = b, and
(a ∈ b) ∈ Tr if and only if a ∈ b; for negation, ¬ϕ(~a) ∈ Tr if and only if ϕ(~a) /∈ Tr;
for conjunction, (ϕ ∧ ψ)(~a) ∈ Tr if and only if ϕ(~a) ∈ Tr and ψ(~a) ∈ Tr; and for
quantifiers, ∃xϕ(x,~a) ∈ Tr just in case there is b for which ϕ(b,~a) ∈ Tr. Tarski
proved that in any sufficiently strong first-order theory no such truth predicate
for first-order truth is definable in the same language. Meanwhile, in the second-
order Kelley-Morse set theory KM and even in the weaker theory GBC plus the
principle of transfinite recursion over well-founded class relations, we can define a
truth predicate for first-order truth, simply because the Tarskian recursion itself
is a well-founded recursion on the complexity of the formulas, where we define the

truth of ϕ(~a) in terms of ψ(~b) for simpler formulas ψ.

Lemma 3.1. The truth-teller has a winning strategy in the truth-telling game if
and only if there is a satisfaction class for first-order truth.

Proof. We may understand this lemma as formalized in Gödel-Bernays GBC set
theory, which includes the global choice principle. Clearly, if there is a satisfaction
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class for first-order truth, then the truth-teller has a winning strategy, which is
simply to answer all questions about truth in accordance with that satisfaction
class, using the global choice principle to pick Skolem witnesses in the existential
case. Since by definition that class obeys the Tarskian conditions, she will win the
game, no matter which challenges are issued by the interrogator.

Conversely, suppose that the truth-teller has a winning strategy τ in the game.
We shall use τ to build a satisfaction class for first-order truth. Specifically, let Tr be
the collection of formulas ϕ(~a) that are pronounced true by τ in any play according
to τ , including the supplemental truth pronouncements made in the existential
case about the particular witnesses. We claim that Tr is a satisfaction class. Since
the truth-teller was required to answer truthfully to all inquiries about atomic
formulas, it follows that Tr contains all and only the truthful atomic assertions.
In particular, the answers provided by the strategy τ on inquiries about atomic
formulas are independent of the particular challenges issued by the interrogator
and of the order in which they are issued. Next, we generalize this to all formulas,
arguing by induction on formulas that the truth pronouncements made by τ on a
formula is always independent of the play in which that formula arises. We have
already noticed this for atomic formulas. In the case of negation, if inductively all
plays in which ϕ(~a) is issued as a challenge or arises as a witness case come out true,
then all plays in which ¬ϕ(~a) arises will result in false, or else we could create a play
in which τ would violate the Tarskian truth conditions, simply by asking about ϕ(~a)
after ¬ϕ(~a) was answered affirmatively. Similarly, if ϕ and ψ always come out the
same way, then so must ϕ ∧ ψ. We don’t claim that τ must always issue the same
witness b for an existential ∃xψ(x,~a), but if the strategy ever directs the truth-
teller to pronounce this statement to be true, then it will provide some witness b
and pronounce ψ(b,~a) to be true, and by induction this truth pronouncement for
ψ(b,~a) is independent of the play on which it arises, forcing ∃xϕ(x,~a) to always
be pronounced true. Thus, by induction on formulas, the truth pronouncements
made by the truth-teller strategy τ allow us to define from τ a satisfaction class for
first-order truth. �

It follows by Tarski’s theorem on the non-definability of truth that there can be
no definable winning strategy for the truth-teller in this game, because there can
be no definable satisfaction class.

Lemma 3.2. The interrogator has no winning strategy in the truth-telling game.

Proof. Suppose that σ is a strategy for the interrogator. So σ is a proper class
function that directs the interrogator to issue certain challenges, given the finite se-
quence of previous challenges and truth-telling answers. By the reflection theorem,
there is a closed unbounded proper class of cardinals θ, such that σ"Vθ ⊆ Vθ. That
is, Vθ is closed under σ, in the sense that if all previous challenges and responses
come from Vθ, then the next challenge will also come from Vθ. Since 〈Vθ,∈〉 is a
set, we have a truth predicate on it, as well as a Skolem function selecting existen-
tial witnesses. Consider the play, where the truth-teller replies to all inquiries by
consulting truth in Vθ, rather than truth in V , and using the Skolem function to
provide the witnesses in the existential case. The point is that if the interrogator
follows σ, then all the inquiries will involve only parameters ~a in Vθ, provided that
the truth-teller also always gives witnesses in Vθ, which in this particular play will
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be the case. Since the truth predicate on Vθ does satisfy the Tarskian truth condi-
tions, it follows that the truth-teller will win this instance of the game, and so σ is
not a winning strategy for the interrogator. �

Thus, if open determinacy holds for classes, then there is a truth predicate Tr for
first-order truth. But we have not yet quite proved the theorem, because the truth-
telling game is an open game, rather than a clopen game, whereas the theorem
concerns determinacy for clopen games. The truth-teller wins the truth-telling
game only by playing the game out for infinitely many steps, and this is not an
open winning condition for her, since at any point the play could have continued
in such a way so as to produce a loss for the truth-teller, if the players cooperated
in order to achieve that.

So let us describe a modified game, the counting-down truth-telling game, which
will be clopen and which we may use in order to prove the theorem. Specifically, the
counting-down truth-telling game is just like the truth-telling game, except that we
insist that the interrogator must also state on each move a specific ordinal αn, which
descend during play α0 > α1 > · · · > αn. If the interrogator gets to 0, then the
truth-teller is declared the winner. For this modified game, the winner will be known
in finitely many moves, because either the truth-teller will violate the Tarskian
conditions or the interrogator will hit zero. So this is a clopen game. Since the
counting-down version of the game is harder for the interrogator, it follows that the
interrogator still can have no winning strategy. We modify the proof of lemma 3.1
for this game by claiming that if τ is a winning strategy for the truth-teller in
the counting-down truth-telling game, then the truth pronouncements made by τ
in response to all plays with sufficiently large ordinals all agree with one another
independently of the interrogator’s play. The inductive argument of lemma 3.1 still
works under the assumption that the counting-down ordinal is sufficiently large,
because there will be enough time to reduce a problematic case. The ordinal will
depend only on the formula and not on the parameter. For example, if ϕ(~a) always
gets the same truth pronouncement for plays in which it arises with sufficiently
large ordinals, then so also does ¬ϕ(~a), with a slightly larger ordinal, because in a
play with the wrong value for ¬ϕ(~a) we may direct the interrogator to inquire next
about ϕ(~a) and get a violation of the Tarskian recursion. Similar reasoning works
in the other cases, and so we may define a satisfaction class from a strategy in the
modified game. Since that game is clopen, we have proved that clopen determinacy
for class games implies the existence of a satisfaction class for first-order truth.

We complete the proof of theorem 3 by explaining how the existence of a sat-
isfaction class implies Con(ZFC) and more. Working in Gödel-Bernays set theory,
we may apply the reflection theorem to the class Tr and thereby find a proper class
club C of cardinals θ for which 〈Vθ,∈,Tr ∩ Vθ〉 ≺Σ1 〈V,∈,Tr〉. In particular, this
implies that Tr ∩ Vθ is a satisfaction class on Vθ, which therefore agrees with truth
in that structure, and so these models form a continuous elementary chain, whose
union is the entire universe:

Vθ0 ≺ Vθ1 ≺ · · · ≺ Vλ ≺ · · · ≺ V.

There is a subtle point here concerning ω-nonstandard models, namely, in order to
see that all instances of the ZFC axioms are declared true by Tr, it is inadequate
merely to note that we have assumed ZFC to be true in V , because this will give
us only the standard-finite instances of those axioms in Tr, but perhaps we have
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nonstandard natural numbers in V , beyond the natural numbers of our metatheory.
Nevertheless, because in GBC we have the collection axiom relative to the truth
predicate itself, we may verify that all instances of the collection axiom (including
nonstandard instances, if any)

∀b∀z
(
∀x ∈ b∃y ϕ(x, y, z)→ ∃c∀x ∈ b∃y ∈ c ϕ(x, y, z)

)
must be declared true by Tr, because we may replace the assertion of ϕ(x, y, z)
with the assertion ϕ(x, y, z) ∈ Tr, which reduces the instance of collection for the
(possibly nonstandard) formula ϕ to an instance of standard-finite collection in
the language of Tr, using the Gödel code of ϕ as a parameter, thereby collecting
sufficient witnesses y into a set c. So even the nonstandard instances of the collection
axiom must be declared true by Tr. It follows that each of these models Vθ for θ ∈ C
is a transitive model of ZFC, understood in the object theory of V , and so we may
deduce Con(ZFC) and Con

(
ZFC + Con(ZFC)

)
and numerous iterated consistency

statements of the form Conα(ZFC), which must be true in all such transitive models
for quite a long way. Alternatively, one can make a purely syntactic argument for
Con(ZFC) from a satisfaction class, using the fact that the satisfaction class is
closed under deduction and does not assert contradictions. �

Note that in the truth-telling games, we didn’t really need the interrogator to
count down in the ordinals, since it would in fact have sufficed to have him count
down merely in the natural numbers; the amount of time remaining required for
the truth pronouncements to stabilize is essentially related to the syntactic com-
plexity of ϕ. We could have insisted merely that on the first move, the interrogator
announce a natural number n, and then the game ends after n moves, with the
interrogator winning only if the Tarski conditions are violated by the truth-teller
within those moves.

Proof of theorem 2. We use the same game as in the proof of theorem 3. Any
definable winning strategy in the counting-down truth-telling game would provide
a definable truth predicate, but by Tarski’s theorem on the non-definability of truth,
there is no such definable truth predicate. Thus, the counting-down truth-telling
game is a first-order parameter-free definable clopen game in ZFC, which can have
no definable winning strategy (allowing parameters) for either player. �

It is interesting to observe that one may easily modify the truth-telling games by
allowing a fixed class parameter B, so that clopen determinacy implies over GBC
that there is a satisfaction class relative to truth in 〈V,∈, B〉. For example, we may
get a truth predicate Tr1 for the structure 〈V,∈,Tr〉 itself, so that Tr1 concerns
truth-about-truth. One may iterate this idea much further, to have predicates Trα
for every ordinal α, which are truth predicates for the structure 〈V,∈,Trβ〉β<α.

Somewhat more uniformly, we may prefer a single binary predicate Tr ⊆ Ord× V ,
whose every slice Trα = {x | 〈α, x〉 ∈ Tr } is a truth predicate for the structure
〈V,∈,Tr � (α× V )〉, and this is a more expressive treatment than having separate
predicates, since one may now quantify over the earlier stages of truth. Indeed, one
may hope to iterate truth predicates beyond Ord along any class well-order as in
theorem 8.

Using the same ideas as in the proof of theorem 3, one may formulate an iterated-
truth-telling game, where the truth-teller answers inquires about such iterated truth
predicates, and then prove from clopen determinacy that there is indeed such an
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iterated truth predicate. This conclusion also follows immediately from theorem 9,
however, as the iterated truth predicate can be defined by an elementary transfinite
recursion, and furthermore, the iterated-truth-telling game is fundamentally similar
to the iteration game we use to prove theorem 9. We shall therefore not give a
separate proof for the iterated-truth case. Theorems 8 and 9 show that clopen
determinacy is equivalent over GBC to the existence of iterated truth predicates
over any class well-order.

Next, we briefly clarify the role of the global choice principle with the following
well-known result.

Theorem 4 (Folklore). In Gödel-Bernays set theory GB, the principle of clopen
determinacy implies the global axiom of choice.

Proof. Consider the game where player I plays a nonempty set b an player II plays
a set a, with player II winning if a ∈ b. This is a clopen game, since it is over
after one move for each player. Clearly, player I can have no winning strategy,
since if b is nonempty, then player II can win by playing any element a ∈ b. But a
winning strategy for player II amounts exactly to a global choice function, selecting
uniformly from each nonempty set an element. �

The set analogue of the proof of theorem 4 shows in ZF that clopen determinacy
for set-sized games implies the axiom of choice, and so over ZF the principle of
clopen determinacy for set-sized games is equivalent to the axiom of choice. As a
consequence, we may prove in ZF that the universal axiom of determinacy, which
asserts that every game on every set is determined, is simply false: either there is
some clopen game that is not determined, or the axiom of choice holds and there
is a game on the natural numbers that is not determined. Pushing this idea a bit
further leads to the following:

Theorem 5. There is a ∆0
2-definable set-sized game in ZF that is not determined.

Proof. Let us emphasize that in the statement of the theorem we are referring to
∆0

2 in the sense of the Lévy hierarchy of the first-order language of set theory (and
not in the sense of the arithmetic or projective hierarchies of descriptive set theory).

Consider the game G where player I begins by playing a nonempty set of reals
A ⊆ ωω, with player II next playing an element of it a ∈ A; after this, player I
plays a non-determined set B ⊆ ωω, and then play proceeds as in the game GB
determined by B. The first player to violate those requirements loses, and otherwise
the winner is determined by the resulting play in GB .

The winning condition for this game is ∆0
2-definable in set theory, because it is

sufficiently local. For example, the assertion that a set B ⊆ ωω is non-determined
has complexity ∆0

2 in set theory: (Π0
2) for every strategy for one of the players,

there is a strategy for the other that defeats it; (Σ0
2) there is a set M such that

M = Vω+3 and M satisfies “B is not determined.”
Finally, we argue in ZF that neither player has a winning strategy for this game.

Player I cannot have a winning strategy in G, since this would require him to play
a non-determined set B and then win the play of GB , contradicting that B is not
determined. If player II has a winning strategy in G, then by the argument of
theorem 4, we get the axiom of choice for sets of reals and hence a well-ordering of
the reals. From this, we know that there are non-determined sets of reals B, which
player I can play, and then the winning strategy for player II would provide a
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winning strategy for GB , contradicting the assumption that B was not determined.
�

A second simple observation about theorem 4 is that this argument answers
a special case of question 1. Namely, since there are models of ZFC where the
global axiom of choice fails for definable classes, there must be some models of ZFC
having definable clopen games with no definable winning strategy. Our theorem 5,
in contrast, establishes the stronger result that every model of ZFC, including
those with global choice, has a definable clopen game with no definable strategy,
and furthermore, the definition of the game is uniform.

4. Clopen determinacy is equivalent over GBC to ETR

We shall now generalize the argument of theorem 3 to prove a stronger result,
which we believe explains the phenomenon of theorem 3. Specifically, in theorem 9
we shall prove that clopen determinacy is exactly equivalent over GBC to the princi-
ple of elementary transfinite recursion ETR over well-founded class relations. This
explains the result of theorem 3 because, as we have mentioned, truth itself is de-
fined by such a recursion, namely, the familiar Tarskian recursive definition of truth
defined by recursion on formulas, and so ETR implies the existence of a satisfaction
class for first-order truth. Following Kentaro Fujimoto [Fuj12, Definition 88], we
introduce the principle of elementary transfinite recursion.

Definition 6. The principle of elementary transfinite recursion over well-founded
class relations, denoted ETR, is the assertion that every first-order recursive defi-
nition along any well-founded binary class relation has a solution.

Let us explain in more detail. A binary relation � on a class I is well-founded,
if every nonempty subclass B ⊆ I has a �-minimal element. This is equivalent in
GBC to the assertion that there is no infinite �-descending sequence, and indeed
one can prove this equivalence in GB+DC, meaning the dependent choice principle
for set relations: clearly, if there is an infinite �-descending sequence, then the set of
elements on that sequence is a set with no �-minimal element; conversely, if there is
a nonempty class B ⊆ I with no �-minimal element, then by the reflection principle
relativized to the class B, there is some Vθ for which B ∩ Vθ is nonempty and has
no �-minimal element; but using DC for �∩Vθ we may successively pick xn+1�xn
from B ∩ Vθ, leading to an infinite �-descending sequence. We find it interesting
to notice that in this class context, therefore, well-foundedness for class relations
becomes a first-order concept, which is a departure from the analogous situation in
second-order number theory, where of course well-foundedness is Π1

1-complete and
definitely not first-order expressible in number theory.

Continuing with our discussion of recursion, suppose that we have a well-founded
binary relation � on a class I, and suppose further that ϕ(x, b, F, Z) is a formula
describing the recursion rule we intend to implement, where ϕ involves only first-
order quantifiers, F is a class variable for a partial solution and Z is a fixed class
parameter, henceforth suppressed. The idea is that ϕ(x, b, F ) expresses the recur-
sive rule to be iterated. Namely, a solution of the recursion is a class F ⊆ I × V
such that for every b ∈ I, the bth slice of the solution Fb = {x | ϕ(x, b, F � b) } is
defined by the recursive rule, where F � b = F ∩ ({ c ∈ I | c� b }×V ) is the partial
solution on slices prior to b. In this way, each slice of the solution Fb is determined
via the recursive rule from the values on the slices Fc for earlier values c.
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The principle of elementary transfinite recursion ETR over well-founded class
relations asserts that for every such well-founded relation 〈I,�〉 and any first-order
recursive rule ϕ as above, there is a solution. One may equivalently consider only
well-founded partial-order relations, or well-founded tree orders, or class well-orders.

Lemma 7. The principle of ETR is equivalently formulated over GBC with any of
the following types of well-founded relations:

(1) well-founded class relations.
(2) well-founded class partial orders.
(3) well-founded class tree orders.
(4) well-ordered class relations.

Proof. Since the families of relations are becoming more specialized, it is clear that
each statement implies the next (1→ 2→ 3→ 4). It remains to prove the converse
implications.

(2→ 1) If � is any well-founded binary class relation, then let < be the transitive
closure of �, which is a well-founded partial order. Any first-order recursion on �

is easily transformed to a recursion on <, using � as a class parameter if necessary.
(3→ 2). If < is any well-founded partial order, then let T be the tree of all finite

<-descending sequences, ordered by extension, so that longer is lower. This tree is
well-founded, and any recursion defined on < can be easily transferred to the tree
order.

(4 → 3) Suppose that we have a first-order recursion defined on a well-founded
class tree T of sequences (the root is at top, the tree grows downward). We can
linearize the tree by the Kleene-Brouwer order, by which s is less than t if s extends
t or if when they disagree, then s is lower than t in that coordinate, with respect
to a fixed global well-ordering of the universe. This is a class well-order, and it is
easy to transfer the recursion from T to this linear order. �

Note that if GBC is consistent, then it does not prove that all recursions along
set well-orders have a solution, because a recursion of length ω suffices to define a
truth predicate by the Tarskian recursion on formulas, and the existence of such
a predicate implies Con(ZFC) and therefore also Con(GBC). So GBC plus ETR
is strictly stronger than GBC in consistency strength, although it is provable in
Kelley-Morse set theory KM, in essentially the same way that GBC proves the
set-like special case.

Next, let’s explain the tight connection between ETR and the existence of iter-
ated truth predicates, a result similar to those obtained by Fujimoto [Fuj12] (for
instance, see his corollary 61). If 〈I,�〉 is a class well-order, then T is an iterated
truth predicate over 〈I,�〉 relative to Z, if for each i ∈ I, the ith slice Ti is a truth
predicate for the structure 〈V,∈, Z, T � i〉, satisfying the Tarskian recursion for for-
mulas in the language of set theory augmented with predicates for Z and T � i,
where T � i = T ∩({ j ∈ I | j � i }×V ) is the restriction of T to the �-earlier stages
of truth.

Theorem 8. The principle ETR of elementary transfinite recursion is equivalent
over GBC to the assertion that for every class parameter Z and every class well-
ordering 〈I,�〉 there is an iterated truth predicate T along 〈I,�〉 over the parameter
Z.
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Proof. The forward implication is straightforward, since the truth predicate itself
is defined by a transfinite recursion of length ω · 〈I,�〉. Namely, to get the truth
predicate for the next stage, one simply performs the Tarskian recursion through
the formula complexity hierarchy, which has height ω.

Conversely, suppose that for class parameter Z and class well-ordering 〈I,�〉,
we have an iterated truth predicate T over � relative to Z. Now suppose that we
have an instance of ETR iterating a formula ϕ(x, i, F, Z) along 〈I,�〉. We claim
that from parameter T , we may define a solution F to this recursion. Specifically,
we claim that there is a formula ϕ̄ such that if one extracts from T the class defined
by ϕ̄, namely, F = { 〈i, x〉 | T (i, 〈ϕ̄, x〉) }, then F is a solution to the recursion of ϕ
along �. The formula ϕ̄ should simply be chosen so that 〈V,∈, Z, T � i〉 |= ϕ̄(x, i) if
and only if 〈V,∈, Z, F � i〉 |= ϕ(x, i), where F is defined as just mentioned using ϕ̄.
Such a formula ϕ̄ exists by Gödel’s fixed-point lemma: for any e, let ψ(e, x, i) be
the assertion 〈V,∈, Z, { 〈i, x〉 | T (i, 〈e, x〉) }〉 |= ϕ(x, i), and then by the usual fixed-
point trick find a formula ϕ̄(x, i), for which 〈V,∈, Z, T � i〉 |= ψ(ϕ̄, x, i) ↔ ϕ̄(x, i).
It follows that the class F iteratively defined from T by ϕ̄ satisfies ϕ at each step
and therefore is a solution to the recursion of ϕ along �, as desired. �

An important immediate consequence of theorem 8 is that ETR is expressible as
a single second-order assertion in the language of GBC, and so we needn’t treat it as
a scheme (see also the remarks at the beginning of the proof of [Fuj12, theorem 88]).
Namely, ETR is equivalent to the assertion that for every class well-order 〈I,�〉
and every class parameter Z, there is an iterated truth-predicate T along 〈I,�〉
relative to Z.

We come now to the next main contribution of this article, the equivalence of
clopen determinacy for class games with ETR, and with the existence of iterated
truth predicates over class well-orders.

Theorem 9. In Gödel-Bernays set theory GBC, the following are equivalent.

(1) Clopen determinacy for class games. That is, in any two-player game of
perfect information whose winning condition class is both open and closed,
there is a winning strategy for one of the players.

(2) The principle ETR of elementary transfinite recursion over well-founded
class relations: every such recursion has a solution.

(3) Existence of iterated-truth predicates. That is, for every class parameter Z
and every class well-ordering 〈I,�〉, there is an iterated truth predicate T
along 〈I,�〉 over parameter Z.

Proof. (2↔ 3) This is established by theorem 8.
(2 → 1) Assume the principle ETR of elementary transfinite recursion, and

suppose we are faced with a clopen game. Consider the game tree, consisting of
positions arising during play, up to the moment that a winner is known, orienting
the tree so that the root is at the top and play proceeds downward. This tree is
well-founded precisely because the game is clopen. Let us label the terminal nodes
of the tree with I or II according to who has won the game in that position, and
more generally, let us label all the nodes of the tree with I or II according to the
following transfinite recursion: if a node has I to play, then it will have label I if
there is a move to a node already labeled I, and otherwise II; similarly, when it
is player II’s turn to play, then if she can play to a node labeled II, we label the
original node with II, and otherwise I. By the principle of elementary transfinite
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recursion, there is a labeling of the entire tree that accords with this recursive rule.
It is now easy to see that if the initial node is labeled with I, then player I has a
winning strategy, which is simply to stay on the nodes labeled I. (We use the global
choice principle to choose a particular such node with the right label; this use can
be avoided if the space X of possible moves is already well-ordered, such as in the
case of games on the ordinals X = Ord.) Note that player II cannot play in one
move on her turn from a node labeled I to one labeled II. Similarly, if the initial
node is labeled II, then player II has a winning strategy, which is simply to stay
on the nodes labeled II. And so the game is determined, and we have established
clopen determinacy.

(1 → 2) This implication is the main new content of this theorem. Assume the
principle of clopen determinacy for class games, and suppose that we are faced with
a recursion along a well-founded class partial-order relation � on a class I, using a
first-order recursion rule ϕ(x, b, F ), possibly with a fixed class parameter Z, which
we suppress. We shall define a certain clopen game, and prove that any winning
strategy for this game will produce a solution for the recursion.

At first, we consider a simpler open game, the recursion game, which will be
much like the truth-telling game used in theorem 3, except that in this game,
the truth-teller will also provide information about the putative solution of the
recursion in question; later, we shall revise this game to a clopen game. In the
recursion game, we have the same two players again, the interrogator and the
truth-teller, but now the interrogator will make inquiries about truth in a structure
of the form 〈V,∈,�, F 〉, where � is the well-founded class relation and F is a binary
class predicate, not yet specified, but which we hope will become a solution of the
recursion, with F ⊆ I × V . Specifically, the interrogator is allowed to ask about
the truth of any first-order formula ϕ(~a) in the language of this structure and in
particular to inquire as to whether F (i, x) or not. The truth-teller, as before, will
answer the inquiries by pronouncing either that ϕ(~a) is true or that it is false, and
in the case ϕ(~a) = ∃xψ(x,~a) and the formula was pronounced true, then the truth-
teller shall also provide as before a witness b for which she also pronounces ψ(b,~a)
to be true. The truth-teller loses immediately, if she should ever violate Tarski’s
recursive definition of truth, and she also is required to pronounce any instance of
the recursion rule F (i, x)↔ ϕ(x, i, F � i) to be true, where F � i denotes the class
F ∩ ({ j ∈ I | j � i } × V ). Specifically, we form the formula ϕ(x, i, F � i) in the
language of set theory with a predicate for F by replacing any atomic occurrence
of the predicate F (j, y) in ϕ with F (j, y) ∧ j � i. Since violations of any of these
requirements, if they occur at all, do so at a finite stage of play, it follows that the
game is open for the interrogator.

Lemma 9.1. The interrogator has no winning strategy in the recursion game.

Proof. To prove this lemma, we use a modification of the idea of lemma 3.2. Sup-
pose that σ is a strategy for the interrogator. So σ is a class function that instructs
the interrogator how to play next, given a position of partial play. By the reflection
theorem, there is an ordinal θ such that Vθ is closed under σ, and using the sat-
isfaction class that comes from clopen determinacy, we may actually also arrange
that 〈Vθ,∈,� ∩ Vθ, σ ∩ Vθ〉 ≺ 〈V,∈,�, σ〉. Consider the relation � ∩ Vθ, which
is a well-founded relation on I ∩ Vθ. Since ZFC and hence GBC proves the exis-
tence of solutions to transfinite recursions for sets, there is a (unique) solution f ⊆
(I∩Vθ)×Vθ such that the ith slice fi = {x ∈ Vθ | 〈Vθ,∈,� ∩ Vθ, f〉 |= ϕ(x, i, f � i) }
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is defined by the recursion of ϕ, where f � i means the restriction of the predicate
f ∩ ({ j ∈ I ∩ Vθ | j � i }×Vθ) to the predecessors of i that are also in Vθ. Consider
now the play of the recursion game in V , where the interrogator uses the strategy σ
and the truth-teller plays in accordance with truth in the structure 〈Vθ,∈,�∩Vθ, f〉,
which is a little sneaky because the function f is a solution of the recursion rule
ϕ only on the relation � ∩ Vθ, rather than the full relation �. But since Vθ was
closed under σ, the interrogator will never issue challenges outside of Vθ in this
play; and since the function f fulfills the recursive rule f(i, x) ↔ ϕ(x, i, f � i) in
this structure, the truth-teller will not be trapped in any violation of the Tarski
conditions or the recursion condition. Thus, the truth-teller will win this instance
of the game, and so σ is not a winning strategy for the interrogator, as desired. �

Lemma 9.2. The truth-teller has a winning strategy in the recursion game if and
only if there is a solution of the recursion.

Proof. If there is a solution F of the recursion, then by clopen determinacy we know
there is also a satisfaction class Tr for first order truth in the structure 〈V,∈,�, F 〉,
and the truth-teller can answer all queries of the interrogator in the recursion game
by referring to what Tr asserts is true in this structure. This will be winning for
the truth-teller, since Tr obeys the Tarskian conditions and makes all instances of
the recursive rule true with the predicate F .

Conversely, suppose that τ is a winning strategy for the truth-teller in the recur-
sion game. We may see as before that the truth pronouncements made by τ about
truth in the structure 〈V,∈,�〉 are independent of the play in which they occur,
and they provide a satisfaction class for this structure. This is proved just as for
the truth-telling game by induction on the complexity of the formulas: the strategy
must correctly answer all atomic formulas, and the answers to more complex formu-
las must be independent of the play since violations of this would lead to violations
of the Tarski conditions by reducing to simpler formulas, as before, and this would
contradict our assumption that τ is a winning strategy for the truth-teller.

Consider next the truth pronouncements made by τ in the language involving
the class predicate symbol F . We shall actually need this property only in the
restricted languages, where for each i ∈ I, we consider formulas asserting truth
in the structure 〈V,∈,�, F � i〉, rather than concerning truth in the full structure
〈V,∈,�, F 〉. We claim by induction on i, with an embedded induction on formulas,
that for every i ∈ I, the truth pronouncements provided by the strategy τ in this
language are independent of the play in which they are made and furthermore
provide a truth predicate for a structure of the form 〈V,∈,�, F � i〉. The case
where i is �-minimal is essentially similar to the case we already handled, where
no reference to F is made, since F � i must be asserted to be empty in this case.
Suppose inductively that our claim is true for assertions in the language with F � j,
whenever j � i, and consider the language with F � i. (Note that the claim we
are proving by induction is first-order expressible in the class parameter τ , and
so this induction can be legitimately undertaken in GBC; we haven’t allowed an
instance of Π1

1-comprehension to sneak in here.) It is not difficult to see that τ
must pronounce that the various predicates F � j cohere with one another on their
common domain, since any violation of this will give rise to a violation of the
Tarskian recursion. So our induction assumption ensures that τ has determined a
well-defined class predicate F � i. Furthermore, since τ is required to affirm that
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F obeys the recursive rule, it follows that τ asserts that F � i obeys the recursive
rule up to i.

We now argue by induction on formulas that the truth pronouncements made by
τ about the structure 〈V,∈,�, F � i〉 forms a satisfaction class for this structure.
In the atomic case, the truth pronouncements about this structure are independent
of the play of the game in which they occur, since this is true for atomic formulas
in the language of set theory and for atomic assertions about �, by the rules of the
game, and it true for atomic assertions about F � i by our induction hypothesis on
i. Continuing the induction, it follows that the truth pronouncements made about
compound formulas in this structure are similarly independent of the play and obey
the Tarskian conditions, since any violation of this can be easily exposed by having
the interrogator inquire about the constituent formulas, just as in the truth-telling
game. So the claim is also true for F � i.

Thus, for every i ∈ I, the strategy τ is providing a satisfaction class for the
structure 〈V,∈,�, F � i〉, which furthermore verifies that the resulting class predi-
cate F � i determined by this satisfaction class fulfills the desired recursion relation
up to i. Since these restrictions F � i also all agree with one another, the union
of these class predicates is a class predicate F ⊆ I × V that for every i obeys the
desired recursive rule Fi = {x | ϕ(x, i, F � i) }. So the recursion has a solution, and
this instance of the principle of first-order transfinite recursion along well-founded
class relations is true. �

So far, we have established that the principle of open determinacy implies the
principle ETR of elementary transfinite recursion. In order to improve this impli-
cation to use only clopen determinacy rather than open determinacy, we modify
the game as in lemma 3.1 by requiring the interrogator to count-down during play.
Specifically, the count-down recursion game proceeds just like the recursion game,
except that now we also insist that the interrogator announce on the first move a
natural number n, such that the interrogator loses if the truth-teller survives for at
least n moves (we could have had him count down in the ordinals instead, which
would have made things more flexible for him, but the analysis is essentially the
same). This is now a clopen game, since the winner will be known by the time
this clock expires, either because the truth-teller will violate the Tarski conditions
or the recursion condition before that time, in which case the interrogator wins, or
else because she did not and the clock expired, in which case the truth-teller wins.
So this is a clopen game.

Since the modified version of the game is even harder for the interrogator, there
can still be no winning strategy for the interrogator. So by the principle of clopen
determinacy, there is a winning strategy τ for the truth-teller. This strategy is
allowed to make decisions based on the number n announced by the interrogator
on the first move, and it will no longer necessarily be the case that the theory
declared true by τ will be independent of the interrogator’s play, since the truth-
teller can relax as the time is about to expire, knowing that there isn’t time to be
caught in a violation. Nevertheless, it will be the case, we claim, that the theory
pronounced true by τ for all plays with sufficiently many remaining moves will be
independent of the interrogator’s play. One can see this by observing that if an
assertion ψ(~a) is independent in this sense, then also ¬ψ(~a) will be independent
in this sense, for otherwise there would be plays with a large number of plays
remaining giving different answers for ¬ψ(~a) and we could then challenge directly
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afterward with ψ(~a), which would have to give different answers or else τ would
not win. Similarly, since τ is winning for the truth-teller, one can see that allowing
the interrogator to specify a bound on the total length of play does not prevent the
arguments above showing that τ describes a coherent solution predicate F ⊆ I×V
satisfying the recursion F (i, x) ↔ ϕ(x, i, F � i), provided that one looks only at
plays in which there are sufficiently many moves remaining. There cannot be a
�-least i where the value of F (i, x) is not determined in this sense, and so on just
as before. So the strategy must give us a class predicate F and a truth predicate
for 〈V,∈,�, F 〉 witnessing that it solves the desired recursion, as desired.

In conclusion, the principle of clopen determinacy for class games is equivalent
to the principle ETR of elementary transfinite recursion along well-founded class
relations. �

5. Proving open determinacy in strong theories

It follows from theorems 3 and 9 that the principle of open determinacy for class
games cannot be proved in set theories such as ZFC or GBC, if these theories are
consistent, since there are models of those theories that have no satisfaction class
for first-order truth. We should now like to prove, in contrast, that the principle
of open determinacy for class games can be proved in stronger set theories, such
as Kelley-Morse set theory KM, as well as in GBC + Π1

1-comprehension, which is a
proper fragment of KM.

In order to undertake this argument, however, it will be convenient to consider
the theory KM+, a natural strengthening of Kelley-Morse set theory KM that
we consider in [GHJa]. The theory KM+ extends KM by adding the class-choice
scheme, which asserts of any second-order formula ϕ, that for every class parameter
Z, if for every set x there is a class X with property ϕ(x,X,Z), then there is a class
Y ⊆ V × V , such that for every x we have ϕ(x, Yx, Z), where Yx denotes the xth

slice of Y . Thus, the axiom asserts that if every set x has a class X with a certain
property, then we can choose particular such classes and put them together into a
single class Y in the plane, such that the xth slice Yx is a witness for x. In [GHJa],
we prove that this axiom is not provable in KM itself, thereby revealing what may
be considered an unfortunate weakness of KM. The class-choice scheme can also
naturally be viewed as a class collection axiom, for the class Y gathers together
a sufficient collection of classes Yx witnessing the properties ϕ(x, Yx, Z). In this
light, the weakness of KM in comparison with KM+ is precisely analogous to the
weakness of the theory ZFC- in comparison with the theory ZFC− that we identified
in [GHJb]—these are the theories of ZFC without power set, using replacement or
collection + separation, respectively—since in each case the flawed weaker theory
has replacement but not collection, which leads to various unexpected failures for
the respective former theories.

The natural weakening of the class-choice scheme to the case where ϕ is a first-
order assertion, having only set quantifiers, is called the first-order class-choice
principle, and it is expressible as a single assertion, rather than only as a scheme,
in KM and indeed in GBC + ETR, since in these theories we have first-order truth-
predicates available relative to any class. A still weaker axiom makes the assertion
only for choices over a fixed set, such as the first-order class ω-choice principle:

∀Z
(
∀n ∈ ω ∃X ϕ(n,X,Z)→ ∃Y ⊆ ω × V ∀n ∈ ω ϕ(n, Yn, Z)

)
,
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where ϕ has only first-order quantifiers, and this is also finitely expressible in GBC+
ETR. In our paper [GHJa], we separate these axioms from one another and prove
that none of them is provable in KM, assuming the consistency of an inaccessible
cardinal.

The Π1
1-comprehension axiom is the assertion that for any Π1

1 formula ϕ(x, Z),
with class parameter Z, we may form the class { a | ϕ(a, Z) }. By taking comple-
ments, this is equivalent to Σ1

1-comprehension.

Theorem 10. Kelley-Morse set theory KM proves the principle of open determi-
nacy for class games. Indeed, this conclusion is provable in the subtheory consisting
of GBC plus Π1

1-comprehension.

We are unsure whether the strictly weaker theory of GBC + ETR suffices for this
conclusion; see additional discussion in section 7.

Proof. Assume GBC plus Π1
1-comprehension. In order to make our main argument

more transparent, we shall at first undertake it with the additional assumption that
the first-order class-choice principle holds (thus, we work initially in a fragment of
KM+). Afterwards, we shall explain how to eliminate our need for the class-choice
principle, and thereby arrive at a proof using just GBC plus Π1

1-comprehension.
Consider any open class game A ⊆ Xω, where A is the open winning condition

and X is the class of allowed moves. We shall show the game is determined. To
do so, notice that for any position p ∈ X<ω, the assertion that a particular class
function σ : X<ω → X is a winning strategy for player I in the game proceeding
from position p is an assertion about σ involving only first-order quantifiers; one
must say simply that every play of the game that proceeds from p and follows σ on
player I’s moves after that, is in A. Thus, the assertion that player I has a winning
strategy for the game starting from position p is a Σ1

1 assertion about p. Using
Π1

1-comprehension, therefore, we may form the class

W =

{
p ∈ X<ω | Player I has a winning strategy in the

game proceeding from position p

}
.

With this class, we may now carry out a class analogue of one of the usual soft
proofs of the Gale-Stewart theorem, which we mentioned in the introduction of this
article. Namely, if the initial (empty) position of the game is in W , then player
I has a winning strategy, and we are done. Otherwise, the initial node is not in
W , and we simply direct player II to avoid the nodes of W during play. If this
is possible, then it is clearly winning for player II, since he will never land on a
node all of whose extensions are in the open class, since such a node is definitely
in W , and so he will win. To see that player II can avoid the nodes of W , observe
simply that at any position p, if it is player II’s turn to play, and player I does
not have a strategy in the game proceeding from p, then we claim that there must
be at least one move that player II can make, to position p a x for some x ∈ X,
such that p a x /∈ W . If not, then p a x ∈ W for all moves x, and so for each such
x there is a strategy τx that is winning for player I in the game proceeding from
p a x. By the first-order class-choice principle (and this is precisely where we use
our extra assumption), we may gather such strategies τx together into a single class
and thereby construct a strategy for player I that proceeds from position p in such
a way that if player II plays x, then player I follows τx, which is winning for player
I. Thus, there is a winning strategy for player I from position p, contradicting our
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assumption that p /∈ W , and thereby establishing our claim. So if p /∈ W and it
is player II’s turn to play, then there is a play p a x that remains outside of W .
Similarly, if p /∈ W and it is player I’s turn to play, then clearly there can be no
next move pay placing it inside W , for then player I would have also had a strategy
from position p. Thus, if the initial position is not in W , then player II can play so
as to retain that property (using global choice to pick a particular move realizing
that situation), and player I cannot play so as to get inside W , and this is therefore
a winning strategy for player II. So the game is determined.

The argument above took place in the theory GBC + Π1
1-comprehension + the

first-order class-choice principle. And although it may appear at first to have made
a fundamental use of the class-choice principle, we shall nevertheless explain how
to eliminate this use. The first observation to make is that Π1

1-comprehension
implies the principle ETR of elementary transfinite recursion along any well-founded
relation. To see this, suppose that � is any well-founded relation on a class I and
ϕ(x, i, F, Z) is a formula to serve as the recursive rule. The class of i ∈ I that
are in the domain of some partial solution to the recursion is Σ1

1-definable. And
furthermore, all such partial solutions must agree on their common domain, by
an easy inductive argument along �. It follows that the union of all the partial
solutions is Σ1

1-definable and therefore exists as a class, and it is easily seen to obey
the recursion rule on its domain. So it is a maximal partial solution. If it is not
defined on every slice in I, then there must be a �-minimal element i whose ith

slice is not defined; but this is impossible, since we could apply the recursive rule
once more to determine the slice Fi = {x | ϕ(x, i, F � i, Z) } to place at i, thereby
producing a partial solution that includes i. So the maximal partial solution is
actually a total solution, verifying this instance of the transfinite recursion principle.

Next, we shall explain how to continue the constructibility hierarchy beyond Ord.
This construction has evidently been discovered and rediscovered several times in
set theory, but rarely published; the earliest reference appears to be the disserta-
tion of Leslie Tharp [Tha65], although Bob Solovay reportedly also undertook the
construction as an undergraduate student, without publishing it. In the countable
realm, of course, the analogous construction is routine, where one uses reals to code
arbitrary countable structures including models of set theory of the form 〈Lα,∈〉.
For classes, suppose that Γ = 〈Ord,≤Γ〉 is a meta-ordinal, which is to say, a well-
ordered class relation ≤Γ on Ord; this relation need not necessarily be set-like, and
the order type can reach beyond Ord. By ETR, we may iterate the constructible
hierarchy up to Γ, and thereby produce a class model 〈LΓ,∈Γ〉 of V = L, whose
ordinals have order-type Γ. Specifically, we reserve a class of nodes to be used for
representing the new “(meta-)sets” at each level of the LΓ hierarchy, and define ∈Γ

recursively, so that at each level, we add all and only the sets that are definable
(from parameters) over the previous structure. To be clear, the domain of the struc-
ture 〈LΓ,∈Γ〉 is a class LΓ ⊆ V , and the relation ∈Γ is not the actual ∈ relation,
but nevertheless ∈Γ is a well-founded extensional relation in our original model,
and the structure 〈LΓ,∈Γ〉 looks internally like the constructible universe. Thus,
we have what might be termed merely a code for or presentation of the fragment
LΓ of the constructibility hierarchy up to Γ, which someone outside the universe
might prefer to think of as an actual transitive set.

In order to speak of LΓ in our GBC context, then, we must be aware that
different choices of Γ will lead to different presentations, with sets being represented
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differently and by different sets. Nevertheless, we may assume without loss that
the actual sets in L = LOrd are represented in this presentation in some highly
canonical way, so that the ordinals are represented by themselves, for example, and
the other sets are represented by their own singletons (say), and so in particular, all
the various LΓ will agree on their ∈Γ relations for sets constructed before Ord. Also,
using the principle of first-order transfinite recursion, it is easy to see that any two
meta-ordinals Γ and Γ′ are comparable, in the sense that one of them is (uniquely)
isomorphic to an initial segment of the other, and similarly the structures LΓ and
LΓ′ admit such coherence as well; in particular, if Γ and Γ′ are isomorphic, then
so also are the structures LΓ and LΓ′ . Consider the meta-ordinals Γ for which
there is a larger meta-ordinal Θ, such that LΘ has as an element a well-ordered
structure Γ′ = 〈Ord,≤Γ′〉 with order-type isomorphic to Γ. In a sense, these are the
meta-ordinals below (Ord+)L. In this case, there will be an L-least such code Γ′ in
LΘ. And furthermore, any other meta-ordinal Θ′ which constructs such a code will
agree on this L-least code. Since we assumed that the ordinals were represented as
themselves in LΘ, we may view Γ′ as a meta-ordinal in our original model. Thus,
the meta-ordinals Γ realized by a relation in some LΘ have canonical codes, the
meta-ordinals that are L-least with respect to some (and hence all sufficiently large)
LΘ. There is exactly one such code for each meta-ordinal order type that is realized
inside any LΘ.

Now, let L be the collection of classes B ⊆ L that are realized as an element
in some LΓ—these are the classes of the meta-L that are contained in the actual
L—and consider the model L = 〈L,∈,L〉. It is not difficult to see that this is a
model of GBC, precisely because the L-hierarchy closes under definability at each
step of the recursion. Furthermore, the existence of canonical codes will allow us
to show that this model satisfies the first-order class-choice principle. Suppose that
L |= ∀b∃X ϕ(b,X), where ϕ has only first-order quantifiers. For each set b, there
is a class X with property ϕ(b,X), and such a class X exists as a set in some LΓ for
some meta-ordinal Γ. We may consider Γ to be a canonical code for a meta-ordinal
which is minimal with respect to the property of having such an X, and in this
case, the class Γ = Γb is Σ1

1-definable (and actually ∆1
1-definable) from b. So the

map b 7→ Γb exists as a class in the ground model, and we may therefore form a
meta-ordinal Θ that is larger than all the resulting meta-ordinals Γb. Inside LΘ,
we may select the L-least Xb witnessing ϕ(b,Xb, Z), and thereby form the class
{ (b, c) | c ∈ Xb }, which fulfills this instance of the first-order class-choice principle
(and the argument easily accommodates class parameters).

A similar idea shows that L satisfies Π1
1-comprehension, provided that this was

true in the original model (and indeed L satisfies KM, if this was true in the original
model, and in this case one can also verify the class-choice scheme in L , without
requiring this in V , which shows that Con(KM)→ Con(KM+); see [GHJa].) It will
be more convenient to establish Σ1

1-comprehension, which is equivalent. Consider
a formula of the form ∃X ϕ(b,X), where ϕ has only first-order quantifiers. The
class B = { b ∈ L | ∃X ∈ L ϕ(b,X) } is Σ1

1-definable and therefore exists as a class
in our original universe. We need to show it is in L. For each b ∈ B, there is a class
X such that X ∈ L and ϕ(b,X), and such a class X is constructed in some LΓ

at some minimal meta-ordinal stage Γ, which we may assume is a canonical code.
Thus, the map b 7→ Γb is Σ1

1-definable, and so it exists as a class. Thus, we may
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form a single meta-ordinal Θ larger than all the Γb, and in LΘ, we may define the
set B. So B ∈ L, verifying this instance of Σ1

1-comprehension in L , as desired.
One may now check that the construction of the previous paragraph relativizes

to any class Z ⊆ Ord, leading to a model 〈L[Z],∈,S〉 that satisfies GBC + Π1
1-

comprehension + the first-order class-choice principle, in which Z is a class. One
simply carries the class parameter Z through all of the previous arguments. If Z
codes all of V , then the result is a model 〈V,∈,S〉, whose first-order part has the
same sets as the original model V .

Using this, we may now prove the theorem. Consider any open class game
A ⊆ Xω, where X is the class of allowed moves. Let Z ⊆ Ord be a class that codes
in some canonical way every set in V and also the classes X and A. The resulting
structure 〈V,∈,S〉 described in the previous paragraph therefore satisfies GBC+Π1

1-
comprehension + the first-order class-choice principle. The game A ⊆ Xω exists in
this structure, and since it is open there, it follows by the first part of the proof of
this theorem that this game is determined in that structure. So there is a strategy
σ ∈ S for the game A that is winning for one of the players. But this is absolute
to our original universe, because the two universes have exactly the same sets and
therefore exactly the same plays of the game. So the game is also determined in our
original universe, and we have thus verified this instance of the principle of open
determinacy for class games. �

One might view the previous argument as a proper class analogue of Blass’s
result [Bla72] that computable games have their winning strategies appearing in the
L-hierarchy before the next admissible set, since we found the winning strategies for
the open class game in the meta-L hierarchy on top of the universe. Nevertheless,
we are unsure sure exactly what it takes in the background theory to ensure that
the meta-L structure is actually admissible.

6. The strength of ETR

To provide further context of the second-order set theories mentioned in this
article, we should like next to explain Kentaro Sato’s surprising result separating
ETR from ∆1

1-comprehension over GBC. This result is surprising, because it is an
instance where the analogy between results in second-order arithmetic and those in
second-order set theory break down. In second-order arithmetic, the theory ATR0,
consisting of ACA0 together with the principle of transfinite recursion, implies ∆1

1-
comprehension and is in fact, much stronger (by Thm VIII.4.20 in [Sim09], ATR0

proves that there is a countable coded ω-model of ACA0+∆1
1-comprehension). In

second-order set theory, the relationship between ETR and ∆1
1-comprehension is

very different. We know that the theory GBC + ∆1
1-comprehension cannot imply

ETR because it is Π1
2-conservative over GBC (see Fujimoto [Fuj12], Thm 15). But

Sato’s result shows that the principle of ∆1
1-comprehension is not provable from

GBC+ETR, and in fact, GBC + ETR + ∆1
1-comprehension has strictly stronger

consistency strength than GBC + ETR alone. Using some of the ideas of the more
general [Sat14, theorem 33], we provide here a streamlined proof of just this result.

Theorem 11 (Sato). The theory GBC + ETR + ∆1
1-comprehension proves the

consistency of GBC + ETR. Consequently, if consistent, the theory GBC + ETR
does not prove ∆1

1-comprehension.
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Proof. We shall argue in the theory GBC + ETR + ∆1
1-comprehension that there is

an encoded collection of classes that forms a model of GBC+ETR. That is, we shall
prove that there is a class A ⊆ V ×V , such that the structure 〈V,∈, {Ax | x ∈ V }〉,
built from the classes encoded by A, is a model of GBC + ETR, where Ax =
{ y | (x, y) ∈ A } is the xth slice of A. By reflecting this situation down to a set, the
consistency of GBC + ETR follows.

Recall that in GBC + ETR we may define the unique first-order truth predicate
relative to any class parameter. So in this theory we may freely refer to first-order
truth relative to any class parameter. Fix any global well-order �, and let A0 be an
encoded list of all classes that are first-order definable in 〈V,∈,�〉, together with the
(unique) solutions to all first-order recursions that are undertaken on well-orders
that are definable over this structure. For example, we may place the class defined

by formula ϕ(·,~a) with set parameters ~a on the 〈ϕ,~a〉th slice of A0; and similarly,
given a first-order recursion ψ(x, b, F,~c), defined along a well-founded relation ≤
defined by first-order formula θ(·, ·, ~e ), we may place the unique solution of the

recursion F , which exists by ETR, on the 〈ϕ,~c, θ, ~e 〉th slice of A0. The class A0

exists, since first of all, each slice exists by ETR, and consequently the whole class
A0 is ∆1

1-definable, on account of the uniqueness of the definable classes and the
solutions of the recursions. (A subtle point: one might have hoped to show that
A0 exists just in ETR itself, by a recursion that proceeds in parallel through the
recursions of each slice, but that way of doing the recursion would actually be ∆1

1

rather than first-order, because of the need to refer uniformly to the truth of the
recursive steps for the partial solutions of the recursion.)

Given a class An ⊆ V × V , which we view as encoding the collection of its
slices, we similarly define An+1 to be a class encoding all the first-order definable
classes that are definable in 〈V,∈, X〉 for any class X that is coded in An, as well
as all solutions to first-order recursions along a well-founded first-order definable
relations, allowing class parameters from amongst the classes coded in An. If we
place the classes into An+1 in the same kind of canonical manner, then An+1 will
be ∆1

1-definable, because the definable classes and solutions to those recursions are
unique.

It follows that the unifying class A = { (〈n, x〉 , y) | y ∈ Anx }, which encodes all of
the classes {Anx | n ∈ ω, x ∈ V } that arise in our construction, is also ∆1

1 definable.
We shall complete the argument by proving that the family of classes encoded by A
gives rise to a structure 〈V,∈, {Anx | n ∈ ω, x ∈ V }〉 that is a model of GBC+ETR.
This is almost immediate by the design of the construction. Specifically, for GBC,
any class that is definable from some class parameter Anx is added as a slice of the
next stage An+1, and so it appears as An+1

u for some u, and is consequently in our
family of classes. Similarly, any solution F to a first-order recursion over a first-
order definable well-founded relation, defined relative to some classes appearing as
slices in A, will be added to An+1 after any stage n by which the class parameters
have appeared in An. So ETR will hold for our classes, as desired.

Finally, we note that the existence of a single class encoding a model of GBC +
ETR implies Con(GBC + ETR), because we may apply the reflection theorem to
produce a set-sized model. �
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7. Questions

The work of this article suggests numerous questions for further investigation.
Can we weaken the assumption of Π1

1-comprehension in theorem 10 to use only
the principle ETR of elementary transfinite recursion over well-founded class rela-
tions? If so, it would follow that open determinacy and clopen determinacy for class
games are both equivalent over GBC to the principle of transfinite recursion, which
would resonate with the corresponding situation in reverse mathematics for games
on the natural numbers, where both open determinacy and clopen determinacy
are equivalent to the principle of transfinite recursion over ACA0. But perhaps
open determinacy is strictly stronger than clopen determinacy over GBC. Which
strengthening of GBC suffices to prove the meta-L structure we construct in the-
orem 10 is admissible? If this is possible in GBC plus ETR, then the proper class
analogue of the Blass result mentioned earlier might show that open determinacy
and clopen determinacy for classes are equivalent over GBC. Is there a class game
analogue of Martin’s proof [Mar75] of Borel determinacy? What does it take to
prove the class analogue of Borel determinacy for class games? There is a natural
concept of class Borel codes, which in KM+ gives rise to a collection of classes that
is the smallest collection of classes containing the open classes and closed under
countable unions and complements. Are all such class games determined? If κ
is an inaccessible cardinal, then the full second-order structure 〈Vκ,∈, Vκ+1〉 is a
model of KM+ that satisfies Borel determinacy for class games. Is there a proper
class analogue of Harvey Friedman’s famous proof [Fri71] that Borel determinacy
requires strength? We have taken up all these questions in current work.
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