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Abstract. The Reflection principle is the scheme of assertions that every
formula is reflected by a transitive set. The Reflection principle follows from

the axioms ZFC, but can fail in models of ZFC−, set theory without powersets

[FGK19]. We define that a partial Reflection principle for (a set or class) A
is the scheme of assertions that whenever a formula ϕ(a) with a ∈ A holds,

then it holds in some transitive set containing a. We show that the Reflection

principle can fail in a model of ZFC−, while the partial Reflection principle for
V (all parameters are allowed) holds, separating the Reflection Principle from

the strongest of the partial Reflection principles. We show that the partial

Reflection principle for V can fail in a model of ZFC−. Finally, we show the
partial Reflection Principle for R holds in both of the two currently known

models of ZFC− in which the Reflection principle fails.

1. Introduction

The Reflection principle is the scheme of assertions that every formula is reflected
by a transitive set, namely that for every formula ϕ(x, a), with parameter a, there
is a transitive set S containing a such that for all s ∈ S, ϕ(s, a) holds if and only
if it holds in S. The Reflection principle follows from ZFC, with the witnessing
sets being elements of the Vα-hierarchy. Given a formula ϕ, the reflecting Vα is
constructed as the union of a sequence Vα0

⊆ Vα1
⊆ · · ·Vαn ⊆ · · · of length ω,

where each Vαn+1
is a closure of Vαn under witnesses for all existential sub-formulas

of ϕ, and so reflects ϕ by the Tarski-Vaught test. Since the argument uses only the
existence of the Vα-hierarchy together with Replacement to verify that desired α
exists, it goes through in ZF as well.

The definition of the Vα-hierarchy requires the existence of powersets, so it is nat-
ural to ask whether the Reflection principle continues to hold in set theories without
powersets. Since some naturally equivalent versions of the ZFC axioms stop being
equivalent once the Powerset axiom is removed, we end up with several versions
of set theory without powersets. Without the Powerset axiom, the Replacement
and Collection schemes are no longer equivalent and neither are the versions of the
Axiom of Choice which we use interchangeably [Zar82]. For instance, ZFC without
the Powerset axiom, with the Collection scheme instead of Replacement, although
it has AC, does not imply that every set can be well-ordered. Let ZFC− be the
theory consisting of the axioms of ZFC (with Replacement) and the assertion that
every set can be well-ordered. The theory ZFC− exhibits many undesirable behav-
iors. It can have models in which ω1 is a countable union of countably many sets,
in which ω1 exists, but every set of reals is countable, or where the  Loś theorem
can fail for ultrapowers [GHJ16]. All these issues can be eliminated by instead tak-
ing the theory ZFC−, where we replace the Replacement scheme with Collection,
suggesting that this is the more natural version of set theory without powersets.
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The most common set-theoretic structures encountered by set theorists in which
the Powerset axiom fails are Hκ+ , the collection of all sets whose transitive closure
has size at most κ, and these indeed satisfy ZFC−.

The Reflection principle clearly implies Collection over the other axioms of
ZFC−. In ZFC−, every set can be closed under witnesses for existential sub-
formulas of a given formula, but after that it appears that some class version
of dependent choice is required to iterate this construction ω-many times. Re-
call that the DCω-scheme is the class version of dependent choice which asserts
that we can make ω-many dependent choices along any definable relation without
terminal nodes. More formally, the DCω-scheme is a scheme of assertions for ev-
ery formula ϕ(x, y, a), with parameter a, that if for every x, there is y such that
ϕ(x, y, a) holds, then there is a sequence {bn | n < ω} such that for every n < ω,
ϕ(bn, bn+1, a) holds.1 It is easy to see that ZFC− together with the DCω-scheme
imply the Reflection principle and indeed ZFC− together with the Reflection prin-
ciple imply the DCω-scheme because we can reflect the relation and the assertion
that it has no terminal nodes to a transitive set and then use AC to construct the
sequence of dependent choices. It is shown in [FGK19] that the theory ZFC− does
not prove the DCω-scheme, and so it does not prove the Reflection principle.

In this article, we consider a family of partial Reflection principles and examine
their status in models of ZFC−. Given a set or class A, let the partial Reflection
Principle for A be the scheme of assertions for every formula ϕ(a), with parameter
a ∈ A, that if ϕ(a) holds, then it holds in some transitive set. We will abbreviate
the partial Reflection principle for V , where any set can be used as a parameter, as
just the partial Reflection principle and at the other extreme, we will also call the
partial Reflection principle for ∅, where no parameters are allowed, the parameter-
free Reflection principle. Note that if we remove the requirement of transitivity from
the parameter-free Reflection principle, then it is provable in ZFC− by standard
proof-theoretic arguments. Freund considered some partial Reflection principles
in [Fre20]. He showed that, over the axioms of ZFC− without Collection, the
parameter-free Reflection principle is equivalent to the principle of induction along
∆1-definable well-founded relations and that the partial Reflection principle for R
is equivalent to the principle of induction along ∆1-definable with real parameters
well-founded relations [Fre20]. Partial reflection in the context of Zermelo set theory
was studied by Lévy and Vaught, who showed that Zermelo set theory together with
the partial Reflection principle do not imply Replacement [LV61]. More recently,
Bokai Yao studied the partial Reflection principle in set theories with urelements
[Yao24].

Models of ZFC− in which the DCω-scheme fails, being the only candidates in
which the partial Reflection principles can fail, are notoriously hard to construct.
There are currently only two known models of ZFC− in which the DCω-scheme
fails. Both are constructed as submodels of forcing extensions by a tree iteration of
Jensen’s forcing. Jensen’s forcing J is a subposet of Sacks forcing that is constructed
in L using the ♦ principle. The poset J has the ccc and adds a unique generic real
that is Π1

2-definable as a singleton [Jen70]. In L, we can appropriately define finite
iterations Jn of J of length n. These also have the ccc and add a unique n-length
generic sequence of reals that is Π1

2-definable (see [Abr84] and [FGK19]). Again

1Freund has observed that over the axioms ZFC− without Collection, the DCω-scheme is equiv-
alent to the principle of induction along definable well-founded relations (personal communication).
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working in L, given a set or class tree T of height ω, a tree iteration P(J, T ) of J
along T is a poset whose elements are functions p from a finite subtree Dp of T to⋃
n<ω Jn such that if t is a node on level n of Dp, then p(t) ∈ Jn and whenever s ≤ t

in T , then p(s) = p(t) � len(s). The functions p are ordered so that q ≤ p whenever
Dp ⊆ Dq and for every t ∈ Dp, q(t) ≤ p(t). An L-generic G ⊆ P(J, T ) adds a
tree TG isomorphic to T whose nodes on level n are generic n-length sequences for
Jn and the sequences extend according to the tree order. For certain sufficiently
homogeneous trees, such as T = ω<ω or T = ω<ω1 , the forcing P(J, T ) has the ccc
and the uniqueness of generics property that the only L-generic filters for Jn in
L[G] are the nodes of TG on level n. Also, the collection of all n-generic sequences
for Jn over all n < ω, namely the elements of TG, is Π1

2-definable [FGK19]. The
class forcing P(J,Ord<ω) along the class tree Ord<ω has all the same properties
as well [GM24]. Since the forcing P(J,Ord<ω) has the ccc, it is easily seen to be
pretame. It follows that the forcing relation for P(J,Ord<ω) is definable and the
forcing extension satisfies ZFC− [Fri00]. The extension has all the same cardinals
as L, but since we added class many reals, powerset of ω does not exist. The first
model of ZFC− in which the DCω-scheme fails is constructed in a forcing extension
L[g] by P(J, ω<ω1 ) as the Hω1

of an appropriately chosen symmetric submodel N
satisfying ZF + ACω [FGK19]. We will refer to HN

ω1
as Mg

small. The second model

of ZFC− in which the DCω-scheme fails is constructed as a submodel of a forcing
extension L[G] by P(J,Ord<ω) [GM24]. Given a set subtree T of Ord<ω, let GT
be the restriction of G to P(J, T ), which is easily seen to be L-generic for it (see
Proposition 2.2). In L[G], we let N be the union of L[GT ], where T is a well-
founded set subtree of Ord<ω. It is shown in [GM24] that N satisfies ZFC−, but
the DCω-scheme fails. We will refer to the model N as MG

large.
In this article, we show:

Theorem 1.1. Suppose g ⊆ P(J, ω<ω1 ) and G ⊆ P(J,Ord<ω) are L-generic.

(1) The partial Reflection principle holds in Mg
small.

(2) The partial Reflection principle for {ω1} fails in MG
large. Consequently, the

partial Reflection principle fails in MG
large.

(3) The partial Reflection principle for R holds in MG
large. Consequently, the

parameter-free Reflection principle holds in MG
large.

Corollary 1.2. Over ZFC−, the Reflection principle is not equivalent to the partial
Reflection principle.

Corollary 1.3. Over ZFC−, the partial Reflection principle is not equivalent to
the partial Reflection principle for R.

2. Partial reflection principles in models of ZFC− without the
DCω-scheme

Theorem 2.1. Suppose g ⊆ P(J, ω<ω1 ) is L-generic. The partial Reflection princi-
ple holds in the model Mg

small.

Proof. Recall that Mg
small is the Hω1 of a symmetric submodel N |= ZF+ACω of the

forcing extension L[g]. So suppose that Mg
small |= ϕ(r). Since every set in Mg

small

is countable, we can assume without loss of generality that r is a real. Working in
L[g], we can construct a countable elementary submodel M̄ ≺Mg

small with r ∈ M̄ .
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The ∈-relation on M̄ can be coded by a subset of ω×ω, and hence by some real a.
Thus, L[g] satisfies that there is a real a coding a well-founded model containing a
real ra that is isomorphic to r and satisfying ϕ(ra). Since this is a Σ1

2-statement
about r and r ∈ N , it must hold true in the symmetric submodel N as well by
Shoenfield’s absoluteness. Thus, N has some real b coding a well-founded model
with a real rb that is isomorphic to r and satisfying ϕ(rb). But now since Mg

small

is the Hω1
of N , we have b ∈ Mg

small. Finally, since Mg
small satisfies ZFC−, it can

Mostowski collapse the relation on ω × ω coded by b to obtain a transitive model
containing r and satisfying ϕ(r). �

There are two standard approaches to constructing a class forcing extension of
a first-order set-theoretic universe, in our case L, by a class forcing, in our case
P(J,Ord<ω). One approach, developed in [HKS18], is to force over the second-
order model (L,∈, C) |= GBC, where the classes C consist of the definable (with
parameters) unary relations over L. The forcing language consists of the usual set
P(J,Ord<ω)-names together with the class P(J,Ord<ω)-names consisting of pairs
〈σ, p〉 where σ is a set P(J,Ord<ω)-name and p ∈ P(J,Ord<ω). Suppose that
G ⊆ P(J,Ord<ω) is 〈L,∈, C〉-generic, meaning that it meets every dense sub-class
of P(J,Ord<ω) in C. The forcing relation for P(J,Ord<ω) is definable and the
forcing extension is a second-order model (L[G],∈, C[G]) |= GBC−, the second-
order analogue of ZFC−, by the pretameness of P(J,Ord<ω) [HKS18]. The classes
C[G] of the forcing extension are obtained as interpretations of the class names. Note
that every class in C[G] is definable from the class G over L[G]. Let T G ∈ C[G]
be the class tree, isomorphic to Ord<ω, of L-generic sequences for Jn added by
G. Let Γ ∈ C[G] be the isomorphism between Ord<ω and T G and let Γ̇ be the
canonical class P(J,Ord<ω)-name for Γ. Another approach, developed in [Fri00],
is force over the first-order structure L, but to augment the forcing relation with a
predicate Ġ for the generic filter. The forcing extension, then consists of the first-
order model 〈L[G],∈, G〉, where G is, as before, a filter meeting all the definable
dense subclasses of P(J,Ord<ω). The forcing relation is once again definable and
the forcing extension satisfies ZFC− in the extended language [Fri00]. Despite the
differences between the two approaches, we can clearly think of them as yielding the
same forcing extension because the definable classes of the structure 〈L[G],∈, G〉
are precisely the classes C[G] obtained from the first approach.

Recall that given two partial orders P and Q, an embedding f : P→ Q is complete
if it is an injection that preserves incompatibility and maximal antichains.

Proposition 2.2. If T is a subtree of Ord<ω, then P(J, T ) completely embeds into
P(J,Ord<ω).

Proof. Clearly, if two conditions are incompatible in P(J, T ), then they stay incom-
patible in P(J,Ord<ω). So it remains to check that every maximal antichain in
P(J, T ) remains maximal in P(J,Ord<ω). Suppose that A is a maximal antichain
of P(J, T ). Fix p ∈ P(J,Ord<ω) and let p � T ∈ P(J, T ) be the restriction of p to
nodes in T . Then there is a ∈ A that is compatible with p � T in P(J, T ). We
will argue that a is compatible with p in P(J,Ord<ω). Let q ∈ P(J, T ) be such
that q ≤ a, p � T . Define a condition q′ with domain Dq′ = Dq ∪Dp as follows. If
s ∈ Dq, then q′(s) = q(s). If s ∈ Dq′ \Dq, then let i be largest such that s � i ∈ Dq

and let q′(s) be q(s � i) concatenated with the tail of p(s) from i. It is easy to see
that q′ ≤ p, a in P(J, T ). �
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Thus, in particular, if T is a subtree of Ord<ω, then GT , the restriction of G to
P(J, T ) is L-generic. The following lemma is analogous to Theorem 3.1 in [Git24].
It is easy to see that any automorphism π of Ord<ω gives rise to a corresponding
automorphism π∗ of the forcing P(J,Ord<ω).

Lemma 2.3. Suppose that T ∈ L is a subtree of Ord<ω. Then the only L-generic
sequences for Jn in L[GT ] are Γ(s) for s ∈ T .

Proof. Let r ∈ L[GT ] be an n-length sequence of reals L-generic for Jn. Then by
the uniqueness of generic property of P(J,Ord<ω), r = Γ(s) for some node s on
level n of Ord<ω. Suppose towards a contradiction that s /∈ T . Let i ≥ 1 be least
such that s � i /∈ T . Let ṙ be a P(J, T )-name for r. Let p ∈ G be such that

p 
 ṙ = Γ̇(š). Fix any condition q ≤ p. Let t ∈ Ord<ω be a node on the same level
as s such that t � i− 1 = s � i− 1 and t /∈ Dq ∪ T ∪ {s}. Many such nodes t must
exist since Dq and T are both sets. Let π be an automorphism of Ord<ω which
maps (Ord<ω)s onto (Ord<ω)t, while fixing everything outside these subtrees. In
particular, π fixes T and π(s) = t. Let Dq̄ = Dq ∪π "Dq and let q̄ be the condition
defined so that for a ∈ Dq, q̄(a) = q̄(π(a)) = q(a). In other words, conditions on
nodes in Dq ∩ (Ord<ω)s are copied over to (Ord<ω)t. This means, in particular,
that π∗(q̄) = q̄. We have just argued that such conditions q̄ are dense below p,
and so some such q̄ ∈ G. Let H = π∗ "G, which is also L-generic for P(J,Ord<ω),
and note that π∗(q̄) = q̄ ∈ H. Observe that ṙH = ṙG = r since the name ṙ only
mentioned conditions with domain contained in T , and π fixes T . Since p ≥ q̄,
p ∈ H. So it must be the case that r = Γ̇H(s). But this is impossible because

Γ̇H(s) = Γ̇G(t) and, by genericity, Γ(s) = Γ̇G(s) 6= Γ̇G(t) = Γ(t). �

Proposition 2.4. Suppose that π is an automorphism of Ord<ω. Then the model
MG

large constructed from G is the same as the model MH
large constructed from H =

π∗ "G.

Proof. Recall that the model MG
large is the union of the models L[GT ], where T is

a well-founded subtree of Ord<ω and GT is the restriction of G to P(J, T ). The
union over all well-founded subtrees T ∈ L of L[GT ] is clearly equal to the union
of L[G(π−1)∗"T ] because π−1 is an automorphism of Ord<ω. Next, observe that if

T ∈ L is a well-founded subtree of Ord<ω, then HT = π∗ "Gπ∗−1"T . Since P(J, T )
is isomorphic to P(J, π∗ " T ) via π∗, it follows that L[HT ] = L[G(π−1)∗"T ]. �

Theorem 2.5. The partial Reflection principle for {ω1} fails in MG
large.

Proof. Consider the formula ϕ(ω1) asserting that (1) Lω1 exists, (2) for every n < ω,
the poset Jn exists, (3) there is a L-generic real for J, and (4) every n-length L-
generic sequence for Jn can be extended to an L-generic n+ 1-length sequence for
Jn+1. Note that if a transitive set A contains Lω1

, then it can correctly identify the
posets Jn and check for L-genericity because the posets Jn have the ccc. Because
every node s ∈ Ord<ω is contained in some well-founded tree T ∈ L, all the L-
generic sequences Γ(s) are in MG

large. Thus, in particular, MG
large satisfies ϕ(ω1).

Suppose some transitive set A ∈ M contains ω1 and satisfies ϕ(ω1). Then A ∈
L[GT ] for some well-founded subtree T ∈ L. By Lemma 2.3, the L-generic n-
length sequences for Jn contained in L[GT ] are precisely the nodes Γ(s) of T G for
s ∈ T . Since A is correct about an n-length sequence being L-generic for Jn, we
can apply choice in L[GT ] to obtain an ω-sequence ~s = {sn | n < ω} such that
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each sn is an n-length L-generic sequence for Jn and sn+1 extends sn, but then
the sequence ~s witnesses that the tree T is ill-founded. Thus, we have reached the
desired contradiction showing that there cannot be such a set A in MG

large. �

Next, we would like to show that the partial Reflection principle for R holds in
MG

large. As a warm-up, we first show that the parameter-free Reflection principle
holds.

Theorem 2.6. The parameter-free Reflection principle holds in Mlarge.

Proof. In this argument, we will view the forcing extension by P(J,Ord<ω) as the
first-order structure 〈L[G],∈ G〉 and the forcing relation as augmented by a pred-

icate Ġ for the generic filter. Let M(x,G) be the formula with the predicate for
G defining MG

large. Suppose that MG
large satisfies a sentence ϕ. Choose a condition

p ∈ P(J,Ord<ω) forcing that the structure given by M(x, Ġ) satisfies ϕ. Choose a
Σn-elementary substructure Lα of L, with p ∈ Lα and n large enough, so that it
is correct enough about the properties of the forcing relation, and, in particular,
satisfies that p forces that the structure given by M(x, Ġ) satisfies ϕ. Now let X be
a countable elementary substructure of Lα with p ∈ X and let Lᾱ be the collapse
of X. Let PLᾱ(J,Ord<ω) be Lᾱ’s version of P(J,Ord<ω) and let p∗ be the image
of p under the collapse. Since Lᾱ is countable, we have in L, an Lᾱ-generic filter
g for PLᾱ(J,Ord<ω) with p∗ ∈ g. Since p∗ is the image of p under the collapse,
p∗ forces, in the forcing relation for PLᾱ(J,Ord<ω), that the structure given by

M(x, Ġ) satisfies ϕ. Thus, Lᾱ[g] has a transitive class submodel M satisfying ϕ.
Finally, since M ∈ L ⊆MG

large, M witnesses that there is a transitive set satisfying
ϕ. �

The above proof gives a heuristic argument that we cannot obtain a model
in which the parameter-free Reflection principle fails as a submodel of a forcing
extension, which is currently our only method of obtaining models of ZFC− in
which Reflection fails.

Theorem 2.7. The partial Reflection principle for R holds in MG
large.

Proof. We will once again view the forcing extension as the first-order structure
〈L[G],∈, G〉. Let M(x,G) be the formula with the predicate for G defining MG

large.

Suppose that MG
large satisfies ϕ(r) for some real r. Let T ∈ L be a well-founded

subtree of Ord<ω such that r ∈ L[GT ] and let ṙ be a nice P(J, T )-name such that
ṙGT = r. Since P(J,Ord<ω) has the ccc, the poset P(J, T ) does as well. So the name
ṙ mentions only countably many conditions. Therefore there is a countable subtree
of T ∗ of T such that ṙ is a P(J, T ∗)-name. Thus, we can assume, by replacing T
with T ∗, that T is countable. By applying an automorphism to the tree Ord<ω,
we can also assume without loss of generality such that T is a subtree of ω<ω.
By Proposition 2.4, for an automorphism π∗ of P(J,Ord<ω) which arises from an

automorphism π of the tree Ord<ω, we have MG
large = Mπ∗"G

large , meaning that the

definition M(x, Ġ) is not affected by whether we use the generic G or π "G.

Choose a condition p ∈ G forcing that the structure given by M(x, Ġ) satisfies
ϕ(ṙ). Choose a Σn-elementary substructure Lα of L, with ṙ, p, T ∈ Lα and n large
enough, so that it is correct enough about the properties of the forcing relation, and,
in particular, satisfies that p forces that the structure given by M(x, Ġ) satisfies
ϕ(ṙ). Now let X be a countable elementary substructure of Lα with ṙ, p, T ∈ X
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and let Lᾱ be the collapse of X. Observe that an element of a poset Jn can be
coded by a subset of ω: elements of J are perfect trees, and supposing inductively
that every element of Jn can be coded by a subset of ω, an element of Jn+1 is a
pair (p, q̇), where q̇ can be assumed to be a nice Jn-name for a perfect tree, which
can be coded by a subset of ω since Jn has the ccc. For n < ω, let JLᾱn be the
image of Jn under the collapse map, and observe that JLᾱn = Jn∩Lᾱ since elements
of Jn can be coded by subsets of ω and are therefore fixed by the collapse map.
Let PLᾱ(J, T ) be the image of P(J, T ) under the collapse map, and observe that
PLᾱ(J, T ) = P(J, T ) ∩ Lᾱ. Because any two perfect trees have a unique greatest
lower bound and all these greatest lower bounds are in J by the definition of J
(see [FGK19]), whenever two perfect trees make it into a generic for J, so does the
greatest lower bound. From J, we can easily extend this property all Jn, and hence
to the to the poset P(J, T ). This property combined with the ccc imply that the
restriction G∗T of GT to P(J, T ) ∩ Lᾱ is Lᾱ-generic.

Let PLᾱ(J,Ord<ω) = P(J, ᾱ<ω) ∩ Lᾱ be Lᾱ’s version of P(J,Ord<ω). Let p∗ be
the image of p under the collapse map. Since ṙ is a nice P(J, T )-name and elements
of P(J, T ) mentioned in ṙ are fixed by the collapse map, then so is ṙ. Thus, ṙG∗T = r,

and so r ∈ Lᾱ[G∗T ]. Since L ⊆MG
large and GT ∈MG

large, it follows that G∗T ∈MG
large.

Next, observe that the forcing PLᾱ(J, T ) completely embeds into PLᾱ(J,Ord<ω)
by elementarity combined with Proposition 2.2. Thus, we can express PLᾱ(J,Ord<ω)

as the quotient forcing PLᾱ(J, T ) ∗ PLᾱ(J,Ord<ω)/Ġ, where, as usual, Ġ is a
PLᾱ(J, T )-name for the generic filter. Since p ∈ G, p ∩ T ∈ GT and p ∩ T is
fixed by the collapse map. Thus, p ∩ T ∈ G∗T .

Since Lᾱ[G∗T ] is a countable set in MG
large, we can choose, in MG

large, some Lᾱ[G∗T ]-

generic filter h for PLᾱ(J,Ord<ω)/G∗T with p∗ ∈ G∗T ∗ h. This is possible since

p ∩ T ∈ G∗T . Since, by elementarity, p∗ forces that the structure given by M(x, Ġ)
satisfies ϕ(ṙ) and ṙG∗T = r, it follows that Lᾱ[G∗T ][h] has a transitive class model

satisfying ϕ(r). This model is a transitive set in MG
large.

�

3. Questions

The two currently available models of ZFC− in which the Reflection principle
fails both satisfy the partial Reflection principle for R. So it remains to deter-
mine whether ZFC− implies the parameter-free Reflection principle and the partial
Reflection principle for R. As the proofs of Theorem 2.5 and Theorem 2.7 demon-
strate, a model of ZFC− in which either of these principles fails is not going to be
constructed as a submodel of a forcing extension.

Question 3.1. Does ZFC− imply the parameter-free Reflection principle?

Question 3.2. Does ZFC− imply the partial Reflection principle for R?

A related question about Reflection involving the ill-behaved theory ZFC− was
asked by Bokai Yao. As was noted earlier, ZFC− together with the Reflection
principle (even without Replacement) imply Collection.

Question 3.3. (Bokai Yao) Does ZFC− together with the partial Reflection Prin-
ciple imply Collection?

This question is once again difficult to answer with the available techniques
because all known models of ZFC− are constructed according to the following
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general scheme (see [GHJ16]). We take an appropriately chosen product forcing Pα
of length some ordinal α and let G be V -generic for it. We construct the model of
ZFC− as the union W of the forcing extensions V [Gξ] by the initial segments Pξ of
the product forcing. The model W has all the initial segment generics Gξ for ξ < α,
but cannot collect them into a set because then it would have the full generic Gα.
The model W satisfies that there is a V -generic filter for every product Pξ with
ξ < α, but no sufficiently large transitive set can reflect this statement because it
has to be an element of some V [Gξ]. Note that we can ensure that the set is correct
about V -genericity by including in it, via the use of a parameter, PV (Pα).
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