Upward Löwenheim Skolem numbers for abstract logics

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

CUNY Logic Workshop November 10, 2023 This is joint work with Jonathan Osinski.

First-order logic

First-order logic lies at the foundation of modern mathematics.

What is a logic?

- Assigns a collection of formulas to every language.
- Assigns truth values to formulas for every model.

First-order logic $\mathbb{L}_{\omega,\omega}$

- Formulas: close atomic formulas under conjunctions, disjunctions, negations, quantifiers.
- Truth: Tarski's recursive definition.
- Properties:
 - Compactness: every finitely satisfiable theory has a model.
 - ► A language has set-many formulas.
 - ▶ A formula can mention finitely much of a language.

First-order logic does not exist outside of mathematics.

A (fragment of a) set-theoretic background is necessary to interpret first-order logic.

- natural numbers
- recursion

Stronger logics require access to more of the set-theoretic background.

Infinitary logics

Add transfinite conjunctions, disjunctions, and quantifier blocks of formulas.

Suppose $\gamma \leq \delta$ are regular cardinals.

Infinitary logics $\mathbb{L}_{\delta,\gamma}$

Close formulas under conjunctions and disjunctions of length $<\delta$ and quantifier blocks of length $<\gamma$.

- A language has set-many formulas.
- A formula can mention $<\delta$ -much of a language.

Examples

- \bullet $\mathbb{L}_{\omega_1,\omega}$
 - There is a sentence expressing that the natural numbers are standard:

$$\forall n \in \omega [n = 0 \lor n = 1 \lor n = 2 \lor \cdots]$$

- ► Compactness fails.
- $\mathbb{L}_{\delta,\omega}$
 - ► For every ordinal $\xi < \delta$ and formula $\psi(y, x)$, there is a formula $\varphi_{\psi}^{\xi}(x)$ expressing that $(\{y \mid \psi(y, x)\}, \psi) \cong (\xi, \xi)$.

Infinitary logics (continued)

Examples (continued)

- \bullet $\mathbb{L}_{\omega_1,\omega_1}$
 - For every formula $\psi(x,y)$ there is a sentence $\varphi_{\psi}^{\text{WF}}$ expressing that the relation given by ψ is well-founded:

$$\neg \exists x_0, x_1, \ldots, x_n, \ldots [\psi(x_1, x_0) \land \psi(x_2, x_1) \land \cdots \land \psi(x_{n+1}, x_n) \land \cdots]$$

For every formula $\psi(x)$ there is a sentence φ_{ψ}^{\inf} expressing that $\{x \mid \psi(x)\}$ is infinite:

$$\exists x_0, x_1, \ldots, x_n \ldots \bigwedge_{n,m < \omega} x_n \neq x_m$$

- $\mathbb{L}_{\omega_2,\omega_2}$
 - For every formula $\psi(x)$ there is a sentence φ_{ψ} expressing that $\{x \mid \psi(x)\}$ is uncountable:

$$\exists x_0, x_1, \dots, x_{\xi} \dots \bigwedge_{\xi, \eta < \omega_1} x_{\xi} \neq x_{\eta}$$

Second-order logic L²

Add second-order quantifiers ranging over all relations on the model.

Expressive power

- The relation given by a formula $\psi(y,x)$ is well-founded: every subset has a least element.
- $\{x \mid \psi(x)\}$ is infinite: there is a bijection with a proper subset.
- $|\{x \mid \psi(x)\}| = |\{y \mid \varphi(y)\}|$
- (Magidor) $(\{y \mid \psi(x,y)\}, \psi) \cong (V_{\alpha}, \in)$ for some α .
- A group *F* is free:
 - ▶ Suppose F has cardinality δ .
 - ▶ F is free if and only if there is a transitive model $M \models \text{ZFC}^-$ of size δ with $F \in M$ which satisfies that F is free
 - ▶ There is a relation E on F such that (F, E)
 - ★ satisfies ZFC⁻,
 - * is well-founded,
 - * has an element isomorphic to F.
 - * satisfies that F is free.

Formulas are closed under conjunctions, disjunctions of length $<\delta$ and quantifier blocks of length $<\gamma$.

6 / 29

Equicardinality logic $\mathbb{L}(I)$

Add a new quantifier I such that for all formulas $\psi(x)$ and $\varphi(y)$:

$$|xy \psi(x)\varphi(y)|$$
 whenever $|\{x \mid \psi(x)\}| = |\{y \mid \varphi(y)\}|$

Expressive power

• The natural numbers are standard:

$$\forall n \in \omega \mid \{m \mid m \in n\} \mid \neq \mid \{m \mid m \in n+1\} \mid$$

• $|\{x \mid \psi(x)\}|$ is infinite:

$$\exists y \left[\psi(y) \land |\{x \mid \psi(x)\}| = |\{x \mid \psi(x) \land x \neq y\}| \right]$$

- A model is κ^+ -like for a cardinal κ .
- ullet A model is cardinal correct: if κ is a cardinal, then for all $\alpha < \kappa$

$$|\xi| |\xi < \alpha| \neq |\xi| |\xi < \kappa|$$
.

Relationships

• $\mathbb{L}(I) \subseteq \mathbb{L}^2$

Well-foundeness logic $\mathbb{L}(Q^{\mathrm{WF}})$

Add a new quantifier Q^{WF} such that for all formulas $\psi(x,y)$:

 $Q^{\mathrm{WF}}x, y \psi(x, y)$ whenever the relation given by $\psi(x, y)$ is well-founded.

Relationships

- ullet $\mathbb{L}(Q^{\mathrm{WF}})\subseteq \mathbb{L}_{\omega_1,\omega_1}$
- $\mathbb{L}(Q^{\mathrm{WF}}) \subseteq \mathbb{L}^2$

Sort logics $\mathbb{L}^{s,n}$

Sort logics require access to Σ_n -truth in the set-theoretic universe.

(Väänänen) $\mathbb{L}^{s,n}$

- L²
- Sort quantifiers $\tilde{\forall}$ and $\tilde{\exists}$
 - search the set-theoretic universe for a new structure such that there is a relation on the combination of the new and old structure satisfying a given formula.
 - ▶ at most *n*-alternations of sort quantifiers are allowed

Expressive power

• For every formulaa $\psi(y,x)$ there is a sentence $\varphi_{\psi}^{n}(x)$ expressing that $(\{y\mid \psi(y,x)\},\psi)\cong (V_{\alpha},\in)$ and $V_{\alpha}\prec_{\Sigma_{n}}V$ for some α .

CUNY

Languages

A language τ is a quadruple $(\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ where:

- \mathfrak{F} are the functions,
- R are the relations,
- C are the constants,
- $a: \mathfrak{F} \cup \mathfrak{R} \to \omega$ is the arity function.

A au-structure is a set with interpretations for the functions, relations, and constants in au.

A renaming f between languages $\tau = (\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ and $\sigma = (\mathfrak{F}', \mathfrak{R}', \mathfrak{C}', a')$ is an arity-preserving bijection between the functions, relations, and constants.

Given a renaming f, let f^* be the associated bijection between τ -structures and σ -structures.

What is a logic?

A logic is a pair $(\mathcal{L}, \models_{\mathcal{L}})$ of classes satisfying the following conditions.

- \mathcal{L} is a class function which takes a language τ to $\mathcal{L}(\tau)$: the set of all sentences in τ .
- $\models_{\mathcal{L}}$ is a sub-class of the class of all pairs (M, φ) where M is a τ -structure and $\varphi \in \mathcal{L}(\tau)$ which determines when M satisfies φ .
- If $\tau \subseteq \sigma$ are languages, then $\mathcal{L}(\tau) \subseteq \mathcal{L}(\sigma)$.
- If $\varphi \in \mathcal{L}(\tau)$, $\sigma \supseteq \tau$ are languages, and M is a σ -structure, then $M \vDash_{\mathcal{L}} \varphi$ if and only if the reduct $M \upharpoonright \tau \vDash_{\mathcal{L}} \varphi$.
- If $M \cong N$ are τ -structures, then for all $\varphi \in \mathcal{L}(\tau)$ $M \vDash_{\mathcal{L}} \varphi$ if and only if $N \vDash_{\mathcal{L}} \varphi$.
- Every renaming f between languages τ and σ induces a bijection $f_*: \mathcal{L}(\tau) \to \mathcal{L}(\sigma)$ such that for any τ -structure M and $\varphi \in \mathcal{L}(\tau)$

$$M \vDash_{\mathcal{L}} \varphi$$
 if and only if $f^*(M) \vDash_{\mathcal{L}} f_*(\varphi)$.

• There is a least cardinal κ , called the occurrence number of \mathcal{L} , such that for every sentence $\varphi \in \mathcal{L}(\tau)$, there is a sub-language τ^* of size less than κ such that $\varphi \in \mathcal{L}(\tau^*)$.

Note: Formulas are accommodated by introducing and interpreting constants.

11 / 29

Strong compactness cardinals

A cardinal κ is a strong compactness cardinal for a logic $\mathcal L$ if every $<\kappa$ -satisfiable $\mathcal L$ -theory has a model.

Compactness Theorem: ω is a strong compactness cardinal for first-order logic.

Compactness for $\mathbb{L}_{\kappa,\kappa}$ and $\mathbb{L}_{\kappa,\omega}$

(Tarski) A cardinal κ is strongly compact if every κ -complete filter can be extended to a κ -complete ultrafilter.

- Strongly compact cardinals are stronger than measurable cardinals.
- (Magidor) It is consistent that the least strongly compact cardinal is the least measurable cardinal.

Theorem: (Tarski) The following are equivalent:

- κ is a strong compactness cardinal for $\mathbb{L}_{\kappa,\omega}$.
- κ is a strong compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.
- κ is strongly compact.

Compactness for $\mathbb{L}_{\omega_1,\omega_1}$ and $\mathbb{L}(Q^{\mathrm{WF}})$

(Magidor) A cardinal κ is ω_1 -strongly compact if every κ -complete filter can be extended to a countably complete ultrafilter.

- \bullet ω_1 -strongly compact cardinals are stronger than measurable cardinals.
- (Magidor) It is consistent that the least ω_1 -strongly compact cardinal is the least measurable cardinal.
- (Bagaria, Magidor) It is consistent that the least ω_1 -strongly compact cardinal is above the least measurable cardinal.

Theorem: (Magidor) The following are equivalent:

- κ is a strong compactness cardinal for $\mathbb{L}_{\omega_1,\omega_1}$.
- κ is a strong compactness cardinal for $\mathbb{L}(Q^{\mathrm{WF}})$.
- κ is ω_1 -strongly compact.

Strong compactness cardinals for \mathbb{L}^2 and $\mathbb{L}(I)$

A cardinal κ is extendible if for every $\alpha > \kappa$, there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$, and $j(\kappa) > \alpha$.

Extendible cardinals are stronger than strongly compact cardinals.

Theorem: (Magidor)

- ullet The least extendible cardinal is the least strong compactness cardinal for \mathbb{L}^2 .
- ullet A cardinal κ is extendible if and only if it is a strong compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.

A cardinal κ is supercompact if for every $\alpha > \kappa$, there is an elementary embedding $j: V \to M$ with $\mathrm{crit}(j) = \kappa$ and $M^{\alpha} \subseteq M$.

Theorem: (Boney, Osinski) It is consistent that the least strong compactness cardinal for $\mathbb{L}(I)$ is \geq the least supercompact cardinal.

Strong compactness cardinals for the sort logics $\mathbb{L}^{s,n}$

$$\mathbf{C}^{(n)} = \{ \alpha \in \text{Ord} \mid \mathbf{V}_{\alpha} \prec_{\Sigma_n} \mathbf{V} \}$$

(Bagaria) A cardinal κ is $C^{(n)}$ -extendible if for every $\alpha > \kappa$ in $C^{(n)}$, there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$, $\beta \in C^{(n)}$, and $j(\kappa) > \alpha$.

- Extendible cardinals are $C^{(1)}$ -extendible.
- $C^{(n)}$ -extendible cardinals form a hierarchy.

Theorem: (Boney)

- ullet The least $C^{(n)}$ -extendible cardinal is the least strong compactness cardinal for $\mathbb{L}^{s,n}$.
- A cardinal κ is $C^{(n)}$ -extendible if and only if it is a strong compactness cardinal for $\mathbb{L}^{s,n}_{\kappa,\kappa}$.

CHNY

Universal strong compactness

Vopěnka's Principle holds if for every proper class of first-order structures in the same languages there are two structures which elementarily embed.

Theorem: (Bagaria) Vopěnka's Principle holds if and only if for every $n < \omega$ there is a $C^{(n)}$ -extendible cardinal.

Theorem: (Makowsky) Every logic has a strong compactness cardinal if and only if Vopěnka's Principle holds.

CHNY

Upwards Löwenheim Skolem numbers

Fix a logic \mathcal{L} .

The Hanf number of $\mathcal L$ is the least cardinal δ such that such that for every language τ and $\mathcal L(\tau)$ -sentence φ , if a τ -structure $M \models_{\mathcal L} \varphi$ has size $\gamma \geq \delta$, then for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $\overline{M} \models_{\mathcal L} \varphi$.

Theorem: (Folklore) Every logic has a Hanf number.

The upward Löwenheim-Skolem number $\mathrm{ULS}(\mathcal{L})$, if it exists, is the least cardinal δ such that for every language τ and $\mathcal{L}(\tau)$ -sentence φ , if a τ -structure $M \models_{\mathcal{L}} \varphi$ has size $\gamma \geq \delta$, then for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $\overline{M} \models_{\mathcal{L}} \varphi$ and $M \subseteq \overline{M}$ is a substructure of \overline{M} .

The strong upward Löwenheim-Skolem number $\mathrm{SULS}(\mathcal{L})$, if it exists, is the least cardinal δ such that for every language τ and every τ -structure M of size $\gamma \geq \delta$, for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $M \prec_{\mathcal{L}} \overline{M}$ is an \mathcal{L} -elementary substructure of \overline{M} .

Upward Löwenheim Skolem Theorem: ω is the strong upward Löwenheim-Skolem number of first-order logic.

Compactness and upward Löwenheim Skolem numbers

Proposition: If a logic \mathcal{L} has a strong compactness cardinal κ , then $\mathrm{SULS}(\mathcal{L}) \leq \kappa$. **Proof**:

- Fix a τ -structure M of size $\gamma > \kappa$.
- Fix a cardinal $\overline{\gamma} > \gamma$.
- Let τ' be the language τ extended by adding $\overline{\gamma}$ -many constants $\{c_{\xi} \mid \xi < \overline{\gamma}\}$.
- Let T be the $\mathcal{L}(\tau')$ -theory:
 - \blacktriangleright \mathcal{L} -elementary diagram of M
- T is $<\kappa$ -satisfiable (holds in M).
- T has a model. □

Corollary: If Vopěnka's Principle holds, then every logic has a strong upward Löwenheim Skolem number.

Upward Löwenheim Skolem numbers for $\mathbb{L}(Q^{\mathrm{WF}})$

Theorem: If κ is a measurable cardinal, then $SULS(\mathbb{L}(Q^{WF})) \leq \kappa$.

Proof:

- Fix a τ -structure N of size $\gamma \geq \kappa$.
- Fix a cardinal $\overline{\gamma} > \gamma$.
- Let $j: V \to M$ be an elementary embedding with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \overline{\gamma}$ (sufficiently iterated ultrapower).
- $j(N) \in M$ is a $j(\tau)$ -structure, and hence j " τ -structure.
- j(N) is a τ -structure modulo the renaming which takes τ to j " τ .
- Let the renaming take φ to $\overline{\varphi}$.
- $\overline{N} = j$ " $N \subseteq j(N)$ is a τ -substructure of j(N).
- $\bullet \ \ N \stackrel{j}{\cong} \overline{N}$
- $\overline{N} \prec_{\mathbb{L}(Q^{\mathrm{WF}})} j(N)$
 - ▶ Suppose $\overline{N} \models_{\mathbb{L}(Q^{\mathrm{WF}})} \varphi(j(a))$.
 - \triangleright $N \models_{\mathbb{L}(Q^{\mathrm{WF}})} \varphi(a)$ via the isomorphism j.
 - $M \models "j(N) \models_{\mathbb{L}(Q^{\mathrm{WF}})} \overline{\varphi}(j(a))"$ by elementarity of j.
 - $\blacktriangleright j(N) \models_{\mathbb{L}(Q^{\mathrm{WF}})} \overline{\varphi}(j(a))$ as a $j(\tau)$ -structure (M is well-founded)
 - ▶ $j(N) \models_{\mathbb{L}(Q^{\mathrm{WF}})} \varphi(j(a))$ modulo the renaming.
- Since $|N| \ge \kappa$, $|j(N)| \ge j(\kappa) > \overline{\gamma}$. \square

Upward Löwenheim Skolem numbers for $\mathbb{L}(Q^{\mathrm{WF}})$ (continued)

Theorem: If $ULS(\mathbb{L}(Q^{WF}))$ exists, then it is the least measurable cardinal.

Proof:

- Let $\mathrm{ULS}(\mathbb{L}(Q^{WF})) = \delta$.
- Suffices to show there is a measurable cardinal $\leq \delta$.
- Let $\mathcal{M} = (\mathcal{H}_{\delta^+}, \in, \delta, \operatorname{Tr})$, where Tr is a truth predicate for $(\mathcal{H}_{\delta^+}, \in)$.
- $\mathcal{M} \models_{\mathbb{L}(Q^{\mathrm{WF}})} \varphi$:
 - ▶ I am well-founded.
 - \blacktriangleright δ is the largest cardinal.
 - ▶ Tr is a truth predicate for (H_{δ^+}, \in) .
- Let $\mathcal{N} = (N, \mathsf{E}, \overline{\delta}, \overline{\mathrm{Tr}}) \models \varphi$ of size $\gg \delta$ with $\mathcal{M} \subseteq \mathcal{N}$.
- Since \mathcal{N} is well-founded, we can assume:
 - ► E = ∈.
 - ► *N* is transitive.
 - $j: H_{\delta^+} \to N$ such that $j(\delta) = \overline{\delta}$.
- *j* is elementary (using the truth predicate).
- Let crit(i) = $\kappa < \delta$.
- Use *j* to derive a κ -complete ultrafilter on κ . \square

Upward Löwenheim Skolem numbers for $\mathbb{L}(Q^{\mathrm{WF}})$ (continued)

Corollary: The following are equivalent for a cardinal κ .

- \bullet κ is the least measurable cardinal.
- $\kappa = \text{ULS}(\mathbb{L}(Q^{\text{WF}})).$
- $\kappa = \text{SULS}(\mathbb{L}(Q^{\text{WF}})).$

Corollary: It is consistent that:

- $\mathrm{ULS}(\mathbb{L}(Q^{\mathrm{WF}})) = \mathrm{SULS}(\mathbb{L}(Q^{\mathrm{WF}}))$ is the least strong compactness cardinal for $\mathbb{L}(Q^{\mathrm{WF}})$.
- $\mathrm{ULS}(\mathbb{L}(Q^{\mathrm{WF}})) = \mathrm{SULS}(\mathbb{L}(Q^{\mathrm{WF}}))$ is smaller than the least strong compactness cardinal for $\mathbb{L}(Q^{\mathrm{WF}})$.
- $\mathrm{ULS}(\mathbb{L}(Q^{\mathrm{WF}})) = \mathrm{SULS}(\mathbb{L}(Q^{\mathrm{WF}}))$, but $\mathbb{L}(Q^{\mathrm{WF}})$ doesn't have a strong compactness cardinal.

Upward Löwenheim Skolem numbers for \mathbb{L}^2 and $\mathbb{L}^{s,n}$

- ullet Targets of extendible embeddings are correct about \mathbb{L}^2 .
- Targets of $C^{(n)}$ -extendible embeddings are correct about \mathbb{L}^{s,Σ_n} .

Theorem: The following are equivalent for a cardinal κ .

- \bullet κ is the least extendible cardinal.
- κ is the least strong compactness cardinal for \mathbb{L}^2 .
- $\kappa = \mathrm{SULS}(\mathbb{L}^2)$.
- $\kappa = \mathrm{ULS}(\mathbb{L}^2)$.

Theorem: The following are equivalent for a cardinal κ and $n < \omega$.

- κ is the least $C^{(n)}$ -extendible cardinal.
- κ is the least strong compactness cardinal for $\mathbb{L}^{s,n}$.
- $\kappa = \text{SULS}(\mathbb{L}^{s,n})$.
- $\kappa = \mathrm{ULS}(\mathbb{L}^{s,n}).$

Corollary: Every logic has an upward Löwenheim Skolem number if and only if Vopěnka's Principle holds.

Tall cardinals

(Hamkins) A cardinal κ is tall if for every $\theta > \kappa$, there is an elementary embedding $j: V \to M$ with $\mathrm{crit}(j) = \kappa$, $M^{\kappa} \subseteq M$, and $j(\kappa) > \theta$.

A cardinal κ is tall with closure $\lambda \leq \kappa$ if $M^{\lambda} \subseteq M$, and tall with closure $<\lambda$ if $M^{<\lambda} \subseteq M$.

A cardinal κ is tall pushing up δ if for every $\theta > \delta$, there is an elementary embedding $j: V \to M$ with $\mathrm{crit}(j) = \kappa$, $M^{\kappa} \subseteq M$, and $j(\delta) > \theta$.

A cardinal κ is tall pushing up δ with closure $\lambda \leq \kappa$ if $M^{\lambda} \subseteq M$, and tall with closure $<\lambda$ if $M^{<\lambda} \subseteq M$.

A cardinal δ is supreme for tallness if for all $\lambda < \delta$, there is a cardinal $\lambda < \kappa \leq \delta$ that is tall pushing up δ with closure λ .

A limit of tall cardinals is supreme for tallness.

- (Hamkins) If κ is tall with closure $<\kappa$, then κ is tall.
 - (Gitik) Tall cardinals are stronger than measurable cardinals (equiconsistent with strong cardinals).
 - Strongly compact cardinals are stronger than tall cardinals.

Upward Löwenheim Skolem numbers for $\mathbb{L}_{\kappa,\kappa}$

Targets of tall with closure $<\lambda$ embeddings are correct about $\mathbb{L}_{\lambda,\lambda}$.

Proposition: $ULS(\mathbb{L}_{\kappa,\kappa}) \geq \kappa$.

Theorem: If there is a tall cardinal κ pushing up δ with closure $<\lambda$, then $\mathrm{SULS}(\mathbb{L}_{\lambda,\lambda}) \leq \delta$. In particular, if κ is tall, then $\mathrm{SULS}(\mathbb{L}_{\kappa,\kappa}) = \mathrm{ULS}(\mathbb{L}_{\kappa,\kappa}) = \kappa$.

Theorem: If $\mathrm{SULS}(\mathbb{L}_{\lambda,\lambda}) = \delta$, then there is a tall cardinal $\lambda \leq \kappa \leq \delta$ pushing up δ with closure $<\lambda$. In particular, if $\mathrm{SULS}(\mathbb{L}_{\kappa,\kappa}) = \kappa$, then κ is tall.

Corollary: It is consistent that $\mathrm{ULS}(\mathbb{L}_{\kappa,\kappa}) = \mathrm{SULS}(\mathbb{L}_{\kappa,\kappa}) = \kappa$, but κ is not a strong compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Theorem: If δ is supreme for tallness, then $\mathrm{ULS}(\mathbb{L}_{\lambda,\lambda}) \leq \delta$ exists for every regular $\lambda \leq \delta$. In particular, if δ is regular, then $\mathrm{ULS}(\mathbb{L}_{\delta,\delta}) = \delta$.

Theorem: If $ULS(\mathcal{L}_{\lambda,\lambda}) = \lambda$, then λ is supreme for tallness.

Upward Löwenheim Skolem numbers for $\mathbb{L}_{\kappa,\kappa}$ (continued)

Theorem: It is consistent that λ is inaccessible, $ULS(\mathbb{L}_{\lambda,\lambda})$ exists, but $SULS(\mathbb{L}_{\lambda,\lambda})$ does not exist.

Proof sketch: Use forcing to produce a model with:

- ullet An inaccessible λ that is a limit of tall cardinals.
- No measurable cardinals $\geq \lambda$.

Theorem: It is consistent that λ is inaccessible and $\mathrm{ULS}(\mathbb{L}_{\lambda,\lambda}) < \mathrm{SULS}(\mathbb{L}_{\lambda,\lambda})$.

Proof sketch: Use forcing to produce a model with:

- ullet An inaccessible λ that is a limit of tall cardinals.
- \bullet λ is not tall.
- There is a tall cardinal above λ .

CHNY

$\mathbb{L}(I)$ and well-foundedness

Let ZFC* be a sufficiently large finite fragment of ZFC:

- the ordinals form a well-ordered class,
- ullet for every ordinal lpha there is a sequence of cardinals of order-type lpha,
- the sets are the union of the von Neumann hierarchy.

Theorem: (Goldberg) If $(M, E) \models ZFC^*$ is cardinal correct, then it is well-founded.

Proof:

- Suffices to show that every ordinal is well-founded.
- Fix an ordinal α in M.
- Let $\{\kappa_{\xi} \mid \xi \to \alpha\}$ be a sequence of cardinals of order-type α in M.
- In $V |\kappa_{\xi}| < |\kappa_{\eta}|$ for all $\xi \to \eta \to \alpha$ (cardinal correctness).
- \bullet α is well-founded. \square

Cardinal correct extendible cardinals

A cardinal κ is cardinal correct extendible if for every $\alpha > \kappa$, there is an elementary embedding $j: V_{\alpha} \to M$ with $\mathrm{crit}(j) = \kappa$, M cardinal correct, and $j(\kappa) > \alpha$. A cardinal κ is weakly cardinal correct extendible if we remove $j(\kappa) > \alpha$.

A cardinal κ is cardinal correct extendible pushing up δ if for every $\alpha > \kappa$, there is an elementary embedding $j: V_{\alpha} \to M$ with $\mathrm{crit}(j) = \kappa$, M cardinal correct, and $j(\delta) > \alpha$.

Theorem: If κ is weakly cardinal correct extendible, then κ is strongly compact or V_{κ} satisfies that there is a strongly compact cardinal.

Theorem: If κ is a Laver indestructible supercompact cardinal, then κ is not cardinal correct extendible.

Questions:

- Can we separate extendible cardinals and cardinal correct extendible cardinals?
- Are cardinal correct extendible cardinals weaker than extendible cardinals?
- Are weakly cardinal correct extendible cardinals equivalent to cardinal correct extendible cardinals?

Upward Löwenheim Skolem numbers for $\mathbb{L}(I)$

The target of a cardinal correct extendible embedding is cardinal correct.

Theorem: If there is a cardinal correct extendible cardinal κ pushing up δ , then $\mathrm{SULS}(\mathbb{L}(I)) \leq \delta$.

Theorem: If $\mathrm{ULS}(\mathbb{L}(I))$ exists, then there are $\kappa \leq \gamma$ such that κ is cardinal correct extendible pushing up γ .

Theorem: It is consistent that $\mathrm{ULS}(\mathbb{L}(I))$ is strictly above the least supercompact cardinal.

Question: If $SULS(\mathbb{L}(I)) = \delta$, is there a cardinal correct extendible $\kappa \leq \delta$ pushing up δ ?