Ramsey cardinals and the continuum function

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

February 14, 2014

Victoria Gitman

Ramsey cardinals and the continuum function

February 14, 2014 1 / 32

• • • • • • • • • • • • • •

This is joint work with Brent Cody (Virginia Commonwealth University).

-

・ロト ・回 ト ・ ヨ ト ・

The continuum function

is first studied by Cantor who shows that $2^{\alpha} > \alpha$.

In 1877, Cantor puts forth the Continuum Hypothesis (CH):

 $2^{\omega} = \omega_1.$

In 1904, König presents a false proof that continuum is not an ℵ. But hidden inside is the famous König's Inequality:

 $cf(2^{\alpha}) > \alpha$ for every cardinal α .

Example: We cannot have $2^{\omega} = \aleph_{\omega}$.

In 1905, Jourdain states the Generalized Continuum Hypothesis (GCH):

 $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every ordinal α .

Definition: The (class) continuum function *F* maps every (regular) cardinal α to 2^{α} .

Note: By König's Inequality, $cf(F(\alpha)) > \alpha$.

Question: What other restrictions apply to the continuum function?

Continuum Hypothesis resolved?

In 1938, Gödel constructs *L*, the smallest inner model of set theory, and shows that the GCH holds in *L*.

In 1963, Cohen invents forcing and uses it to show that -CH is consistent with ZFC.

Soon after, Solovay shows that if $V \models$ GCH and κ a cardinal with $cf(\kappa) > \omega$, then there is a (cardinality and) cofinality preserving forcing extension in which:

$$2^{\omega} = \kappa.$$

König's Inequality turns out to be the sole restriction on 2^{ω} !

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Easton's Theorem

In 1970, Easton shows that König's Inequality is the sole restriction on the continuum function on the regular cardinals.

Definition: A (class) function on the regular cardinals is an Easton function if:

- $\alpha < \beta \longrightarrow F(\alpha) \leq F(\beta),$
- $cf(F(\alpha)) > \alpha$ (König's Inequality).

Theorem (Easton, 1970)

If $V \models$ GCH and F is an Easton function, then there is a cofinality preserving forcing extension in which:

 $2^{\alpha} = F(\alpha)$ for every regular cardinal α .

The situation with singular cardinals is much more complex, for example:

Theorem (Silver, 1975): Let α be a singular cardinal of uncountable cofinality. If $2^{\delta} = \delta^+$ for all cardinals $\delta < \alpha$, then $2^{\alpha} = \alpha^+$.

But if we want to preserve large cardinals?

Large cardinals and the continuum function

Large cardinals affect the continuum function in both obvious and subtle ways.

Inaccessible cardinals:

- Any inaccessible κ is a closure point of F ($F " \kappa \subseteq \kappa$).
- If $V \models$ GCH, κ is inaccessible, and F is an Easton function with a closure point at κ , then there is a (cofinality preserving) forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal α ,
 - κ remains inaccessible.

(by the proof of Easton's Theorem)

• Result extends to a class of inaccessible cardinals.

Weakly compact cardinals:

- (Folklore) If $V \models$ GCH, κ is weakly compact, and *F* is an Easton function with a closure point at κ , then there is a (cofinality preserving) forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal α ,
 - κ remains weakly compact.

(needs a different forcing because Easton product destroys weak compactness over L, stay tuned for sketch of proof)

- Result extends to a class of weakly compact cardinals.
- A weakly compact κ can be the first regular cardinal at which GCH holds or the first at which GCH fails.

Strongly unfoldable cardinals:

An inaccessible cardinal κ is strongly unfoldable if for every ordinal θ and every transitive set *M* of size κ with $\kappa \in M \models$ ZFC and $M^{<\kappa} \subseteq M$ there is a

transitive set N and an elementary embedding $j: M \to N$ with critical point κ such that $\theta \leq j(\kappa)$ and $V_{\theta} \subseteq N$.

- A strongly unfoldable κ cannot be the first regular cardinal at which GCH holds or the first at which GCH fails.
- If GCH holds below a strongly unfoldable κ , then GCH holds.

(these facts follow easily from the definition)

- If $V \models$ GCH, κ is strongly unfoldable, and F is an Easton function defined above κ , then there is a forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal $\alpha > \kappa$,
 - κ remains strongly unfoldable.

(first make κ indestructible by all $\leq \kappa$ -closed κ^+ -preserving forcing (Hamkins, Johnstone, 2010))

Remarkable cardinals:

A cardinal κ is remarkable if in $V^{\text{Coll}(\omega, < \kappa)}$, for every cardinal $\lambda > \kappa$, there is some $X \prec H_{\lambda}^{V}$ such that $|X| = \omega, X \cap \kappa \in \kappa$, and there is some *V*-cardinal $\overline{\lambda}$ such that $X \simeq H_{\lambda}^{V}$.

- A remarkable κ cannot be the first regular cardinal at which GCH holds (or fails).
- If GCH holds below a remarkable κ , then GCH holds.

(these facts follow easily from the definition)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Ramsey cardinals:

- (Cody, G., 2012) If $V \models$ GCH, κ is Ramsey, and *F* is an Easton function with a closure point at κ , then there is a (cofinality preserving) forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal α ,
 - \blacktriangleright *\kappa* remains Ramsey.
- Result extends to a class of Ramsey cardinals.
- A Ramsey κ can be the first regular cardinal at which GCH holds or the first at which GCH fails.

Measurable cardinals:

- A measurable κ cannot be the first regular cardinal at which GCH fails.
- (Levinski, 1995) A measurable κ can be the first regular cardinal at which GCH holds.
- (Gitik, 1993) A measurable κ at which GCH fails has the consistency strength of a measurable cardinal of Mitchell order o(κ) = κ⁺⁺.

Woodin cardinals:

A cardinal δ is Woodin if for every $A \subseteq V_{\delta}$ there are arbitrarily large $\kappa < \delta$ such that for all $\lambda < \delta$ there exists an elementary embedding $j : V \to M$ with critical point κ , such that $j(\kappa) > \lambda$, $V_{\lambda} \subseteq M$, and $A \cap V_{\lambda} = j(A) \cap V_{\lambda}$.

- (Cody, 2011) If $V \models$ GCH, κ is Woodin, and F is an Easton function with a closure point at κ , then there is a (cofinality preserving) forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal α ,
 - κ remains Woodin.
- Result extends to a class of Woodin cardinals.
- A Woodin κ can be the first regular cardinal at which GCH holds or the first at which GCH fails.

Supercompact cardinals:

A cardinal κ is supercompact if for every ordinal θ there is an elementary embedding $j: V \to M$ with critical point κ , such that $\theta < j(\kappa)$ and $M^{\theta} \subseteq M$.

- A supercompact κ cannot be the first regular cardinal at which GCH holds (or fails).
- If GCH holds below a supercompact κ , then GCH holds. (these facts follow easily from the definition)
- If V ⊨ GCH, κ is supercompact, and F is an Easton function defined above κ, then there is a forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal $\alpha > \kappa$,
 - κ remains supercompact.

(first make κ indestructible by all < κ-directed closed forcing (Laver, 1978))

*l*₀-axiom:

For some λ , there exists an elementary embedding $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$ with critical point below λ .

- (Dimonte, Friedman, 2013) If $V \models \text{GCH}$, I_0 holds with its associated λ , and F is an Easton function such that $F \upharpoonright \lambda$ is definable over V_{λ} , then there is a (cofinality preserving) forcing extension in which:
 - $2^{\alpha} = F(\alpha)$ for every regular cardinal α ,
 - I_0 holds with λ .

Large cardinals and the continuum function (singular cardinals)

Singular Cardinal Hypothesis (SCH):

The SCH holds if for all singular κ , we have $\kappa^{cf(\kappa)} = \max\{\kappa^+, 2^{cf(\kappa)}\}$.

- If SCH fails, then 0[#] exists.
- SCH holds above a supercompact cardinal.

A standard definition of Ramsey cardinals

that we won't care much about.

```
Definition (Erdős, Hajnal, 1962)
```

A cardinal κ is Ramsey if every coloring $f : [\kappa]^{<\omega} \to 2$ has a homogeneous set of size κ .

Question: Do Ramsey cardinals have a characterization in terms of the existence of elementary embeddings?

Answer: Yes!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Large cardinals and elementary embeddings

Measurable cardinals and most larger large cardinals κ are characterized by the existence of elementary embeddings $j : V \to M$, from the universe into an inner model, with critical point κ .

Example: A cardinal κ is measurable if there is $j : V \to M$ with critical point κ .

- WLOG *j* is the ultrapower by a countably complete ultrafilter *U* on κ . ($A \in U \leftrightarrow \kappa \in j(A)$)
- The ultrapower construction with *U* can be iterated ORD-many times to construct an ORD-length directed system of elementary embeddings of inner models.

(take the ultrapower by image of ultrafilter from previous stage at successor stages and direct limits at limit stages)

Question: What type of embeddings characterize smaller large cardinals?

Answer: "They are small!"

Large cardinals and elementary embeddings (continued)

Many smaller large cardinals κ are characterized by the existence of elementary embeddings $j: M \to N$ with critical point κ such that:

- M, N transitive,
- $\kappa \in M \models \text{ZFC} \text{ (or ZFC}^-),$
- $|M| = \kappa$.

Example: An inaccessible cardinal κ is weakly compact if for every $A \subseteq \kappa$, there is $j : M \to N$ as above with $A \in M$.

- WLOG $M^{<\kappa} \subseteq M$. (code *M* by subset of κ , put into \overline{M} as above and restrict to $j: M \to j(M)$)
- WLOG *j* is the ultrapower by an *M*-ultrafilter *U*: countably complete ultrafilter from the perspective of ⟨*M*, ∈, *U*⟩. (A ∈ U ↔ κ ∈ j(A))
- If $M^{\omega} \not\subseteq M$, an *M*-ultrafilter *U* may not be countably complete.
- To iterate the ultrapower construction, U must be weakly amenable: if |X|^M = κ, then U ∩ X ∈ M.
- Weak amenability is equivalent to $P(\kappa)^M = P(\kappa)^N$.
- Existence of weakly amenable *M*-ultrafilters is stronger than weak compactness.

Ramsey embeddings

Theorem (Mitchell, 1979)

A cardinal κ is Ramsey if and only if for every $A \subseteq \kappa$, there is a transitive $M \models ZFC$ of size κ with $A, \kappa \in M$ and a weakly amenable, countably complete M-ultrafilter on κ .

- Weak amenability is necessary to iterate.
- Countable completeness ensures that all iterates are well-founded.
- Additionally assuming $M^{<\kappa} \subseteq M$ is stronger than Ramsey.
- WLOG $M = V_{j(\kappa)}^N \in N$.

Ramsey embedding: $j: M \rightarrow N$

- $M \models \text{ZFC}$ has size κ , with $\kappa \in M$
- *j* is the ultrapower by a countably complete *M*-ultrafilter on κ
- $P(\kappa)^M = P(\kappa)^N$
- $M = V_{j(\kappa)}^N$, so $M \in N$
- M, N are internally approachable (stay tuned)

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Customizing the continuum function

Fix an Easton function *F*.

Let $\mathbb{P}^{F} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha \in \text{ORD} \rangle$ be the following ORD-length Easton support iteration:

- If α is not a closure point of F, then $\dot{\mathbb{Q}}_{\alpha}$ is trivial.
- If α is a closure point of F, let α be the next least closure point. Let Q
 _α be a P_α-name for the Easton support product

 $\prod_{\gamma \in [\alpha,\overline{\alpha}) \cap \mathsf{REG}} \mathrm{Add}(\gamma, \mathcal{F}(\gamma))$

as defined in $V^{\mathbb{P}_{\alpha}}$.

Tagline: "Use an iteration of Easton support products between closure points of F."

Theorem (Menas, 1976)

If $V \models \text{GCH}$, then any forcing extension by \mathbb{P}^F is cofinality preserving and F is its continuum function on the regular cardinals.

Customizing the continuum function: Ramsey cardinals

Fix a Ramsey cardinal κ and an Easton function *F* with closure point at κ .

Question: How do we argue that κ remains Ramsey after forcing with \mathbb{P}^{F} ?

Observe:

- A forcing that doesn't add subsets to κ cannot destroy Ramsey cardinals.
- The forcing following $\mathbb{P}^{\mathcal{F}}_{\kappa} * \operatorname{Add}(\kappa, \mathcal{F}(\kappa))$ is $\leq \kappa$ -distributive.
- It suffices to show that κ remains Ramsey in the forcing extension by:

 $\mathbb{P}^{\mathsf{F}}_{\kappa} * \mathrm{Add}(\kappa, \mathsf{F}(\kappa)).$

Question: How do we show this?

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

The indestructibility toolkit: Lifting Criterion

Lifting Criterion: Suppose $j : M \to N$ is an elementary embedding of models of ZFC, $\mathbb{P} \in M$ is a poset and $G \subseteq \mathbb{P}$ is *M*-generic. Then *j* lifts to

 $j: M[G] \rightarrow N[H],$

where $H = j(G) \subseteq j(\mathbb{P})$ is *N*-generic, if and only if

j " *G* ⊆ *H*.

Tagline: "To lift *j*, we need *N*-generic $H \subseteq j(\mathbb{P})$ such that *j* " $G \subseteq H$."

Question: How do we obtain H?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The indestructibility toolkit: diagonalization criterions

Diagonalization Criterion: If $N \models \text{ZFC}$ is transitive of size κ with $N^{<\kappa} \subseteq N$ and \mathbb{Q} is a $<\kappa$ -closed poset in N, then there is an N-generic for \mathbb{Q} .

Definition: A transitive $M \models \text{ZFC}$ of size κ with $\kappa \in M$ is internally approachable if it is the union of an elementary chain

 $X_0 \prec X_1 \prec \cdots \prec X_n \prec \cdots \prec M$,

such that:

- $X_i \in M$,
- $|X_i|^M = \kappa$,
- $X_i^{<\kappa} \subseteq X_i$ in M,
- (X_i need not be transitive).

Diagonalization Criterion*: (G., Johnstone, 2011) If $N \models ZFC$ is internally approachable and \mathbb{Q} is a $\leq \kappa$ -distributive poset in N, then there is an N-generic for \mathbb{Q} .

The indestructibility toolkit: preserving Ramsey embeddings

Theorem: (G., Johnstone, 2011) Suppose that

- $M \models \text{ZFC}$ and $\kappa \in M$,
- $j: M \rightarrow N$ is the ultrapower map by a countably complete *M*-ultrafilter *U* on κ ,
- $\mathbb{P} \in M$ is a poset that is countably closed in V and $G \subseteq \mathbb{P}$ is V-generic,
- *j* lifts to $j : M[G] \to N[j(G)]$ in V[G].

Then the lift j is the ultrapower by a countably complete M[G]-ultrafilter in V[G].

Note: We must still argue separately that

 $\boldsymbol{P}(\kappa)^{\boldsymbol{M}[\boldsymbol{G}]} = \boldsymbol{P}(\kappa)^{\boldsymbol{N}[\boldsymbol{j}(\boldsymbol{G})]}.$

Preserving weakly compact cardinals in $V^{\mathbb{P}^F}$

Theorem: (Folklore) If κ is weakly compact and F is an Easton function with a closure point at κ , then κ remains weakly compact in any forcing extension by \mathbb{P}^{F} .

Sketch of Proof:

It suffices to show that κ remains weakly compact in any forcing extension:

V[G][K] by $\mathbb{P}^{F}_{\kappa} * \mathrm{Add}(\kappa, F(\kappa))$.

Task: In V[G][K], find for every $A \subseteq \kappa$, a model $M \models \text{ZFC}$ of size κ with $\kappa, A \in M$, and $j : M \to N$ with critical point κ .

Observe:

- $\mathbb{P}^{\mathsf{F}}_{\kappa}$ has size κ and the κ -cc.
- Add(κ , $F(\kappa)$) has the κ^+ -cc.
- $\mathbb{P}^{\mathsf{F}}_{\kappa} * \operatorname{Add}(\kappa, \mathsf{F}(\kappa))$ has the κ^+ -cc.

Preserving weakly compact cardinals in $V^{\mathbb{P}^{F}}$ (continued)

Sketch of Proof: (continued)

Strategy: (failing)

- Fix $A \subseteq \kappa \in V[G][K]$.
- Fix a nice $\mathbb{P}^{F}_{\kappa} * \mathrm{Add}(\kappa, F(\kappa))$ -name \dot{A} such that $(\dot{A})_{G*K} = A$.
 - $(\dot{A} = \bigcup_{\alpha < \kappa} \{\check{\alpha}\} \times A_{\alpha}$, where A_{α} is an antichain of $\mathbb{P}_{\kappa}^{F} * \operatorname{Add}(\kappa, F(\kappa)))$
- Find $j: M \to N$ with critical point κ , where $|M| = \kappa$, $M^{<\kappa} \subseteq M$, such that: $A, \mathbb{P}_{\kappa}^{F} * \operatorname{Add}(\kappa, F(\kappa)), f = F \upharpoonright \kappa \in M$.
- Force over *M* with $\mathbb{P}^{\mathcal{F}}_{\kappa} * \operatorname{Add}(\kappa, \mathcal{F}(\kappa))$.
- Lift *j* to $j : M[G][K] \to N[j(G)][j(K)]$.
- $(\dot{A})_{G*K} = A \in M[G][K].$

Problem: $\mathbb{P}_{\kappa}^{F} * \operatorname{Add}(\kappa, F(\kappa))$ could be too large to fit into *M* (of size κ).

Preserving weakly compact cardinals in $V^{\mathbb{P}^{F}}$ (continued)

Standard trick:

- Since $\mathbb{P}_{\kappa}^{F} * \mathrm{Add}(\kappa, F(\kappa))$ has the κ^{+} -cc, at most κ -many conditions of $\mathrm{Add}(\kappa, F(\kappa))$ appear in \dot{A} .
- WLOG all conditions in \dot{A} appear in the first coordinate of Add(κ , $F(\kappa)$). (use an automorphism)
- Let g be the restriction of K to first coordinate of $Add(\kappa, F(\kappa))$.
- g is V[G]-generic for $Add(\kappa, 1)^{V[G]}$ and $\dot{A}_{G*g} = A$.

Strategy: (correct)

- Fix $A \subseteq \kappa \in V[G][K]$.
- Fix a nice $\mathbb{P}^{F}_{\kappa} * \operatorname{Add}(\kappa, 1)$ -name \dot{A} such that $(\dot{A})_{G*g} = A$.
- Find $j: M \to N$ with critical point κ , where $|M| = \kappa$, $M^{<\kappa} \subseteq M$, such that: $\dot{A}, \mathbb{P}_{\kappa}^{F}, f \in M$.
- Force over *M* with $\mathbb{P}^{F}_{\kappa} * \mathrm{Add}(\kappa, 1)$.
- Lift *j* to $j : M[G][g] \rightarrow N[j(G)][j(g)]$.
- $(\dot{A})_{G*g} = A \in M[G][g].$

Preserving weakly compact cardinals in $V^{\mathbb{P}^{F}}$ (continued) Sketch of Proof: (continued)

Step 1: Lift *j* to $j : M[G] \rightarrow N[j(G)]$

- $j(\mathbb{P}^{\mathcal{F}}_{\kappa}) = \mathbb{P}^{j(f)}_{j(\kappa)} = \mathbb{P}^{\mathcal{F}}_{\kappa} * \mathrm{Add}(\kappa, j(f)(\kappa)) \times \prod_{\gamma \in (\kappa, \overline{\kappa})} \mathrm{Add}(\gamma, j(f)(\gamma)) * \mathbb{P}_{\mathsf{tail}}.$
- $\operatorname{Add}(\kappa, j(f)(\kappa))^{N[G]} = \operatorname{Add}(\kappa, j(f)(\kappa))^{V[G]} \cong \operatorname{Add}(\kappa, \kappa)^{V[G]}$. (N[G]^{< κ} \subseteq N[G] in V[G])
- Let $H \in V[G][K]$ be V[G]-generic for $Add(\kappa, j(f)(\kappa))$ such that $H = g \times k$.
- Use Diag. Crit. to build N[G][H]-generic $\overline{H} \subseteq \prod_{\gamma \in (\kappa, \overline{\kappa})} \operatorname{Add}(\gamma, j(f)(\gamma))$.
- Use Diag. Crit. to build $N[G][H][\overline{H}]$ -generic $G_{tail} \subseteq \mathbb{P}_{tail}$.
- Let $j(G) = G * g \times k \times \overline{H} * G_{\text{tail}}$.

Step 2: Lift *j* to $j : M[G][g] \rightarrow N[j(G)][j(g)]$

- $j(\operatorname{Add}(\kappa, 1)) = \operatorname{Add}(j(\kappa), 1)^{N[j(G)]}$.
- $j " g = g \in \operatorname{Add}(j(\kappa), 1)^{N[j(G)]}$.
- Use Diag. Crit. to build N[j(G)]-generic g^{*} ⊆ Add(j(κ), 1)^{N[j(G)]} below the master condition g.

Note: $N[j(G)] = N[G * g \times k \times \overline{H} * G_{tail}]$ has subsets of κ that are not in M[G][g].

This argument does not work for Ramsey cardinals!

Preserving Ramsey cardinals in $V^{\mathbb{P}^{F}}$

Theorem: (Cody, G., 2012) If κ is Ramsey and *F* is an Easton function with a closure point at κ , then κ remains Ramsey in any forcing extension by \mathbb{P}^{F} .

Sketch of Proof: (rough)

It suffices to show that κ remains Ramsey in any forcing extension:

V[G][K] by $\mathbb{P}^{F}_{\kappa} * \mathrm{Add}(\kappa, F(\kappa))$.

Task: In V[G][K], find for every $A \subseteq \kappa$, a model $M \models \text{ZFC}$ of size κ with $\kappa, A \in M$, and a weakly amenable countably complete *M*-ultrafilter on κ .

Strategy:

- Fix $A \subseteq \kappa \in V[G][g]$.
- Let *g* be the restriction of *K* to first coordinate of $Add(\kappa, F(\kappa))$.
- Fix a nice $\mathbb{P}^{F}_{\kappa} * \operatorname{Add}(\kappa, 1)$ -name \dot{A} such that $(\dot{A})_{G*g} = A$.
- Fix a Ramsey embedding $j: M \to N$ with $\dot{A}, \mathbb{P}^{\mathcal{F}}_{\kappa}, f = \mathcal{F} \upharpoonright \kappa, V_{\kappa} \in M$.
- Force over *M* with _____?
- Lift *j* to _____?

Preserving Ramsey cardinals in $V^{\mathbb{P}^{F}}$

Sketch of Proof: (continued)

Strategy: (continued)

- Force over *M* with $(\mathbb{P}^{F}_{\kappa} * \operatorname{Add}(\kappa, \kappa^{+}))^{M}$.
- Lift *j* to $j: M[G][H] \rightarrow N[j(G)][j(H)]$.
- The *M*[*G*]-generic *H* is obtained from *K* with *g* on first coordinate. (stay tuned)
- $(\dot{A})_{G*g} = A \in M[G][H].$
- A careful choice of H and j(G) will ensure that M[G][H] and N[j(G)] have same subsets of κ.
- Still have to argue that lift of *j* is the ultrapower by a countably complete ultrafilter!

Preserving Ramsey cardinals in $V^{\mathbb{P}^{F}}$ (continued)

Sketch of Proof: (continued)

Step 1: Lift *j* to $j : M[G] \rightarrow N[j(G)]$

- $j(\mathbb{P}^{\mathcal{F}}_{\kappa}) = \mathbb{P}^{j(f)}_{j(\kappa)} = \mathbb{P}^{\mathcal{F}}_{\kappa} * \mathrm{Add}(\kappa, j(f)(\kappa)) * \mathbb{P}_{\mathrm{tail}}.$ ($\mathbb{P}_{\mathrm{tail}}$ includes $\prod_{\gamma \in (\kappa, \pi)} \mathrm{Add}(\gamma, j(f)(\gamma))$)
- $\operatorname{Add}(\kappa, j(f)(\kappa))^{N[G]} \cong \operatorname{Add}(\kappa, \kappa^+)^{M[G]}$. (this needs proof)
- Let \tilde{H} be a "permutation" of H that is N[G]-generic for $Add(\kappa, j(f)(\kappa))^{N[G]}$.
- Since \tilde{H} is a "permutation" of H, no new subsets of κ are added.
- Use Diag. Crit.* to build $N[G][\tilde{H}]$ -generic $G_{tail} \subseteq \mathbb{P}_{tail}$. (\leq_{κ} -distributive)
- Let $j(G) = G * \tilde{H} * G_{tail}$.

Step 2: Lift *j* to $j : M[G][H] \rightarrow N[j(G)][j(g)]$

- $j(\operatorname{Add}(\kappa,\kappa^+)) = \operatorname{Add}(j(\kappa),j(\kappa)^+)^{N[j(G)]}$.
- Because \tilde{H} is a "permutation" of H, we have increasingly powerful master conditions in N[j(G)].
- Use Diag. Crit.* to build N[j(G)]-generic J ⊆ Add(j(κ), j(κ)⁺))^{N[j(G)]} below the increasingly powerful master conditions.

Preserving Ramsey cardinals in $V^{\mathbb{P}^{F}}$ (continued)

Sketch of Proof: (continued)

Step 3: Verify that $j : M[G][H] \to N[j(G)][j(g)]$ is the ultrapower by a countably complete M[G][H]-ultrafilter in V[G][K].

- WLOG $\mathbb{P}^{\mathcal{F}}_{\kappa}$ is countably closed, but...
- $\operatorname{Add}(\kappa, \kappa^+)^{M[G]}$ is not!
- Since *H* is obtained from *K* and $Add(\kappa, F(\kappa))$ is countably closed...
- things work out!

Ramsey embeddings (recall)

Ramsey embedding: $j: M \rightarrow N$

- $M \models \text{ZFC}$ has size κ , with $\kappa \in M$
- *j* is the ultrapower by a countably complete *M*-ultrafilter on κ
- $P(\kappa)^M = P(\kappa)^N$
- $M = V_{j(\kappa)}^N$, so $M \in N$
- M, N are internally approachable

Definition: A transitive $M \models \text{ZFC}$ of size κ with $\kappa \in M$ is internally approachable if it is the union of an elementary chain

$$X_0 \prec X_1 \prec \cdots \prec X_n \prec \cdots \prec M$$
,

such that:

- $X_i \in M$,
- $|X_i|^M = \kappa$,
- $X_i^{<\kappa} \subseteq X_i$ in M,
- (X_i need not be transitive).

The mystery behind *H* **Set-up**:

- $j: M \rightarrow N$ is a Ramsey embedding.
- We force over M with $(\mathbb{P}_{\kappa}^{F} * \mathrm{Add}(\kappa, \kappa^{+}))^{M}$.
- $M[G] = \bigcup_{i < \omega} \overline{X}_i$ is internally approachable. $(\overline{x}_i = x_i[G])$

Constructing H:

• Partition $(\kappa^+)^M = \bigsqcup_{i < \omega} x_i$ with $x_i \in M[G]$.

$$X_0 = \overline{X}_1 \cap (\kappa^+)^M,$$

- $x_i = (\overline{X}_{i+1} \setminus \overline{X}_i) \cap (\kappa^+)^M$.
- Define \mathbb{Q}_i : consists of all conditions in $\operatorname{Add}(\kappa, \kappa^+)^{M[G]}$ with domain $\subseteq x_i$.
- Add(κ, κ⁺)^{M[G]} is isomorphic to the finite support product ∏_{i<ω} Q_i.
- $\mathbb{Q}_i \cong \mathrm{Add}(\kappa, 1)^{V[G]}$ in M[G] by φ_i . ($|\overline{x}_i| = \kappa \inf M[G]$)
- $\prod_{i < n} \mathbb{Q}_i \cong X_n \cap \mathrm{Add}(\kappa, \kappa^+)^{M[G]}$ is in M[G].
- Let $\overline{H} \in V[G][K]$ be V[G]-generic for $Add(\kappa, \omega)^{V[G]}$.
- Let *H* be all conditions in \overline{H} with finite support.
- *H* is not *V*[*G*]-generic for the finite support product ∏_{i<∞} Q_i, but...
- *H* is M[G]-generic because every antichain is a subset of some \overline{X}_i .

The mystery behind j(G)

Set-up:

- $j(\mathbb{P}^{\mathcal{F}}_{\kappa}) = \mathbb{P}^{j(f)}_{j(\kappa)} = \mathbb{P}^{\mathcal{F}}_{\kappa} * \mathrm{Add}(\kappa, j(f)(\kappa)) * \mathbb{P}_{\mathrm{tail}}.$
- $j(G) = G * _ * G_{tail}$.
- $N[G] = \bigcup_{i < \omega} \overline{Y}_i$ is internally approachable.

Constructing N[G]-generic for $Add(\kappa, j(f)(\kappa))^{N[G]}$:

- We partition $j(f)(\kappa)^N = \bigsqcup_{i < \omega} y_i$.
 - $y_0 = \overline{Y}_1 \cap j(f)(\kappa)^N$,
 - $y_i = (\overline{Y}_{i+1} \setminus \overline{Y}_i) \cap j(f)(\kappa)^N$.
- Define \mathbb{R}_i : consists of all conditions in $Add(\kappa, j(f)(\kappa))^{N[G]}$ with domain $\subseteq y_i$.
- Add $(\kappa, j(f)(\kappa))^{N[G]}$ is isomorphic to the finite support product $\prod_{i < \omega} \mathbb{R}_i$.
- $\mathbb{R}_i \cong \mathrm{Add}(\kappa, 1)^{V[G]}$ in N[G] by ψ_i .
- $\prod_{i < n} \mathbb{R}_i \cong \overline{Y}_n \cap \operatorname{Add}(\kappa, j(f)(\kappa))^{N[G]}$ is in N[G].
- In V[G], define an isomorphism between Π_{i<ω} Q_i and Π_{i<ω} ℝ_i using φ_i and ψ_i.
- Use the isomorphism to obtain \tilde{H} from H.

Thank you!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・