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Abstract

Applications of the Proper Forcing Axiom
to Models of Peano Arithmetic

by

Victoria Gitman

Advisor: Joel David Hamkins

In Chapter 1, new results are presented on Scott’s Problem in the subject

of models of Peano Arithmetic. Some forty years ago, Dana Scott showed

that countable Scott sets are exactly the countable standard systems of mod-

els of PA, and two decades later, Knight and Nadel extended his result to

Scott sets of size ω1. Here it is shown that assuming the Proper Forcing Ax-

iom, every arithmetically closed proper Scott set is the standard system of a

model of PA. In Chapter 2, new large cardinal axioms, based on Ramsey-like

embedding properties, are introduced and placed within the large cardinal

hierarchy. These notions generalize the seldom encountered embedding char-

acterization of Ramsey cardinals. I also show how these large cardinals can

be used to obtain indestructibility results for Ramsey cardinals.
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Chapter 1

Scott’s Problem for Proper
Scott Sets

1.1 Introduction

Given a model of Peano Arithmetic (PA), we can consider the collection of

all subsets of the natural numbers that arise as intersections of the defin-

able sets of the model with its standard part. This collection, known as the

standard system of the model, was introduced by Harvey Friedman [6], and

has since proven to be one of the most effective tools in exploring the rich

theory of nonstandard models of PA. Already in 1962, Dana Scott investi-

gated collections of subsets of the natural numbers that are represented in

complete extensions of PA [19]. A subset A of N is said to be represented

in a complete theory T ⊇ PA if there is a formula ϕ(v0) such that n ∈ A

if and only if T ` ϕ(n). Translated into the later terminology, Scott was

1
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looking at the standard systems of prime models of complete extensions of

PA. In this context, Scott discovered certain set theoretic and computability

theoretic properties of standard systems, which he was able to prove com-

pletely characterize countable standard systems. Two decades later, Knight

and Nadel showed that this characterization, which came to be known as a

Scott set, held for collections of size ω1 as well. I will use the Proper Forcing

Axiom (PFA) to find new instances under which the characterization can be

extended to collections of size ω2. I will also apply the forcing techniques I

developed for this problem to other open questions concerning models of PA.

Definition 1.1 (Friedman, 1973). Let M be a model of PA. The standard

system of M , denoted SSy(M), is the collection of all subsets of the natural

numbers that are intersections of the parametrically definable sets of M with

its standard part N. [6]

The standard system of a nonstandard model of PA can be equivalently

defined using the notion of coded sets. Gödel used the Chinese Remainder

Theorem to code finite sequences of natural numbers by a single natural

number. With this coding, every natural number can be seen as coding a

finite sequence of numbers. The nth element of the sequence coded by a

number m is denoted (m)n. It turns out that this coding machinery extends



CHAPTER 1. SCOTT’S PROBLEM FOR PROPER SCOTT SETS 3

to any nonstandard model M of PA in the sense that every element of M can

be viewed as coding an M -finite sequence of elements of M . Given a and b

elements of M , we will similarly denote the ath element of the sequence coded

by b as (b)a. For details on coding in nonstandard models of PA, see [12]

(p. 53). We say that a set A of natural numbers is coded in a nonstandard

model M of PA if there is an element a ∈ M such that (a)n = 1 if and only

if n ∈ A. In this case, we also say that a codes A or a is a code for A. It is

easy to check that the following proposition holds:

Proposition 1.2. Let M be a nonstandard model of PA. Then the standard

system of M is the collection of all subsets of the natural numbers that are

coded in M .

What properties characterize standard systems? Without reference to

models of PA, a standard system is just a particular collection of subsets of

the natural numbers. Can we come up with a list of elementary (set theoretic,

computability theoretic) properties that a collection X ⊆ P(N) must satisfy

in order to be the standard system of some model of PA?

Definition 1.3 (Scott, 1962). X ⊆ P(N) is a Scott set if

1. X is a Boolean algebra of sets.
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2. If A ∈ X and B is Turing computable from A, then B ∈ X.1

3. If T is an infinite binary tree coded in X, then X codes a cofinal branch

through T . [19]

For condition (3) to make sense, recall that we already fixed a method of

coding finite binary sequences as natural numbers (see p. 2, bottom). We say

that a collection of finite binary sequences is coded in X if there is a set in X

whose elements are exactly the codes of sequences in this collection. Observe

also that conditions (1) and (2) together imply that if A1, . . . , An ∈ X and

B is computable from A1 ⊕ · · · ⊕ An, then B ∈ X.

It is relatively easy to see that every standard system is a Scott set.

Conversely, Dana Scott proved that every countable Scott set is the standard

system of a model of PA [19].

Theorem 1.4 (Scott, 1962). Every countable Scott set is the standard system

of a model of PA.

I will give a proof of Theorem 1.4 in Section 1.2. Thus, the countable

Scott sets are exactly the countable standard systems of models of PA. Scott’s

Theorem leads naturally to the following question:

1We say that a set B is Turing computable from a set A if there is a program which
computes the characteristic function of B with oracle A.
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Scott’s Problem. Is every Scott set the standard system of a model of PA?

This question has, for decades, been a part of the folklore of models of

PA. Since Scott considered only sets represented in theories, the issue of

uncountable standard systems never arose for him. The question began to

make sense only after Friedman’s introduction of standard systems. In 1982,

Knight and Nadel settled the question for Scott sets of size ω1 [14].

Theorem 1.5 (Knight and Nadel, 1982). Every Scott set of size ω1 is the

standard system of a model of PA.

It follows that Scott sets of size ω1 are exactly the standard systems of

size ω1 of models of PA. I will give a proof of Theorem 1.5 in Section 1.3.

Corollary 1.6. If CH holds, then Scott’s Problem has a positive answer.

Very little is known about Scott’s Problem if CH fails, that is, for Scott

sets of size larger than ω1. I will use strong set theoretic hypothesis to find

new techniques for building models of PA with a given Scott set as the stan-

dard system. Let us call a Scott set X proper if the quotient Boolean algebra

X/Fin is a proper partial order. Proper posets were introduced by Shelah in

the 1980’s, and have since been studied extensively by set theorists (for def-

inition, see Section 1.4). The Proper Forcing Axiom (PFA) was introduced
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by Baumgartner [1] as a generalization of Martin’s Axiom for proper posets.

I will show that:

Theorem 1.7. Assuming PFA, every arithmetically closed proper Scott set

is the standard system of a model of PA.

1.2 Scott’s Theorem

In this section, I will give a proof of Scott’s Theorem for countable Scott

sets. I will start by proving the easy direction that every standard system is

a Scott set. Whenever an object such as a tree or a cofinal branch through

a tree is coded in a Scott set, I will say that the object is in the Scott set to

simplify notation. The theorems and proofs below follow [12] (p. 172).

Theorem 1.8. Every standard system is a Scott set.

Proof. The standard system of N is the collection of all arithmetic sets, which

is clearly a Scott set. So let M be a nonstandard model of PA. The stan-

dard system of M is a Boolean algebra of sets since the definable sets of M

form a Boolean algebra. Let A be an element of SSy(M) and B be Turing

computable from A. Fix a definable set A′ of M such that A = A′ ∩ N and

a Turing program p which computes B with oracle A. We can define the

computation p in M with the definable set A′ as an oracle. The result of the
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computation will be a definable set in M , whose intersection with N will be

exactly B. This follows since the computation on the standard part halts for

every input and only uses the standard part of the oracle, which is precisely

A. This shows that SSy(M) is closed under relative computability. Finally,

suppose that T is an infinite binary tree in SSy(M). Let T ′ be a definable

set in M such that T ′∩N = T . Since N is not definable in M , there must be

a nonstandard c > N in M such that below c the set T ′ still codes a binary

tree. That is, if a < c and a ∈ T ′, then every binary initial segment b of a is

in T ′ as well. Now we can take any nonstandard node d of this nonstandard

binary tree and extend the branch all the way down through T . That is, we

look at the set of all binary predecessors of d, which is clearly definable in M ,

and intersect it with N to obtain a cofinal branch through T . This completes

the argument that every infinite binary tree in SSy(M) has a cofinal branch

in SSy(M).

The next three results are building up to the proof of Theorem 1.4. I will

say that a theory T in a computable language is coded in X if there is a set

in X having as elements exactly the codes of the sentences of T . Again, we

say that a theory T ∈ X if T is coded in X.

Lemma 1.9. Let X be a Scott set and let T ∈ X be a consistent theory in a
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computable language. Then T has a consistent completion S ∈ X.

Proof. Use T to build a T -computable binary tree of finite approximations

to a consistent completion. Since this tree is computable from T , it is in X

by property (2) of Scott sets. Any cofinal branch through this tree defines a

consistent completion for T , and one such branch must be in X by property

(3) of Scott sets.

The next theorem states that you can carry out the proof of the Com-

pleteness Theorem for theories in X “inside” X.

Theorem 1.10. Let X be a Scott set and let T ∈ X be a consistent theory

in a computable language L having an infinite model. Then X contains the

elementary diagram for a model M of T whose universe is N.

Proof. Observe that if T has an infinite model, then we can extend T to

the consistent theory T ′ := T ∪ {∃x1, . . . , xn(∧i,j xi 6= xj) | n ∈ N} having

no finite models. Clearly T ′ is computable from T , and hence in X. Thus,

we can assume without loss of generality that T itself has no finite models.

This fact will be crucial in the later part of the proof. Define a sequence of

languages Li for i ∈ N such that L0 = L and Li+1 consists of Li together

with constants cϕ for every formula ϕ(v0) ∈ Li. Let L∗ = ∪i∈NLi. Clearly

L∗ is computable. Define the theory T ∗ such that:
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1. T ⊆ T ∗.

2. For every formula ϕ(v0) in the language of L∗, the formula

∃v0 ϕ(v0)→ ϕ(cϕ) ∈ T ∗.

Clearly T ∗ is computable from T , and hence in X. It is also clear that T ∗ is

consistent. Let S be some consistent completion of T ∗ in X. We can use S

to define the equivalence relation on the constants cϕ such that c ∼ d if and

only if c = d ∈ S. By the usual Henkin construction, we build a model M

of T out of the equivalence classes. Observe that there is an S-computable

way of choosing a single representative from each equivalence class. Start by

letting c0 be the constant with least code in L∗. Next, search for a constant

c1 with least code that is not equivalent to c0. Since we assumed that T

has no finite models, we are guaranteed to find c1, and so on. It should now

be clear that the elementary diagram of M is computable from the theory

S ∈ X.

Theorem 1.11. Let X be a countable Scott set and let T ⊇ PA be a consis-

tent theory such that T ∈ X. Then there is a model M of T whose standard

system is exactly X.

Proof. Enumerate X = {An | n ∈ N}. Let L(0) be the language L together

with a new constant a(0). Let T (0) be the theory in L(0) consisting of T
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together with the sentences {(a(0))k = 1 | k ∈ A0} and {(a(0))k = 0 | k /∈ A0}.

Clearly T (0) is consistent and T (0) ∈ X since it is computable from A0 and

T . Define the language L(0)∗, the theory T (0)∗, and a completion S(0) in

X as above. Given L(n)∗ and S(n) in X, let L(n+1) be the language L(n)∗

together with a new constant a(n+1) and let T (n+1) be the theory in L(n+1)

consisting of S(n) together with the sentences {(a(n+1))k = 0 | k ∈ An+1}

and {(a(n+1))k = 0 | k /∈ An+1}. Again, define the language L(n+1), the

theory T (n+1)∗, and a completion S(n+1) in X. Let S = ∪n∈NS(n). Clearly S

is a complete Henkin theory, and therefore we can define the corresponding

Henkin model on the equivalence classes of the constants. Let M |= T be

this model. It remains to check that SSy(M) = X. By construction, we have

that X ⊆ SSy(M). So fixing [c] ∈ M , we need to show that [c] codes a set

in X. There is n ∈ N such that the constant c first appeared in the theory

T (n)∗. Since S(n) was a completion of T (n)∗, it must be that S(n) already

decided all the sentences of the form (c)k = 1 and (c)k 6= 1. Therefore the

set {k ∈ N | M |= ([c])k = 1} = {k ∈ N | (c)k = 1 ∈ S(n)} is in X. This

completes the proof that SSy(M) = X.

For the conclusion of Theorem 1.11, it actually suffices to assume that

T ∩ Σn is in X for every n ∈ N. The proof is a fairly straightforward modifi-
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cation of the proof of Theorem 1.11.

Corollary 1.12. Every countable Scott set is the standard system of a model

of PA.

Proof. Let X be a countable Scott set. Since X is closed under relative

computability, it must contain all computable sets. Therefore PA ∈ X, and

the rest follows by Theorem 1.11.

Observe finally that there does not appear to be a way to generalize this

proof to uncountable Scott sets since after countably many steps the theory

we obtain is no longer in X.

1.3 Ehrenfeucht’s Lemma

In this section, I will introduce a theorem known as Ehrenfeucht’s Lemma

and use it to prove Theorem 1.5. I will then define generalizations of this

theorem which will allow us to prove Theorem 1.7. Ehrenfeucht’s Lemma is

due to Ehrenfeucht in the 1970’s.2 The proof of Theorem 1.5 follows [21].

Theorem 1.13 (Ehrenfeucht’s Lemma). If M is a countable model of PA

whose standard system is contained in a Scott set X, then for any A ∈ X,

there is an elementary extension M ≺ N such that A ∈ SSy(N) ⊆ X.

2Roman Kossak, personal communication.
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Proof. First, we consider nonstandard M . Let X be a Scott set such that

SSy(M) ⊆ X and let A ∈ X. Choose a countable Scott set Y ⊆ X containing

SSy(M) and A. Using the truth predicate for Σn-formulas, we can prove

that the Σn-theory of M is in SSy(M) for every n ∈ N. Since PA ∈ SSy(M),

it follows that the theory T := PA + “Σ1-theory of M” is in SSy(M). By

Theorem 1.11, we get a model M∗ of T with SSy(M∗) = Y. By Friedman’s

Embedding Theorem (see [12], p. 160), since M∗ |= “Σ1-theory of M” and

SSy(M) ⊆ Y, we have M ≺∆0 M
∗. Close M under initial segment in M∗

and call the resulting submodel N . Then M ≺ N since it is cofinal and ∆0-

elementary (by Gaifman’s Embedding Theorem, see [12], p. 87). But also

SSy(N) = SSy(M∗) = Y as required since N is an initial segment of M∗.

This completes the proof for nonstandard models. Let TA = {ϕ | N |= ϕ}

denote True Arithmetic. It is clear that N ≺ N if and only if N |= TA.

Recall that the standard system of N is the collection of all arithmetic sets.

So suppose that X is a Scott set containing all arithmetic sets and fix A ∈ X.

It follows that TA ∩ Σn is in X for every n ∈ N. Let Y ⊆ X be a countable

Scott set containing A and TA∩Σn for every n ∈ N. By the remark following

Theorem 1.11, there exists a modelN |= TA whose standard system is exactly

Y. Thus, N ≺ N and A ∈ SSy(N) ⊆ X.
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We are now ready to prove Knight and Nadel’s result.3

Corollary 1.14. Every Scott set of size ω1 is the standard system of a model

of PA.

Proof. Let X be a Scott set of size ω1 and enumerate X = {Aξ | ξ < ω1}. The

idea is to build up a model with the Scott set X as the standard system in ω1

steps by successively throwing in one more set at each step and using Ehren-

feucht’s Lemma to stay within X. More precisely, we will define an elementary

chain M0 ≺ M1 ≺ · · · ≺ Mξ ≺ · · · of length ω1 of countable models of PA

such that SSy(Mξ) ⊆ X and Aξ ∈ SSy(Mξ+1). Then clearly M = ∪ξ<ω1Mξ

will work. LetM0 be any countable model of PA with SSy(M0) ⊆ X. SuchM0

exists by Scott’s Theorem. Given Mξ, by Ehrenfeucht’s Lemma, there exists

Mξ+1 such that Mξ ≺ Mξ+1, the set Aξ ∈ SSy(Mξ+1), and SSy(Mξ+1) ⊆ X.

At limit stages take unions.

The key ideas in the proof of Theorem 1.5 can be summarized in the

following definition and theorem:

Definition 1.15 (The κ-Ehrenfeucht Principle for Γ). Let κ be a cardinal

and Γ some collection of Scott sets. The κ-Ehrenfeucht Principle for Γ states

that if M is a model of PA of size less than κ and X is a Scott set in Γ such

3This is not Knight and Nadel’s original proof.
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that SSy(M) ⊆ X, then for any A ∈ X, there is an elementary extension

M ≺ N such that A ∈ SSy(N) ⊆ X. If Γ is the collection of all Scott sets,

we will say simply that the κ-Ehrenfeucht Principle holds.

Ehrenfeucht’s Lemma becomes the ω1-Ehrenfeucht Principle. Note also

that we can freely assume that the elementary extension N given by the

κ-Ehrenfeucht Principle has size less than κ, since if this is not the case, we

can always take an elementary submodel N ′ of N such that M ≺ N ′ and

A ∈ SSy(N ′).

Theorem 1.16. If the κ-Ehrenfeucht Principle for Γ holds, then every Scott

set in Γ of size κ is the standard system of a model of PA.

Proof. We will mimic the proof of Theorem 1.5. Fix a Scott set X ∈ Γ of

size κ and enumerate X = {Aξ | ξ < κ}. We will define an elementary

chain M0 ≺ M1 ≺ · · · ≺ Mξ ≺ · · · of length κ of models of PA such that

SSy(Mξ) ⊆ X and Aξ ∈ SSy(Mξ+1). Let M0 be any countable model of

PA with SSy(M0) ⊆ X. Suppose we have built M0 ≺ M1 ≺ · · · ≺ Mξ ≺

· · · ≺ Mα with the desired properties and each Mξ has size less than κ. By

the κ-Ehrenfeucht Principle, there exists Mα+1 of size less than κ such that

Mα ≺Mα+1, the set Aα ∈ SSy(Mα+1), and SSy(Mα+1) ⊆ X. At limit stages

take unions.
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Thus, one approach to solving Scott’s Problem would be to try to prove

the ω2-Ehrenfeucht Principle for some collection of Scott sets. However,

proofs of Ehrenfeucht’s Lemma hinge precisely on those techniques in the

field of models of PA that appear to work only with countable models. As

an example, Friedman’s famous Embedding Theorem does not extend to un-

countable models.4 In what follows, I will mainly investigate the Ehrenfeucht

principles. The results on Scott’s Problem will follow as a corollary. Under

PFA, I will show that the ω2-Ehrenfeucht Principle for arithmetically closed

proper Scott sets holds.

1.4 Set Theory and Scott’s Problem

Since the result of Knight and Nadel, very little progress has been made on

Scott’s Problem until some recent work of Fredrik Engström [5]. It is not

difficult to believe that Scott’s Problem past ω1 might have a set theoretic

resolution. Engström followed a strategy, suggested more than a decade

earlier by Joel Hamkins and others, to use forcing axioms to gain new insight

into the problem. We saw that a positive answer to Scott’s Problem follows

from CH. It is a standard practice in set theoretic proofs that if a statement

follows from CH, we try to prove it or its negation from ¬CH + Martin’s

4Here ω1-like models are an obvious counterexample.
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Axiom. Martin’s Axiom (MA) is a forcing axiom which asserts that for every

c.c.c. poset P and every collection D of less than the continuum many dense

subsets of P, there is a filter on P that meets all of them. Such filters are

often called partially generic filters. Engström tried to use Martin’s Axiom

to find new techniques for building models of PA whose standard system is

a given Scott set.

Given a Scott set X, Engström chose the poset X/Fin, whose elements

are infinite sets in X ordered by almost inclusion. That is, for infinite A and

B in X, we say that A ≤ B if and only if A ⊆Fin B. Observe that X/Fin

is forcing equivalent to forcing with the Boolean algebra X modulo the ideal

of finite sets. A familiar and thoroughly studied instance of this poset is

P(ω)/Fin. If P is a property of posets and X/Fin has P, I will simply say

that X has property P. For the theorem below, we define that a Scott set is

arithmetically closed if whenever A is in it and B is arithmetically definable

from A, then B is also in it (for a more extensive discussion, see Section 1.5).

Theorem 1.17 (Engström, 2004). Assuming Martin’s Axiom, every arith-

metically closed c.c.c. Scott set X of size less than the continuum is the stan-

dard system of a model of PA.

To obtain models for Scott sets for which we could not do so before,
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Engström needed that there are uncountable Scott sets X which are c.c.c..

Unfortunately:

Theorem 1.18. A Scott set is c.c.c. if and only if it is countable.

Proof. Let X be a Scott set. If x is a finite subset of N, let pxq denote the

Gödel code of x. For every A ∈ X, define an associated A′ = {pA ∩ nq |

n ∈ N}. Clearly A′ is computable from A, and hence in X. Observe that

if A 6= B, then |A′ ∩ B′| < ω. Hence if A 6= B, we get that A′ and B′ are

incompatible in X/Fin. It follows that A = {A′ | A ∈ X} is an antichain of

X/Fin of size |X|. This shows that X/Fin always has antichains as large as

the whole poset.

Thus, the poset X/Fin has the worst possible chain condition, namely

|X|+-c.c.. Theorem 1.18 implies that no new instances of Scott’s Problem

can be obtained from Theorem 1.17.

I will borrow from Engström’s work the poset X/Fin. But my strategy

will be different in two respects. First, instead of MA, I will use the poset

together with the forcing axiom PFA, allowing me to get around the obstacle

of Theorem 1.18. In Section 1.8, I will show that, unlike the case with c.c.c.

Scott sets, uncountable proper Scott sets do exist. However, I will not be able

to explicitly obtain any new instances of Scott’s Problem. Second, my main
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aim will be to obtain an extension of Ehrenfeucht’s Lemma to uncountable

models, while Engström’s was to directly get a model whose standard system

is a given Scott set. This approach will allow me to handle Scott sets of size

continuum, which had not been possible with Egström’s techniques.

Definition 1.19. Let λ be a cardinal, then Hλ is the set of all sets whose

transitive closure has size less than λ.

Let P be a poset and λ be a cardinal greater than 2|P|. Since we can

always take an isomorphic copy of P on the cardinal |P|, we can assume

without loss of generality that P and P(P) are elements of Hλ. In particular,

we want to ensure that if D is a dense subset of P, then D ∈ Hλ. Let M

be a countable elementary submodel of Hλ containing P as an element. If G

is a filter on P, we say that G is M -generic if for every maximal antichain

A ∈M of P, the intersection G ∩A ∩M 6= ∅. It must be explicitly specified

what M -generic means in this context since the usual notion of generic filters

makes sense only for transitive structures and M is not necessarily transitive.

This definition of M -generic is closely related to the definition for transitive

structures. To see this, let M∗ be the Mostowski collapse of M and P∗ be the

image of P under the collapse. Let G∗ ⊆ P∗ be the pointwise image of G∩M

under the collapse. Then G is M -generic if and only if G∗ is M∗-generic for
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P∗ in the usual sense.

Definition 1.20. Let P ∈ Hλ be a poset and M be an elementary submodel

of Hλ containing P. Then a condition q ∈ P is M -generic if and only if every

V -generic filter G ⊆ P containing q is M -generic.

Definition 1.21. A poset P is proper if for every λ > 2|P| and every countable

M ≺ Hλ containing P, for every p ∈ P ∩M , there is an M -generic condition

below p.

It can be shown that it is actually equivalent to consider only some fixed

λ > 2|P| and to show that generic conditions exist only for a club of countable

M ≺ Hλ [20] (p. 102). I will go back and forth between these equivalent

definitions when proving whether a given poset is proper.

Definition 1.22. The Proper Forcing Axiom (PFA) is the assertion that

for every proper poset P and every collection D of at most ω1 many dense

subsets of P, there is a filter on P that meets all of them.

Proper forcing was invented by Shelah, who sought a class of

ω1-preserving forcing notions that would be preserved under countable sup-

port iterations (for an introduction to proper forcing see [9] (p. 601) or [20]).

The two familiar classes of ω1-preserving forcing notions, namely the c.c.c.
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and countably closed forcing notions, turn out to be proper as well. The

Proper Forcing Axiom, introduced by Baumgartner [1], is easily seen to be

a generalization of Martin’s Axiom since c.c.c. posets are proper and PFA

decides the size of the continuum is ω2. The later fact is a highly nontrivial

result in [22]. In many respects, however, PFA is very much unlike MA. Not

only does it decide the size of the continuum, the axiom also has large cardi-

nal strength. The best known large cardinal upper bound on the consistency

of PFA is a supercompact cardinal [1]. Much fruitful set theoretical work in

recent years has involved PFA and its consequences.

1.5 Proof of Theorem 1.7

In this section, I will use PFA to prove the ω2-Ehrenfeucht Principle for

arithmetically closed proper Scott sets. Theorem 1.7 will follow as a corollary.

A filter G on the poset X/Fin is easily seen to be a filter on the Boolean

algebra X. By extending G to a larger filter if necessary, we can assume

without loss of generality that G is an ultrafilter. Recall that to prove the

ω2-Ehrenfeucht Principle, given a model M of size ≤ ω1 and a Scott set X

such SSy(M) ⊆ X, we need to find for every A ∈ X, an elementary extension

N such that A ∈ SSy(N) ⊆ X. The strategy will be to find ω1 many dense

subsets of X/Fin such that if G is a partially generic ultrafilter meeting all
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of them, then the standard system of the ultrapower of M by G will stay

within X. Thus, if X is proper, we will be able to use PFA to obtain such

an ultrafilter. I will also show that to every A ∈ X, there corresponds a set

B ∈ X such that whenever B is in an ultrafilter G, the set A will end up in

the ultrapower of M by G.

Let S ⊆ P(N) and expand the language of arithmetic LA to include

unary predicates A for all A ∈ S. Then the structure A = 〈N, A〉A∈S is a

structure of this expanded language with the natural interpretation. Since

Scott sets are closed under relative computability, basic computability theory

arguments show that if X is a Scott set, the structure A = 〈N, A〉A∈X is closed

under ∆1-definability. That is, if B is ∆1-definable in A, then B ∈ X.

Definition 1.23. A collection S ⊆ P(N) is arithmetically closed if the struc-

ture A = 〈N, A〉A∈S is closed under definability. That is, if B is definable in

A, then B ∈ S.

A Scott set X is arithmetically closed simply when it satisfies Definition

1.23. Observe actually that if S is arithmetically closed, then it is a Scott

set. Thus, arithmetic closure subsumes the definition of a Scott set. An easy

induction on the complexity of formulas establishes that if X is a Boolean

algebra of sets and A = 〈N, A〉A∈X is closed under Σ1-definability, then X is
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arithmetically closed. Hence a Scott set is arithmetically closed if and only

if it is closed under the Turing jump operation.

Definition 1.24. Say that 〈Bn | n ∈ N〉 is coded in X if there is B ∈ X

such that Bn = {m ∈ N | 〈n,m〉 ∈ B}. Given 〈Bn | n ∈ N〉 coded in X and

C ∈ X/Fin, say that C decides 〈Bn | n ∈ N〉 if whenever U is an ultrafilter

on X and C ∈ U , then {n ∈ N | Bn ∈ U} ∈ X. Call a Scott set X decisive

if for every 〈Bn | n ∈ N〉 coded in X, the set D = {C ∈ X/Fin | C decides

〈Bn | n ∈ N〉} is dense in X/Fin.

Decisiveness is precisely the property of a Scott set which is required for

our proof of Theorem 1.7. I will show below that decisiveness is equivalent

to arithmetic closure.

Lemma 1.25. The following are equivalent:

(1) X is an arithmetically closed Scott set.

(2) X is a decisive Scott set.

(3) X is a Scott set such that for every 〈Bn | n ∈ ω〉 coded in X, there is

C ∈ X/Fin deciding 〈Bn | n ∈ ω〉.

Proof.

(1)=⇒(2):5 Assume that X is arithmetically closed. Fix A ∈ X/Fin and a

5Similar arguments have appeared in [5] and other places.



CHAPTER 1. SCOTT’S PROBLEM FOR PROPER SCOTT SETS 23

sequence 〈Bn | n ∈ N〉 coded in X. We need to show that there is an element

in X/Fin below A deciding 〈Bn | n ∈ N〉. For every finite binary sequence

s, we will define Bs by induction on the length of s. Let B∅ = A. Given Bs

where s has length n, define Bs1 = Bs∩Bn and Bs0 = Bs∩ (N−Bn). Define

the binary tree T = {s ∈ 2<ω | Bs is infinite}. Clearly T is infinite since

if we split an infinite set into two pieces one of them must still be infinite.

Since X is arithmetically closed and T is arithmetic in A and 〈Bn | n ∈ N〉,

it follows that T ∈ X. Thus, X contains a cofinal branch P through T . De-

fine C = {bn | n ∈ N} such that b0 is least element of B∅ and bn+1 is least

element of BP �n that is greater than bn. Clearly C is infinite and C ⊆ A.

Now suppose U is an ultrafilter on X and C ∈ U , then Bn ∈ U if and only if

C ⊆Fin Bn. Thus, {n ∈ N | Bn ∈ U} = {n ∈ N | C ⊆Fin Bn} ∈ X, since X is

arithmetically closed.

(2)=⇒(3): Clear.

(3)=⇒(1): It suffices to show that X is closed under the Turing jump op-

eration. Fix A ∈ X and define a sequence 〈Bn | n ∈ ω〉 by k ∈ Bn if and

only if the Turing program coded by n with oracle A halts on input n in

less than k many steps. Clearly the sequence is computable from A, and

hence coded in X. Let H = {n ∈ N | the program coded by n with oracle

A halts on input n} be the halting problem for A. It should be clear that
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n ∈ H implies that Bn is cofinite and n /∈ H implies that Bn = ∅. Let

C ∈ X/Fin deciding 〈Bn | n ∈ ω〉 and U be any ultrafilter containing C,

then {n ∈ N | Bn ∈ U} ∈ X. But this set is exactly H. This shows that

H ∈ X, and hence X is closed under the Turing jump operation.

Theorem 1.26. Assuming PFA, the ω2-Ehrenfeucht Principle for arithmeti-

cally closed proper Scott sets holds. That is, if X is an arithmetically closed

proper Scott set and M is a model of PA of size ≤ ω1 whose standard system

is contained in X, then for any A ∈ X, there is an elementary extension

M ≺ N such that A ∈ SSy(N) ⊆ X.

Proof. I will build N using a variation on the ultrapower construction intro-

duced by Kirby and Paris [13]. Fix a model M of PA and a Scott set X such

that SSy(M) ⊆ X. Let G be some ultrafilter on X. If f : N→M , we say that

f is coded in M when there is a ∈ M such that (a)n = f(n) for all n ∈ N.

Given f and g coded in M , define f ∼G g if {n ∈ N | f(n) = g(n)} ∈ G. The

definition makes sense since clearly {n ∈ N | f(n) = g(n)} ∈ SSy(M) ⊆ X.

The classical ultrapower construction uses an ultrafilter on P(N) and all

functions from N to M . This construction uses only functions coded in M ,

and therefore needs only an ultrafilter on SSy(M) ⊆ X. As in the classical

construction, we get an equivalence relation and a well-defined LA structure
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on the equivalence classes. The proof relies on the fact that X is a Boolean

algebra. Call ΠXM/G the collection of equivalence classes [f ]G where f is

coded in M . Also, as usual, we get:

Lemma 1.26.1.  Loś’ Lemma holds. That is, ΠXM/G |= ϕ([f ]G) if and only

if {n ∈ N |M |= ϕ(f(n))} ∈ G.

Proof. Classical argument.

Lemma 1.26.2. For every A ∈ X, there is B ∈ X/Fin such that if G is any

ultrafilter on X containing B, then A ∈ SSy(ΠXM/G).

Proof. Let χA be the characteristic function of A. For every n ∈ N, de-

fine Bn = {m ∈ N | (m)n = χA(n)}. Then clearly each Bn ∈ X. Also

〈Bn | n ∈ N〉 is coded in X since the sequence is arithmetic in A. Ob-

serve that the intersection of any finite number of Bn is infinite. Let B =

{bn | n ∈ N} where b0 is least element of B0 and bn+1 is least element of

∩m≤n+1Bm that is greater than bn. Then B ⊆Fin Bn for all n ∈ N. It

follows that if G is any ultrafilter containing B, then G must contain all

the Bn as well. Let G be an ultrafilter containing B. Let id : N → N be

the identity function. I claim that ([id]G)n = χA(n). It will follow that

A ∈ SSy(ΠXM/G). But this is true since ([id]G)n = χA(n) if and only if

{m ∈ N | (m)n = χA(n)} = Bn ∈ G.
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Lemma 1.26.2 tells us that if we want to add some set A to the standard

system of the ultrapower that we are building, we just have to make sure

that a correct set gets put into the ultrafilter. Thus, it easily follows that

that we can build ultrapowers of M having any given element of X in the

standard system.

The crucial step of the construction is to find a family of size ω1 of dense

subsets of X/Fin such that if the ultrafilter meets all members of the family,

the standard system of the ultrapower stays within X. It is here that we need

all the extra hypothesis of Theorem 1.26 including the decisiveness of X.

Recall that a set E is in the standard system of a nonstandard model

if and only if there is an element e such that E = {n ∈ N | (e)n = 1}

(Proposition 1.2), meaning E is coded in the model. Thus, we have to show

that the sets coded by elements of ΠXM/G are in X.

Lemma 1.26.3. For every function f coded in M , there is a dense subset

Df of X/Fin such that if G meets Df , then [f ]G ∈ ΠXM/G codes a set in X.

Proof. Fix a function f coded in M and let Ef = {n ∈ N | ΠXM/G |=

([f ]G)n = 1}. By  Loś’ Lemma, ΠXM/G |= ([f ]G)n = 1 if and only if

{m ∈ N | (f(m))n = 1} ∈ G. Define Bn,f = {m ∈ N | (f(m))n = 1} and

note that 〈Bn,f | n ∈ N〉 is coded in SSy(M). Observe that n ∈ Ef if and
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only if Bn,f ∈ G. Thus, we have to make sure that {n ∈ N | Bn,f ∈ G} ∈ X.

Let Df = {C ∈ X/Fin | C decides 〈Bn,f | n ∈ N〉}. Since X is decisive, Df is

dense. Clearly if G meets Df , the set coded by [f ]G will be in X.

Now we can finish the proof of Theorem 1.26. Let D = {Df | f is coded

in M}. Since M has size ≤ ω1, the collection D has size ≤ ω1 also. Assuming

PFA guarantees that we can find an ultrafilter G meeting every Df ∈ D. But

this is precisely what forces the standard system of ΠXM/G to stay inside

X.

Theorem 1.7 now follows directly from Theorem 1.26.

Proof of Theorem 1.7. Since PFA implies 2ω = ω2 and Scott sets of size ω1

are already handled by Knight and Nadel’s result, we only need to consider

Scott sets of size ω2. But the result for these follows from Theorem 1.16 and

the ω2-Ehrenfeucht Principle established by Theorem 1.26.

1.6 Extensions of Ehrenfeucht’s Lemma

In this section, I will go through some results related to the question of ex-

tending Ehrenfeucht’s lemma to models of size ω1 (ω2-Ehrenfeucht Principle).

Question 1.27. Does the ω2-Ehrenfeucht Principle hold?
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Theorem 1.26 shows that in a universe satisfying PFA, the ω2-Ehrenfeucht

Principle for arithmetically closed proper Scott sets holds. Next, I will use the

same techniques to show that the κ-Ehrenfeucht Principle for arithmetically

closed Scott sets holds for all κ if we only consider models with countable

standard systems. For this argument, we do not need to use PFA or proper-

ness.

Theorem 1.28. If M is a model of PA whose standard system is countable

and contained in an arithmetically closed Scott set X, then for any A ∈ X,

there is an elementary extension M ≺ N such that A ∈ SSy(N) ⊆ X.

Proof. Fix an arithmetically closed Scott set X and a model M of PA such

that SSy(M) is countable and contained in X. To mimic the proof of Theorem

1.26, we need to find an ultrafilter G on X which meets the dense sets Df =

{C ∈ X/Fin | C decides 〈Bn,f | n ∈ N〉}. I claim that there are only

countably many Df . If this is the case, then such an ultrafilter G exists

without any forcing axiom assumption. Given f : N → M , let Bf code

〈Bn,f | n ∈ N〉. There are possibly as many f as elements of M , but there

can be only countably many Bf since each Bf ∈ SSy(M). It remains only

to observe that Df is determined by Bf . So there are as many Df as there

are different Bf . Thus, there are only countably many Df in spite of the fact
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that M can be arbitrarily large.

The same idea can be used to extend Theorem 1.26 to show that the

κ-Ehrenfeucht Principle for arithmetically closed proper Scott sets will hold

for all κ if we consider only models whose standard system has size ω1.

Theorem 1.29. Assuming PFA, if X is an arithmetically closed proper Scott

set and M is a model of PA whose standard system has size ω1 and is con-

tained in X, then for any A ∈ X, there is an elementary extension M ≺ N

such that A ∈ SSy(N) ⊆ X.

It is also an easy consequence of an amalgamation result for models of PA

that the κ-Ehrenfeucht Principle holds for all κ for models with a countable

nonstandard elementary initial segment. Neither PFA nor arithmetic closure

is required for this result.

Theorem 1.30. Suppose M0, M1, and M2 are models of PA such that

M0 ≺cof M1 and M0 ≺end M2. Then there is an amalgamation M3 of M1

and M2 over M0 such that M1 ≺end M3 and M2 ≺cof M3. (see [15], p. 40)

Theorem 1.31. Suppose M is a model of PA with a countable nonstandard

elementary initial segment and X is a Scott set such that SSy(M) ⊆ X.

Then for any A ∈ X, there is an elementary extension M ≺ N such that

A ∈ SSy(N) ⊆ X.
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Proof. Fix a set A ∈ X. Let K be a countable nonstandard elementary

initial segment of M , then SSy(K) = SSy(M). By Ehrenfeucht’s Lemma,

there is an extension K ≺cof K ′ such that A ∈ SSy(K ′) ⊆ X. By Theorem

1.31, there is a model N , an amalgamation of K ′ and M over K, such that

K ′ ≺end N and M ≺cof N . It follows that SSy(K ′) = SSy(N). Thus,

A ∈ SSy(N) ⊆ X.

Corollary 1.32. The κ-Ehrenfeucht Principle holds for ω1-like models for

all cardinals κ.

These observations suggest that if the ω2-Ehrenfeucht Principle fails to

hold, one should look to models with an uncountable standard system for

such a counterexample.

Question 1.33. Does the ω2-Ehrenfeucht Principle hold for models with

a countable standard system? That is, can we remove the assumption of

arithmetic closure from Theorem 1.28?

1.7 Other Applications of X/Fin

It appears that X/Fin is a natural poset to use in several unresolved questions

in the field of models of PA. In the previous sections, I used it to find new

conditions for extending Ehrenfeucht’s Lemma and Scott’s Problem. Here I
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will mention some other instances in which the poset naturally arises.

Definition 1.34. Let L be some language extending LA. We say that a

model M of L satisfies PA∗ if M satisfies induction axioms in the expanded

language. If M |= PA∗, then M ⊆ N is a conservative extension if it is

a proper extension and every parametrically definable subset of N when

restricted to M is also definable in M .

Gaifman showed in [7] that for any countable L, every M |= PA∗ in L has

a conservative elementary extension. A result of George Mills shows that the

statement fails for uncountable languages. Mills proved that every countable

nonstandard model M |= PA∗ in a countable language has an expansion to

an uncountable language such that M |= PA∗ in the expanded language but

has no conservative elementary extension (see [15], p. 168). His techniques

failed for the standard model, leaving open the question whether there is an

expansion of the standard model N to some uncountable language that does

not have a conservative elementary extension. This question has recently

been answered by Ali Enayat, who demonstrated that there is always an

uncountable arithmetically closed Scott set X such that 〈N, A〉A∈X has no

conservative elementary extension [4]. This raises the question of whether

we can say something general about Scott sets X for which 〈N, A〉A∈X has a
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conservative elementary extension.

Theorem 1.35. Assuming PFA, if X is an arithmetically closed proper Scott

set of size ω1, then 〈N, A〉A∈X has a conservative elementary extension.

Proof. Let LX be the language of arithmetic LA together with predicates

for sets in X. Let G be an ultrafilter on X. We define ΠXN/G, the ultra-

power of N by G, to consist of equivalence classes of functions coded in X.

A function f : N → N is said to be coded in a Scott set X if there is a

set in X whose elements are exactly the codes for elements of the graph of

f . We have to make this modification to the construction of the proof of

Theorem 1.26 since the idea of functions coded in the model clearly does

not make sense for N. The usual arguments show that we can impose an

LX structure on ΠXN/G and  Loś’ Lemma holds. I will show, by choosing

G carefully, that 〈ΠXN/G,A′〉A∈X is a conservative extension of 〈N, A〉A∈X

where A′ = {[f ]G ∈ ΠXN/G | {n ∈ N | f(n) ∈ A} ∈ G}. Fix a set E

definable in 〈ΠXN/G,A′〉A∈X by a formula ϕ(x, [f ]G). Observe that n ∈ E ↔

ΠXN/G |= ϕ(n, [f ]G)↔ Bϕ,f
n = {m ∈ N | N |= ϕ(n, f(m))} ∈ G. Let Dϕ,f =

{C ∈ X/Fin | C decides 〈Bϕ,f
n | n ∈ N〉}. The sets Dϕ,f are dense since X

is decisive. Clearly if G meets all the Dϕ,f , the ultrapower 〈ΠXN/G,A′〉A∈X

will be a conservative extension of 〈N, A〉A∈X. Finally, since X has size ω1,
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there are at most ω1 many formulas ϕ of LX and functions f coded in X,

and hence at most ω1 many dense sets Dϕ,f . So we can find the desired G

by PFA.

It should be observed here that the above construction yields another

proof of Scott’s Theorem for countable arithmetically closed Scott sets. Given

a countable arithmetically closed Scott set X, we find a conservative extension

for the model 〈N, A〉A∈X by the above construction. Since X is countable, we

do not need PFA to find the ultrafilter. Finally, it is easy to see that the

standard system of the reduct of the conservative extension to the language

of PA has to be exactly X.

Another open question in the field of models of PA, for which X/Fin is

relevant, involves the existence of minimal cofinal extensions for uncountable

models.

Definition 1.36. Let M be a model of PA, then M ≺ N is a minimal

extension if it is a proper extension and whenever M ≺ K ≺ N , either

K = M or K = N .

Theorem 1.37. Every nonstandard countable model of PA has a minimal

cofinal extension. (see [15], p. 28)
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Question 1.38. Does every uncountable model of PA have a minimal cofinal

extension?

Gaifman showed that every model of PA, regardless of cardinality, has a

minimal end extension [7].

Definition 1.39. Let X ⊆ P(N) be a Boolean algebra. If U is an ultrafilter

on X, we say that U is Ramsey if for every function f : N → N coded in X,

there is a set A ∈ U such that f is either 1-1 or constant on A.

Lemma 1.40. If M is a nonstandard model of PA such that SSy(M) has a

Ramsey ultrafilter, then M has a minimal cofinal extension.6

Proof. Let U be a Ramsey ultrafilter on SSy(M). The strategy will be to

show that the ultrapower ΠSSy(M)M/U is a minimal cofinal extension of M .

The meaning of ΠSSy(M)M/U here is identical to the one in the proof of

Theorem 1.26. First, observe that for any ultrafilter U, we have ΠXM/U =

Scl([id]U ,M), the Skolem closure of the equivalence class of the identity

function together with elements of M . This holds since any [f ]U = t([id]U)

where t is the Skolem term defined by f in M . Next, observe that such

ultrapowers are always cofinal. To see this, fix [f ]U ∈ ΠXM/U and let a >

f(n) for all n ∈ N. Such a exists since f is coded in M . Clearly [f ]U < [ca]U

6Connections between minimal extensions and Ramsey ultrafilters appear widely in the
literature, see, for example, [8] (ch. 0) on uses in set theory.
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where ca(n) = a for all n ∈ N. These observations hold for any Scott

set X ⊇ SSy(M) and, in particular, for X = SSy(M). To show that the

extension ΠSSy(M)M/U is minimal, we fix M ≺ K ≺ ΠXM/U and show that

K = M or K = ΠXM/U . It suffices to see that [id]U ∈ Scl([f ]U ,M) for

every [f ]U ∈ (ΠSSy(M)M/U)−M . Fix f : N→M and define g : N→ N such

that g(0) = 0 and g(n) = n if f(n) is not equal to f(m) for any m < n, or

g(n) = m wherem is least such that f(m) = f(n). Observe that g ∈ SSy(M).

Also for any A ⊆ N, the function g is 1-1 or constant on A if and only if f is.

Since U is Ramsey, g is either constant or 1-1 on some set A ∈ U . Hence f

is either constant or 1-1 on A as well. If f is constant on A, then [f ]U ∈M .

If f is 1-1 on A, let s be a Skolem term that is the inverse of f on A. Then

clearly s([f ]U) = [id]U . This completes the argument that ΠSSy(M)M/U is a

minimal cofinal extension of M .

The converse to the above theorem does not hold. That is, if M has a

minimal cofinal extension it does not follow that there is a Ramsey ultrafilter

on SSy(M). The following lemma will help us see this. Let M be a model of

PA and let LM be the language of PA together with constants for all elements

of M . Let TM be the theory of M in LM . If M ≺ N and a ∈ N , let M(a)

denote the Skolem closure of M and a in N . A complete type p(x) is a type
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over M if it is in LM and consistent with TM . A complete type p(x) over

M is minimal if for every model N of TM , we can extend p(x) to a complete

type q(x) over N such that whenever N ≺ K and a ∈ K realizes q(x), then

N(a) is a minimal end extension of N . Minimal types are due to Gaifman,

who showed that they exist over every model M of PA (see [7]).

Lemma 1.41. Every model of PA has an elementary end extension having

a minimal cofinal extension.7

Proof. Suppose M is a model of PA. Let p(x) be a minimal type over M

and extend M to M(a) with a realizing p(x). Thus, M(a) is a minimal end

extension of M . Since M(a) is a model of TM , the type p(x) has an extension

to a type q(x) over M(a) which generates minimal extensions. Extend M(a)

to M(a)(b) with b realizing q(x). Thus, M(a)(b) is a minimal end extension of

M(a). Also, since q(x) extends p(x), we have that b realizes p(x), and hence

M(b) is a minimal end extension of M . I claim that M(a)(b) is a minimal

cofinal extension of M(b). Since M(b) is a minimal end extension of M , we

know that M(a)(b) 6= M(b). To see that M(b) is cofinal in M(a)(b), let N be

the closure of M(b) under initial segment in M(a)(b). Since a < b, it follows

that a ∈ N , and since b ∈ M(b), it follows that b ∈ N . Thus, N = M(a)(b),

and hence M(b) is cofinal in M(a)(b). To see that M(a)(b) is a minimal

7I am grateful to Haim Gaifman for pointing this out.
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extension of M(b), suppose M(b) ≺ K ≺ M(a)(b). If K 6= M(b), then there

is c ∈ K such that c /∈ M(b). Since c ∈ M(a)(b), there is a Skolem function

t(x, y) defined with parameters from M such that c = t(a, b) in M(a)(b).

By elementarity, the model K must have the least x such that t(x, b) = c.

Clearly x ≤ a, which implies that x ∈ M(a). Also clearly x /∈ M , since if

x ∈M , then c ∈M(b). It follows that x ∈M(a)−M . But this implies that

a ∈ K by the minimality of M(a). Thus, K = M(a)(b). This completes the

proof that M(a)(b) is a minimal cofinal extension of M(b).

Kunen has shown in [16] that it is consistent that there are no Ramsey

ultrafilters on P(N). So suppose M is a model of PA whose standard system

is P(N). Let N be an extension of M having a minimal cofinal extension.

Thus, N has a minimal cofinal extension but there are no Ramsey ultrafilters

on SSy(N) = P(N).

Theorem 1.42. Assuming PFA, Ramsey ultrafilters exist for proper Scott

sets of size ω1. Thus, if M is a model of PA and SSy(M) is proper of size

ω1, then M has a minimal cofinal extension.

Proof. The existence of a Ramsey ultrafilter involves being able to meet a

family of dense sets. To see this, fix f : N → N and observe that Df =

{A ∈ SSy(M)/Fin | f is 1-1 on A or f is constant on A} is dense. Note
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that to see that Df is dense, we do not need to assume that SSy(M) is

arithmetically closed.

The proof of Theorem 1.42 shows that any M with a countable standard

system will have a minimal cofinal extension since we do not need PFA to

construct an ultrafilter meeting countably many dense sets.

1.8 When is X/Fin Proper?

In this section, we investigate proper Scott sets. Recall that if P is a property

of posets and X/Fin has P, I will simply say that X has property P. At

this stage, we are left to answer an almost purely set theoretic question:

Question 1.43. Which Scott sets are proper?

Theorem 1.44. If X is countable or X = P(N), then X is proper.

Proof. The class of proper posets includes c.c.c. and countably closed posets.

If X is countable, then X is c.c.c., and if X = P(N), then X is countably

closed.

We are already in a better position than with c.c.c. Scott sets since we

have an instance of an uncountable proper Scott set, namely P(N). This does

not, however, give us a new instance of Scott’s Problem since we already know
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by compactness that there are models of PA with standard system P(N). I

will also show that it is consistent with ZFC that there exist uncountable

proper Scott sets X 6= P(N).

The easiest way to show that a poset is proper is to show that it is c.c.c.

or countably closed. We already know that if X is c.c.c., then it is countable

(Theorem 1.18). So this condition gives us no new proper Scott sets. It turns

out that neither does the countably closed condition.

Theorem 1.45. If X is a countably closed Scott set, then X = P(N).

Proof. First, I claim that if X is countably closed, then X is arithmeti-

cally closed. I will show that for every sequence 〈Bn | n ∈ ω〉 coded in

X, there is C ∈ X deciding 〈Bn | n ∈ ω〉. This suffices by Theorem 1.25. Fix

〈Bn | n ∈ ω〉 coded in X. Define a descending sequence B∗0 ≥ B∗1 ≥ · · · ≥

B∗n ≥ · · · of elements of X/Fin by induction on n such that B∗0 = B0 and

B∗n+1 is B∗n ∩ Bn+1 if this intersection is infinite or B∗n ∩ (N − Bn+1) other-

wise. By countable closure, there is C ∈ X/Fin below this sequence. Clearly

C decides 〈Bn | n ∈ ω〉. Therefore X is arithmetically closed. Now I will

show that every A ⊆ N is in X. Define Bn = {m ∈ N | (m)n = χA(n)} as

before. Let Am = ∩n≤mBn and observe that A0 ≥ A1 ≥ · · · ≥ Am ≥ . . . in

X/Fin. By countable closure, there exists C ∈ X/Fin such that C ⊆Fin Am
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for all m ∈ N. Thus, C ⊆Fin Bn for all n ∈ N. It follows that A = {n ∈ N |

∃m∀k ∈ C if k > m, then (k)n = 1}. Thus, A is arithmetic in C, and hence

A ∈ X by arithmetic closure. Since A was arbitrary, this concludes the proof

that X = P(N).

The countable closure condition can be weakened slightly. If a poset is

just strategically ω-closed, it is enough to imply properness.

Definition 1.46. Let P be a poset, then GP is the following infinite game

between players I and II: Player I plays an element p0 ∈ P, and then player

II plays p1 ∈ P such that p0 ≥ p1. Then player I plays p1 ≥ p2 and player II

plays p2 ≥ p3. Player I and II alternate in this fashion for ω steps to end up

with the descending sequence p0 ≥ p1 ≥ p2 ≥ . . . ≥ pn ≥ . . .. Player II wins

if the sequence has a lower bound in P. Otherwise, player I wins. A poset P

is ω-strategically closed if player II has a winning strategy in the game GP.

Observe that a strategically ω-closed Scott set has to be arithmetically

closed. To see this, suppose that X is a strategically ω-closed Scott set and

〈Bn | n ∈ ω〉 is a sequence coded in X. We will find C ∈ X/Fin deciding the

sequence by having player I play either Bn or N − Bn intersected with the

previous move of player II at the nth step of the game.

Question 1.47. Are there Scott sets that are strategically ω-closed but not
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countably closed?

One might wonder at this point whether it is possibly the case that a

Scott set is proper only when it is countable or P(N). I will show that it is

at least consistent with ZFC that this is not the case. I will first show that

in L[g] where L is the constructible universe and g is L-generic for the Cohen

real forcing, the Scott set P(N)L is proper. Clearly P(N)L 6= P(N)L[g] since

g /∈ P(N)L.

Lemma 1.48. Suppose Q is a c.c.c. poset and G ⊆ P is V -generic for a

countably closed poset P. Then Q remains c.c.c. in V [G].

Proof. Suppose Q does not remain c.c.c. in V [G]. Fix a P-name Ȧ and

r ∈ P such that r 
 “Ȧ is a maximal antichain of Q̌ of size ω1”. Choose

p0 ≤ r and a0 ∈ Q such that p0 
 ǎ0 ∈ Ȧ. Suppose that we have defined

p0 ≥ p1 ≥ · · · ≥ pξ ≥ · · · for ξ < β where β is some countable ordinal,

together with a corresponding sequence 〈aξ | ξ < β〉 of elements of Q such

that pξ 
 ǎξ ∈ Ȧ and aξ1 6= aξ2 for all ξ1 < ξ2. By countable closure of P, we

can find p ∈ P such that p ≤ pξ for all ξ < β. Let pβ ≤ p and aβ ∈ Q such

that pβ 
 ǎβ ∈ Ȧ and aβ 6= aξ for all ξ < β. Such aβ must exist since we

assumed r 
 “Ȧ is a maximal antichain of Q̌ of size ω1” and p ≤ r. Thus,

we can build a descending sequence 〈pξ | ξ < ω1〉 of elements of P and a
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corresponding sequence 〈aξ | ξ < ω1〉 of elements of Q such that pξ 
 ǎξ ∈ Ȧ.

But clearly 〈aξ | ξ < ω1〉 is an antichain in V of size ω1, which contradicts

the assumption that Q was c.c.c..

Theorem 1.49. If P is a poset in M ≺ Hλ, then a V -generic filter G ⊆ P

is M-generic if and only if M ∩Ord = M [G] ∩Ord. (See, for example, [20],

p. 105)

Proof. (=⇒): Suppose that a V -generic filter G ⊆ P is M -generic. Recall

that M [G] = {ȧG | ȧ ∈ M is a P-name}. Let α be an ordinal of M [G], then

α = ȧG for some P-name ȧ ∈ M . Let D = {p ∈ P | ∃β ordinal such that

p 
 ȧ = β̌ or p 
 “ȧ is not an ordinal”}. Clearly D is dense in P and D ∈M

since it is definable from ȧ and P. Since G is M -generic, D ∩M ∩ G 6= ∅.

So let q ∈ D ∩M ∩ G. Observe that q must force ȧ = α̌, and hence α is

definable from q and ȧ. Since both of these are in M , it follows that α ∈M .

(⇐=): Suppose that M ∩ Ord = M [G] ∩ Ord. Fix A ∈ M a maximal

antichain of P. We need to show that A ∩M ∩ G 6= ∅. In Hλ, enumerate

A = {qξ | ξ < δ}. Since M ≺ Hλ, we can assume without loss of generality

that this enumeration is in M . Also in Hλ, we can build by mixing a P-name

ȧ such that qξ 
 ȧ = ξ̌. Again, without loss of generality, we can assume

ȧ ∈M . Let ȧG = α, then α is in M [G], and hence in M by our assumption.
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It also follows that qα ∈ G. But since α ∈ M , the element qα ∈ M as well.

Thus, qα ∈ A ∩M ∩G, and consequently A ∩M ∩G 6= ∅.

Theorem 1.50. Suppose Q is a c.c.c. poset and g ⊆ Q is a V -generic filter.

Also suppose V [g] has the property that any M ∈ V [g] such that M ≺ HV
λ

Mostowski collapses to an element of V . Then P(N)V is proper in V [g].

Proof. I will prove that generic conditions exist for countable elementary

substructures 〈M [g],M,Q, g〉 ≺ 〈Hλ[g], Hλ,Q, g〉 in V [g]. Here we view Hλ

as a predicate and Q and g as constants. Since for large enough λ, we

have Hλ[g] = H
V [g]
λ (see Theorem 2.59) and the substructures M [g] form

a club, this suffices for properness. We need to prove that for every A ∈

M [g] ∩ P(N)V /Fin, there exists B ∈ P(N)V /Fin such that B ⊆Fin A and

every V [g]-generic filter G ⊆ P(N)V /Fin containing B is also M [g]-generic.

We will first consider M . Observe that M ≺ Hλ, and so we can use the

hypothesis that the Mostowski collapse of M must be in V . This is important

since M itself may not be in V . Let π : M →M be the Mostowski collapse,

then M ∈ V . Observe that π(P(N)V ) = P(N)V ∩M = P(N)V ∩M since

π(A) = A for all A ∈ P(N)V ∩M . Also M thinks that D is a dense subset

of π(P(N)V /Fin) = P(N)V /Fin∩M if and only if D = π(D ′) = D ′ ∩M and

M thinks D ′ is dense in P(N)V /Fin. Since M is countable and in V , we can
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enumerate the dense subsets of P(N)V /Fin∩M that are in M in a countable

sequence inside V . By the countable closure of P(N)V /Fin in V , we can find

B ∈ P(N)V /Fin such that every dense set in M contains something above B.

Clearly B is M -generic. I will end up proving that B is, in fact, M [g]-generic.

The first step is to show that B is M -generic. Suppose G ⊆ P(N)V /Fin

is V [g]-generic and B ∈ G. To see that G is M -generic, let D ′ ∈ M be a

dense subset of P(N)V /Fin. Observe that π(D ′) = D is dense in M , and

thus G ∩D 6= ∅. But D = D ′ ∩M , and so D ′ ∩M ∩G 6= ∅. This completes

the argument that B is M -generic.

To see that G is M [g]-generic, I will show that M [g] ∩ Ord =

M [g][G] ∩ Ord. We begin by observing that g is M -generic. To see this,

suppose that A ∈ M is a maximal antichain of Q in V [g]. Since M ≺ Hλ,

we have A ∈ Hλ, and hence A is countable in Hλ. Thus, A ⊆ M and since

g is V -generic, it must be that A ∩ g = A ∩M ∩ g 6= ∅. By the proof of

Theorem 1.49, we conclude that M [g] ∩Ord = M ∩Ord. Observe also that

M [g][G] = M [G][g] since we are forcing with the product Q × P(N)V /Fin.

Thus, it suffices to show that M [G][g] ∩ Ord = M ∩ Ord. Since G is M -

generic and clearly V -generic, we have, by the proof of Theorem 1.49, that

M ∩ Ord = M [G] ∩ Ord. By Lemma 1.48, Q remains c.c.c. in V [G]. Since

M ≺ Hλ, it follows that M [G] ≺ Hλ[G] = H
V [G]
λ . If A ∈ M [G] is a max-
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imal antichain of P, then A is countable in Hλ[G], and hence A ⊆ M [G].

Finally, since g is V [G]-generic, we have that g is M [G]-generic. Therefore

M [G] ∩Ord = M [G][g] ∩Ord.

Corollary 1.51. Suppose V = L or V = L[A] for some A ⊆ ω1. Let Q be

the forcing to add a Cohen real and let g ⊆ Q be V -generic. Then P(N)V is

an uncountable proper Scott set in V [g] that is not the whole powerset of N.

Proof. Suppose M ≺ HV
λ in V [g]. If V = L, then HV

λ = Lλ. Therefore the

Mostowski collapse of M is some Lα by condensation, and hence in L. The

argument for V = L[A] where A ⊆ ω1 is identical. So we have satisfied the

hypothesis of Theorem 1.50, and hence P(N)V is proper in V [g]. Since Q

does not collapse cardinals, P(N)V still has size ω1 in V [g]. However, since

Q adds new reals, P(N)V is no longer the whole powerset of N in V [g].

This shows that there can be proper Scott sets that are not countable or

P(N). But it does not give us a new instance of Scott’s Problem since we

already know that there exist models of PA whose standard system is PL(N)

or PL[A](N) by compactness applied in the respective models.

Next, I will show how to force the existence of proper Scott sets. I will

begin by looking at what properness means in the specific context of Scott

sets.
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Proposition 1.52. Suppose X is a Scott set and A is a countable antichain

of X/Fin. Then for B ∈ X:

(1) Every V -generic filter G ⊆ X/Fin containing B meets A .

(2) There exists a finite list A0, . . . , An ∈ A such that B ⊆Fin A0∪ . . .∪An.

Proof.

(2)=⇒(1): Suppose B ⊆Fin A0 ∪ . . . ∪ An for some A0, . . . , An ∈ A . Since a

V -generic filter G is an ultrafilter, one of the Ai must be in G.

(1)=⇒(2): Assume that every V -generic filter G containing B meets A

and suppose toward a contradiction that (2) does not hold. Enumerate

A = {A0, A1, . . . , An, . . .}. It follows that for all n ∈ N, the intersection

B ∩ (N − A0) ∩ · · · ∩ (N − An) is infinite. Define C = {cn | n ∈ N} such

that c0 is the least element of B ∩ (N − A0) and cn+1 is the least element

of B ∩ (N − A0) ∩ · · · ∩ (N − An+1) greater than cn. Clearly C ⊆ B and

C ⊆Fin (N − An) for all n ∈ N. Let G be a V -generic filter containing C,

then B ∈ G and (N − An) ∈ G for all n ∈ N. But this contradicts our

assumption that G meets A .

Corollary 1.53. Let X be a Scott set. Then X is proper if and only if

there exists λ > 2|X| such that for every countable M ≺ Hλ containing X,

whenever C ∈ M ∩ X/Fin, then there is B ⊆Fin C in X/Fin such that for
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every maximal antichain A ∈ M of X/Fin, there are A0, . . . , An ∈ A ∩M

with B ⊆Fin A0 ∪ · · · ∪ An.

Proof.

(=⇒): Suppose X is proper. Then there is λ > 2|X| such that for every

countable M ≺ Hλ containing X and every C ∈ M ∩ X/Fin, there is an

M -generic B ⊆Fin C in X/Fin. Fix a countable M ≺ Hλ containing X and

C ∈ M ∩ X/Fin. Let B ⊆Fin C be M -generic. Thus, every V -generic filter

containing B must meet A ∩ M for every maximal antichain A ∈ M of

X/Fin. But since A ∩ M is countable, by Proposition 1.52, there exist

A0, . . . , An ∈ A ∩M such that B ⊆Fin A0 ∪ · · · ∪ An.

(⇐=): Suppose that there is λ > 2|X| such that for every countable M ≺ Hλ

containing X, whenever C ∈M∩X/Fin, then there is B ⊆Fin C in X/Fin such

that for every maximal antichain A ∈ M of X/Fin, there are A0, . . . , An ∈

A ∩M with B ⊆Fin A0 ∪ · · · ∪ An. Fix a countable M ≺ Hλ with X ∈ M

and C ∈ M ∩ X/Fin. Let B ⊆Fin C be as above. By Proposition 1.52,

every V -generic filter G containing B must meet A ∩M for every maximal

antichain A ∈ M . Thus, B is M -generic. Since M was arbitrary, we can

conclude that X is proper.

The hypothesis of Corollary 1.53 can be weakened to finding for some Hλ,
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only a club of countable M having the desired property since, as was pointed

out earlier, this is equivalent for properness.

Definition 1.54. Let X be a countable Scott set, let D be some collection

of dense subsets of X/Fin, and let B ∈ X. We say that an infinite set A ⊆ N

is 〈X,D〉-generic below B if A ⊆Fin B and for every D ∈ D, there is C ∈ D

such that A ⊆Fin C.

Here one should think of the context of having some big Scott set

Y ∈ M ≺ Hλ such that M is countable, X = Y ∩M , and D = {D ∩M |

D ∈M and D is dense in Y/Fin}. We think of A as coming from the bigger

Scott set Y and the requirement for A to be 〈X,D〉-generic is a strengthening

of the requirement to be M -generic.

Lemma 1.55. Let X be a countable Scott set. Assume that B ∈ X/Fin and

G ⊆ X/Fin is a V -generic filter containing B. Then in V [G], there is an

infinite A ⊆ N such that A ⊆Fin C for all C ∈ G. Furthermore, if D is the

collection of dense subsets of X/Fin of V , then such an A is 〈X,D〉-generic

below B.

Proof. Since G is countable and directed in V [G], there exists an infinite

A ⊆ N such that A ⊆Fin C for all C ∈ G. For the “furthermore” part, fix a
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dense subset D of X/Fin in V . Since there is C ∈ G∩D , we have A ⊆Fin C.

It is clear that A ⊆Fin B since B ∈ G.

Lemma 1.56. Let X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 be a continuous

chain of countable Scott sets and let X = ∪ξ<ω1Xξ. Assume that for every

ξ < ω1, if B ∈ Xξ and D is a countable collection of dense subsets of Xξ,

there is A ∈ X/Fin that is 〈Xξ,D〉-generic below B. Then X is proper.

Proof. Fix a countable M ≺ Hλ such that 〈Xξ | ξ < ω1〉 ∈ M . It suffices

to show that generic conditions exist for such M since these form a club.

I claim that X ∩ M = Xα where α = OrdM ∩ ω1. Suppose ξ ∈ α, then

ξ ∈ M , and hence Xξ ∈ M . Since Xξ is countable, it follows that Xξ ⊆ M .

Thus, Xα ⊆ X ∩M . Now suppose A ∈ X ∩M , then the least ξ such that

A ∈ Xξ is definable in Hλ. It follows that ξ ∈ M , and hence ξ ∈ α. Thus,

X ∩ M ⊆ Xα. This establishes that X ∩ M = Xα. Fix B ∈ Xα and let

D = {D ∩ M | D ∈ M and D dense in X/Fin}. By hypothesis, there is

A ∈ X/Fin that is 〈Xα,D〉-generic below B. Clearly A is M -generic. Thus,

we were able to find an M -generic element below every B ∈M ∩X/Fin.

Theorem 1.57. There is a generic extension of V by a c.c.c. poset, which

satisfies ¬CH and contains a proper arithmetically closed Scott set of size ω1.

Proof. First, note that we can assume without loss of generality that
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V |= ¬CH since this is forceable by a c.c.c. forcing.

The forcing to add an arithmetically closed proper Scott set will be a c.c.c.

iteration P of length ω1. The iteration P will add, step-by-step, a continuous

chain X0 ⊆ X1 ⊆ · · · ⊆ Xξ ⊆ · · · for ξ < ω1 of countable arithmetically closed

Scott sets such that ∪ξ<ω1Xξ will have the property of Lemma 1.56. The idea

will be to obtain generic elements for Xξ, as in Lemma 1.55, by adding generic

filters. Once Xξ has been constructed, I will force over Xξ/Fin below every

one of its elements cofinally often before the iteration is over. Every time

such a forcing is done, I will obtain a generic element for a new collections of

dense sets. This element will be added to Xδ+1 where δ is the stage at which

the forcing was done.

Fix a bookkeeping function f mapping ω1 onto ω1 × ω, having the prop-

erties that any pair 〈α, n〉 appears cofinally often in the range and if f(ξ) =

〈α, n〉, then α ≤ ξ. Let X0 be any countable arithmetically closed Scott set

and fix an enumeration X0 = {B0
0 , B

0
1 , . . . , B

0
n . . .}. Each subsequent Xξ will

be created in V Pξ . Suppose λ is a limit and Gλ is generic for Pλ. In V [Gλ],

define Xλ = ∪ξ<λXξ and fix an enumeration Xλ = {Bλ
0 , B

λ
1 , . . . , B

λ
n, . . .}.

Consult f(λ) = 〈ξ, n〉 and define Q̇λ = Xξ/Fin below Bξ
n. Suppose δ = β+1,

then Pδ = Pβ ∗ Q̇β where Q̇β is Xξ/Fin for some ξ ≤ β below one of its

elements. In V [Gδ] = V [Gβ][H], let A ⊆Fin B for all B ∈ H and define Xδ
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to be the arithmetic closure of Xβ and A. Also in V [Gδ], fix an enumeration

Xδ = {Bδ
0, B

δ
1, . . . , B

δ
n, . . .}. Consult f(δ) = 〈ξ, n〉 and define Q̇δ = Xξ/Fin

below Bξ
n. At limits, use finite support.

The poset P is c.c.c. since it is a finite support iteration of c.c.c. posets

(see [9], p.271). Let G be V -generic for P. It should be clear that we can use

G in V [G] to construct an arithmetically closed Scott set X = ∪ξ<ω1Xξ. A

standard nice name counting argument shows that (2ω)V = (2ω)V [G]. Since

we assumed at the beginning that V |= ¬CH, it follows that V [G] |= ¬CH.

Finally, we must see that X satisfies the hypothesis of Lemma 1.56 in

V [G]. Fix Xξ, a set B ∈ Xξ, and a countable collection D of dense subsets of

Xξ/Fin. Since the poset P is a finite support c.c.c. iteration and all elements

of D are countable, they must appear at some stage α below ω1. Since we

force with Xξ/Fin below B cofinally often, we have added a 〈Xξ,D〉-generic

condition below B at some stage above α.

Corollary 1.58. There is a generic extension of V in which CH holds and

which contains a proper arithmetically closed Scott set of size ω1 that is not

the whole powerset of N.

Proof. As before, we can assume without loss of generality that V |= ¬CH.

Force with P ∗ Q̇ where P is the forcing iteration from Theorem 1.57 and Q
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is the poset which adds a subset to ω1 with countable conditions. Let G ∗H

be V -generic for P ∗ Q̇, then clearly CH holds in V [G][H]. Also the Scott set

X created from G remains proper in V [G][H] since Q is a countably closed

forcing, and therefore cannot affect the properness of a Scott set.

We can push this argument further to show that it is consistent with ZFC

that there are continuum many uncountable arithmetically closed proper

Scott sets.

Theorem 1.59. There is a generic extension of V by a c.c.c. poset, which

satisfies ¬CH and contains continuum many uncountable proper arithmeti-

cally closed Scott sets.

Proof. We start by forcing MA + ¬CH. Since this can be done by a c.c.c.

forcing notion ([9], p. 272), we can assume without loss of generality that

V |= MA + ¬CH.

Define a finite support product Q = Πξ<2ωPξ where every Pξ is an itera-

tion of length ω1 as described in Theorem 1.57. Since Martin’s Axiom implies

that finite support products of c.c.c. posets are c.c.c. (see [9], p. 277), the

product poset Q is c.c.c.. Let G ⊆ Q be V -generic, then each Gξ = G � Pξ

together with Pξ can be used to build an arithmetically closed Scott set Xξ as

described in Theorem 1.57. Each such Xξ will be the union of an increasing
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chain of countable arithmetically closed Scott sets Xξ
γ for γ < ω1. First, I

claim that all Xξ are distinct. Fixing α < β, I will show that Xα 6= Xβ.

Consider V [G � β + 1] = V [G � β][Gβ] a generic extension by (Q � β) × Pβ.

Observe that Xα already exists in V [G � β]. Recall that to build Xβ, we start

with an arithmetically closed countable Scott set Xβ
0 and let the first poset

in the iteration Pβ be Xβ
0/Fin. Let g be the generic filter for Xβ

0/Fin defin-

able from Gβ. The next step in constructing Xβ is to pick A ⊆ N such that

A ⊆Fin B for all B ∈ g and define Xβ
1 to be the arithmetic closure of Xβ

0 and

A. It should be clear that g is definable from A and Xβ
0 . Since g is V [G � β]-

generic, it follows that g /∈ V [G � β]. Thus, A /∈ V [G � β], and hence

Xβ 6= Xα. It remains to show that each Xα is proper in V [G]. Fix α < 2ω

and let V [G] = V [G � α][Gα][Gtail] where Gtail is the generic for Q above α.

By the commutativity of products, V [G � α][Gα][Gtail] = V [G � α][Gtail][G
α]

and Gα is V [G � α][Gtail]-generic. Fix a countable M ≺ H
V [G]
λ containing

the sequence 〈Xα
ξ | ξ < ω1〉 as an element. By Lemma 1.56, M ∩ Xα is some

Xα
γ . This is the key step of the proof since it allows us to know exactly what

M ∩ Xα is, even though we know nothing about M . Let Gα
ξ = Gα � Pαξ for

ξ < ω1. Let D = {D ∩M | D ∈ M and D dense in Xα/Fin}. There must

be some β < ω1 such that D ∈ V [G � α][Gtail][G
α
β ]. By construction, there

must be some stage δ > β at which we forced with Xα
γ/Fin and added a set
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A such that A ⊆Fin B for all B ∈ H where Gα
δ+1 = Gα

δ ∗ H. Now observe

that H is V [G � α][Gtail][G
α
δ ]-generic for Xα

γ/Fin. Therefore H meets all the

sets in D. So we can conclude that A is M -generic.

A standard nice name counting argument will again show that (2ω)V =

(2ω)V [G]. Thus, V [G] contains continuum many arithmetically closed proper

Scott sets of size ω1.

Question 1.60. Is it consistent that there exist proper Scott sets of size ω2

that are not the whole powerset of N?

There appears to be a construction for building proper Scott sets under

PFA. The idea is, in some sense, to mimic the forcing iteration like that of

Theorem 1.57 in the ground model. Unfortunately, the main problem with

the construction is that it is not clear whether we are getting the whole P(N).

This problem never arose in the forcing construction since we were building

Scott sets of size ω1 and knew that the continuum was larger than ω1. I will

describe the construction and a possible way of ensuring that the resulting

Scott set is not P(N).

Fix an enumeration {〈Aξ, Bξ〉 | ξ < ω2} of P(ω) × P(ω). Also fix a

bookkeeping function f from ω2 onto ω2 such that each element appears

cofinally in the range. I will build an arithmetically closed Scott set X of
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size ω2 as the union of an increasing chain of arithmetically closed Scott sets

Xξ for ξ < ω2. Start with any arithmetically closed Scott set X0 of size

ω1. Suppose we have constructed Xβ for β ≤ α and we need to construct

Xα+1. Consult f(α) = γ and consider the pair 〈Aγ, Bγ〉 in the enumeration

of P(ω)×P(ω). First, suppose that Aγ codes a countable Scott set Y ⊆ Xα

and Bγ codes a countable collection D of dense subsets of Y. Let G be some

filter on Y meeting all sets in D and let A ⊆Fin C for all C ∈ G. Define Xα+1

to be the arithmetic closure of Xα and A. If the pair 〈Aγ, Bγ〉 does not code

such information, let Xα+1 = Xα. At limit stages take unions.

I claim that X is proper. Fix some countable M ≺ Hλ containing X. Let

Y = M ∩ X and let D = {D ∩M | D ∈ M and D dense in X/Fin}. There

must be some γ such that 〈Aγ, Bγ〉 codes Y and D. Let δ such that M ∩X is

contained in Xδ, then there must be some α > δ such that f(α) = γ. Thus,

at stage α in the construction we considered the pair 〈Aγ, Bγ〉. Since α > δ,

we have M ∩X = M ∩Xα. It follows that at stage α we added an M -generic

set A to X.

A way to prove that X 6= P(N) would be to show that some fixed set C

is not in X. Suppose the following question had a positive answer:

Question 1.61. Let X be an arithmetically closed Scott set such that

C /∈ X and Y ⊆ X be a countable Scott set. Is there a Y/Fin-name Ȧ
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such that 1Y/Fin 
 “Ȧ ⊆Fin B for all B ∈ Ġ and Č is not in the arithmetic

closure of Ȧ and X̌”?

Assuming that the answer to Question 1.61 is positive, let us construct a

proper Scott set X in such a way that C is not in X. We will carry out the

above construction being careful in our choice of the filters G and elements A.

Start with X0 that does not contain C and assume that C /∈ Xα. Suppose the

pair 〈Aγ, Bγ〉 considered at stage α codes meaningful information. It follows

that Aγ codes a countable Scott set Y ⊆ Xα and Bγ codes a countable

collection D of dense subsets of Y. Choose some transitive N ≺ Hω2 of size

ω1 such that Xα, Y, and D are elements of N . Since we assumed a positive

answer to Question 1.61, Hω2 satisfies that there exists a Y/Fin-name Ȧ such

that 1Y/Fin 
 “Ȧ ⊆Fin B for all B ∈ Ġ and Č is not in the arithmetic closure

of Ȧ and X̌α”. But then N satisfies the same statement by elementarity.

Hence there is Ȧ ∈ N such that N satisfies 1Y/Fin 
 “Ȧ ⊆Fin B for all B ∈

Ġ and Č is not in the arithmetic closure of Ȧ and X̌α”. Now use PFA to find

an N -generic filter G for Y/Fin. Since G is fully generic for the model N ,

the model N [G] will satisfy that C is not in the arithmetic closure of Xα and

A = ȦG. Thus, it is really true that C is not in the arithmetic closure of Xα

and A. Since G also met all the dense sets in D and A ⊆Fin B for all B ∈ G,

we can let Xα+1 be the arithmetic closure of Xα and A. Thus, C /∈ Xα+1. We



CHAPTER 1. SCOTT’S PROBLEM FOR PROPER SCOTT SETS 57

can conclude that C /∈ X.

Finally, is there always a Scott set X which is not proper?

Theorem 1.62 (Enayat, 2006). There is an arithmetically closed Scott set

X such that X/Fin collapses ω1. Hence X is not proper. [4]

Clearly X/Fin cannot be proper since all proper posets preserve ω1.

1.9 Weakening the Hypothesis

There are several ways in which the hypothesis of Theorem 1.7 can be mod-

ified. PFA is a very strong set theoretic axiom, and therefore it is important

to see whether this assumption can be weakened to something that is lower

in consistency strength. In fact, there are weaker versions of PFA that will

still work with Theorem 1.7. It is also possible to make slightly different

assumptions on X. Instead of assuming that X is proper, it is sufficient to

assume that X is the union of a chain of proper Scott sets.

The definition of properness refers to countable structures M ≺ Hλ and

the existence of M -generic elements for them. If we fix a cardinal κ and

modify the definition to consider M of size κ instead, we will get the notion

of κ-properness. In this extended definition, the notion of properness we

considered up to this point becomes ℵ0-properness. For example, the κ-c.c.
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and < κ-closed posets are κ-proper. Hamkins and Johnstone [10] recently

proposed a new axiom PFA(c-proper) which states that for every poset P

that is proper and 2ω-proper and every collection D of ω1 many dense sub-

sets of P, there is a filter on P that meets all of them. PFA(c-proper) is much

weaker in consistency strength than PFA. While the best large cardinal up-

per bound on the consistency strength of PFA is a supercompact cardinal,

an upper bound for PFA(c-proper) is an unfoldable cardinal. Unfoldable car-

dinals were defined by Villaveces [23] and are much weaker than measurable

cardinals. In fact, unfoldable cardinals are consistent with V = L. The

axiom PFA(c-proper) also decides the size of the continuum is ω2 [10]. It is

enough for Theorem 1.7 to assume that PFA(c-proper) holds:

Theorem 1.63. Assuming PFA(c-proper), every arithmetically closed

proper Scott set is the standard system of a model of PA.

Proof. Every κ+-c.c. poset is κ-proper. It is clear that every Scott set X is

(2ω)+-c.c.. It follows that every Scott set is 2ω-proper. Thus, PFA(c-proper)

applies to proper Scott sets.

It is also easy to see that we do not need the whole Scott set X to be

proper. For the construction, it would suffice if X was a union of a chain of

arithmetically closed proper Scott sets. Call a Scott set piecewise proper if
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it is the union of a chain of arithmetically closed proper Scott sets of size

≤ ω1. Under this definition, any arithmetically closed Scott set of size ≤ ω1

is trivially piecewise proper since it is the union of a chain of countable Scott

sets. The modified construction using piecewise proper Scott sets does not

require all of PFA but only a much weaker version known as PFA−. The

axiom PFA− is the assertion that for every proper poset P of size ω1 and

every collection D of ω1 many dense subsets of P, there is a filter on P that

meets all of them. PFA− has no large cardinal strength. The axiom is

equiconsistent with ZFC [20] (p. 122). This leads to the following modified

version of Theorem 1.7:

Theorem 1.64. Assuming PFA−, every arithmetically closed piecewise

proper Scott set of size ≤ ω2 is the standard system of a model of PA.

Proof. It suffices to show that the ω2-Ehrenfeucht Principle holds for arith-

metically closed piecewise proper Scott sets of size ω2. So suppose M is a

model of PA of size ω1 and X is a piecewise proper Scott set of size ω2 such

that SSy(M) ⊆ X. Since X is piecewise proper, it is the union of a chain of

arithmetically closed proper Scott sets Xξ for ξ < ω2. Fix any A ∈ X, then

there is an ordinal α < ω2 such that SSy(M) and A are contained in Xα.

Since Xα is proper, the ω2-Ehrenfeucht Principle holds for Xα by Theorem
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1.26. Thus, there is M ≺ N such that A ∈ SSy(N) ⊆ Xα ⊆ X.

Question 1.65. Is it consistent that there exist piecewise proper Scott sets

of size ω2?



Chapter 2

Ramsey-like Embedding
Properties

2.1 Introduction

Most large cardinals are defined in terms of the existence of certain elemen-

tary embeddings with that cardinal as the critical point. For example, a

cardinal κ is measurable if and only if there exists an inner model M and

an elementary embedding j : V → M with critical point κ; a cardinal κ is

weakly compact if and only if for every transitive set M of size κ with κ ∈M ,

there is a transitive set N and an elementary embedding j : M → N with

critical point κ. In contrast, for several large cardinals that are weaker than

measurable cardinals, such as ineffable cardinals and subtle cardinals, there

is no known characterization in terms of elementary embeddings. I will study

the seldom used elementary embedding property of Ramsey cardinals, which

61



CHAPTER 2. RAMSEY-LIKE EMBEDDING PROPERTIES 62

I resurrected from several references (see, for example, [17] and [3]). I will an-

alyze and generalize this property to define new large cardinals with “nicer”

and more workable elementary embedding characterizations. My aim will

be to use these new embedding properties to obtain indestructibility results

for Ramsey cardinals. I will also attempt to place these new large cardinal

axioms into the existing hierarchy. I hope that this project will motivate set

theorists who work with smaller large cardinals to focus on investigating their

elementary embedding properties. I will begin with some basic definitions

and terminology.

Let ZFC− denote the fragment of ZFC consisting of ZF without the pow-

erset axiom and a form of choice which states that every set is bijective with

some ordinal. I will call a transitive set M |= ZFC− of size κ with κ ∈ M a

weak κ-model. I will say that a weak κ-model M is a κ-model if additionally

M<κ ⊆ M . Observe that for any cardinal κ, if M ≺ Hκ+ has size κ with

κ ⊆M , then M a weak κ-model. Similarly, if λ > κ is a regular cardinal and

X ≺ Hλ has size κ with κ + 1 ⊆ X, then the Mostowski collapse of X is a

weak κ-model. So there are always many weak κ-models for any cardinal κ.

If additionally κ<κ = κ, we can use a Skolem-Lowenheim type construction

to build κ-models M ≺ Hκ+ and substructures X ≺ Hλ whose collapse will

be a κ-model. Unless specifically stated otherwise, the sources and targets of
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elementary embeddings are assumed to be transitive. I will call an elemen-

tary embedding j : M → N κ-powerset preserving if it has critical point κ

and M and N have the same subsets of κ. For example, it is trivially true

that any elementary embedding j : V → M with critical point κ such that

M ⊆ V has to be κ-powerset preserving.

I will define the Ramsey-like embedding properties shortly. To provide

a motivation for this collection of definitions, I will begin by recalling the

various equivalent definitions of weakly compact cardinals.

Theorem 2.1. If κ<κ = κ, then the following are equivalent.

1. κ is weakly compact. That is, κ is uncountable and every κ-satisfiable

theory in a Lκ,κ language of size at most κ is satisfiable.

2. For every A ⊆ κ, there is a transitive structure W properly extending

Vκ and A∗ ⊆ W such that 〈Vκ,∈, A〉 ≺ 〈W,∈, A∗〉.

3. κ is inaccessible and every κ-tree has a cofinal branch.

4. Every A ⊆ κ is contained in weak κ-model M for which there exists an

elementary embedding j : M → N with critical point κ.

5. Every A ⊆ κ is contained in a κ-model M for which there exists an

elementary embedding j : M → N with critical point κ.
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6. Every A ⊆ κ is contained in a κ-model M ≺ Hκ+ for which there exists

an elementary embedding j : M → N with critical point κ.

7. For every κ-model M , there exists an elementary embedding j : M → N

with critical point κ.

8. For every κ-model M , there exists an elementary embedding j : M → N

with critical point κ such that j and M are elements of N .

For a proof of these equivalences see [8] (ch. 6). Now we are ready to state

the large cardinal notions that will be the focus of this chapter. The general

idea is to consider the various equivalent elementary embedding properties

of weakly compact cardinals with the added assumption the the embeddings

have to be κ-powerset preserving. We will soon see that this additional

assumption destroys the equivalence in the strongest possible sense.

Definition 2.2 (Weak Ramsey Embedding Property). A cardinal κ has the

weak Ramsey embedding property if every A ⊆ κ is contained in a weak

κ-model M for which there exists a κ-powerset preserving elementary em-

bedding j : M → N . We say that a cardinal is weakly Ramsey if it has the

weak Ramsey embedding property.

Definition 2.3 (Ramsey Embedding Property). A cardinal κ has the Ram-

sey embedding property if every A ⊆ κ is contained in a weak κ-model M for
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which there exists a κ-powerset preserving elementary embedding j : M → N

satisfying the property that whenever 〈An | n ∈ ω〉 is a sequence of subsets

of κ such that each An ∈M and κ ∈ j(An), then ∩n∈ωAn 6= ∅.

For 〈An | n ∈ ω〉 ∈ M , of course, the conclusion follows trivially. So the

content here is for sequences not in M. I will show later that a cardinal is

Ramsey if and only if it has the Ramsey embedding property.

Definition 2.4 (Strong Ramsey Embedding Property). A cardinal κ has

the strong Ramsey embedding property if every A ⊆ κ is contained in a

κ-model M for which there exists a κ-powerset preserving elementary em-

bedding j : M → N . We say that a cardinal is strongly Ramsey if it has the

strong Ramsey embedding property.

Definition 2.5 (Super Ramsey Embedding Property). A cardinal κ has the

super Ramsey embedding property if every A ⊆ κ is contained in a κ-model

M ≺ Hκ+ for which there exists a κ-powerset preserving elementary embed-

ding j : M → N . We say that a cardinal is super Ramsey if it has the super

Ramsey embedding property.

Definition 2.6 (Total Ramsey Embedding Property). A cardinal κ has the

total Ramsey embedding property if for every κ-model M ≺ Hκ+ , there exists
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a κ-powerset preserving elementary embedding j : M → N . We say that a

cardinal is totally Ramsey if it has the total Ramsey embedding property.

The following theorem, which will be proved in parts in the subsequent

sections, summarizes what is known about the relationships among the large

cardinal notions defined above and other well-established large cardinals.

Also see the diagram following the theorem.

Theorem 2.7.

1. If κ is a measurable cardinal, then κ is the κth super Ramsey cardinal.

2. If κ is a super Ramsey cardinal, then κ is the κth strongly Ramsey

cardinal.

3. If κ is a strongly Ramsey cardinal, then κ is the κth Ramsey cardinal.

4. κ has the Ramsey embedding property if and only if κ is Ramsey.

5. If κ is a super Ramsey cardinal, then κ is the κth ineffably Ramsey

cardinal.

6. If κ is a weakly Ramsey cardinal, then κ is a weakly ineffable limit of

ineffable cardinals, but not necessarily ineffable.

7. There are no totally Ramsey cardinals.
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The solid arrows indicate direct implications and the dashed arrows indi-

cate relative consistency.
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This shows, surprisingly, that the various embedding properties that de-

fine weakly compact cardinals differ in strength when you add the powerset

preservation property and one such property is even inconsistent!

Some straightforward observations, which will be useful later on, are in

order. First, note that since a weak κ-model can take the Mostowski collapse

of any of its elements, the definitions above hold not just for any A ⊆ κ, but

more generally for any A ∈ Hκ+ . Second, observe that the “total Ramsey

embedding property” → “super Ramsey embedding property” → “strong

Ramsey embedding property” → “Ramsey embedding property” → “weak

Ramsey embedding property”. The only implication that requires some ex-

planation is that “strong Ramsey embedding property” → “Ramsey em-

bedding property”. If κ has the strong Ramsey embedding property, then

the sequence 〈An | n ∈ ω〉 is an element of M . By elementarity, we have

j(〈An | n ∈ ω〉) =〈j(An) | n ∈ ω〉, and hence κ ∈ ∩j(〈An | n ∈ ω〉). Again

by elementarity, we get ∩〈An | n ∈ ω〉 6= ∅.

Definition 2.8. Suppose M is a transitive model of ZFC− and λ is a cardinal

in M . Then U ⊆ P(λ) ∩M is an M -ultrafilter if 〈M,U〉 |= U is an ultra-

filter. We say that an M -ultrafilter U is normal if every regressive function

f : A→ λ in M with A ∈ U is constant on some B ∈ U .
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Proposition 2.9. Suppose M is a weak κ-model such that Mα ⊆ M for

some α < κ and j : M → N is a κ-powerset preserving embedding. Let

X = {j(f)(κ) | f : κ → M and f ∈ M} ⊆ N and let π : X → K be the

Mostowski collapse. Then h = π ◦ j : M → K is an elementary embedding

with critical point κ having the properties:

1. h is κ-powerset preserving,

2. h is an ultrapower by a normal M-ultrafilter on κ,

3. κ ∈ j(A) if and only if κ ∈ h(A) for all A ⊆ κ in M ,

4. K has size κ,

5. Kα ⊆ K,

and we get the commutative diagram:

M

K

h

? π−1
- N

j

-

Proof. Clearly the size of K is κ since M has size κ. Define U =

{A ⊆ κ | A ∈ M and κ ∈ j(A)}. It follows by standard seed theory

arguments that U is a normal M -ultrafilter, the embedding h is an ultra-

power by U , and Kα ⊆ K [8] (ch. 0). For (1), observe that π(β) = β for
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all β ≤ κ, and hence the critical point of π−1 is above κ. This implies

that N and K have the same subsets of κ. Finally, for (3), observe that

κ ∈ j(A)↔ π(κ) ∈ π ◦ j(A)↔ κ ∈ π ◦ j(A)↔ κ ∈ h(A).

By Proposition 2.9, we can always assume in the definitions of Ramsey-

like embeddings that j : M → N is an ultrapower by a normal M -ultrafilter

on κ, the target N has size κ, and if Mα ⊆ M , then Nα ⊆ N . Also

from condition (3), it follows that the Ramsey embedding property can be

restated in terms of having a κ-powerset preserving elementary embedding

j : M → N by a normal M -ultrafilter U on κ, with the property that

whenever 〈An | n ∈ ω〉 is a sequence of elements of U , then ∩n∈ωAn 6= ∅.

2.2 How Large Are These Cardinals?

In this section, I will show that the definitions above do define large cardinal

notions and discuss where these large cardinals fit into the large cardinal

hierarchy.

Proposition 2.10. If κ is a weakly Ramsey cardinal, then κ is the κth weakly

compact cardinal.

Proof. Since κ satisfies the Ramsey embedding property, to show that it is

weakly compact, it suffices to verify that κ<κ = κ. I will show that κ is
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inaccessible. First, suppose to the contrary that κ is not regular. Then

there exists a cofinal map f : α → κ for some ordinal α < κ. Choose a

weak κ-model M containing f for which there exists a κ-powerset preserving

embedding j : M → N . Since M |= “f is cofinal in κ”, it follows by

elementarity that N |= “j(f) is cofinal in j(κ)”. But j(f) = f : α→ κ since

the critical point of j is κ. Thus, it is impossible that j(f) is cofinal in j(κ),

which is a contradiction. So κ is regular. Next, we show that κ is a strong

limit. Again, suppose to the contrary that κ is not a strong limit. Then

P(α) ≥ κ for some α < κ. Fix an injective function f : κ→ P(α). Choose a

weak κ-model M containing f for which there exists a κ-powerset preserving

embedding j : M → N . Since M |= ∀ξ f(ξ) ⊆ α, it follows by elementarity

that N |= ∀ξ j(f)(ξ) ⊆ α. Let A = j(f)(κ) and note that A ⊆ α. Since M

and N have the same subsets of κ, the set A is in M and j(A) = A. It follows

that N |= ∃ξ j(f)(ξ) = j(A), and so by elementarity M |= ∃ξf(ξ) = A. But

now we have a contradiction since f ⊆ j(f) and N |= “j(f) is injective” by

elementarity. So κ is a strong limit. This concludes the argument that κ is

weakly compact.

It remains to show that κ is a limit of weakly compact cardinals. We

start by choosing a weak κ-model M containing Vκ for which there exists

a κ-powerset preserving j : M → N . Observe that it suffices to show that
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κ is weakly compact in N . If κ is weakly compact in N , then for every

β < κ, we have N |= “∃α < j(k) α > β and α is weakly compact”. It

follows that M |= “∃α < κ α > β and α is weakly compact”. But since

Vκ ∈ M , the model M is correct about α being weakly compact. Thus,

it remains to show that N |= “κ is weakly compact”. I will show that

N |= “Every κ-tree has a cofinal branch”. Suppose T ⊆ κ is a κ-tree in

N . Since M and N have the same subsets of κ, the tree T ∈ M . Consider

j(T ) ∈ N . Since κ is the critical point of j and levels of T have size less

than κ, the tree j(T ) restricted to the first κ many levels is exactly T . Since

the height of j(T ) is j(κ), it must have some element on the κth level. The

predecessors of that element will be a cofinal branch of T in N .

Definition 2.11. An uncountable regular cardinal κ is ineffable if for every

sequence 〈Aα | α < κ〉 with Aα ⊆ α, there exists A ⊆ κ such that the set

S = {α < κ | A ∩ α = Aα} is stationary. An uncountable regular cardinal

κ is weakly ineffable if such an A can be found for which the corresponding

set S has size κ. A cardinal κ is ineffably Ramsey if κ is both ineffable and

Ramsey.

Ineffable cardinals are weakly compact limits of weakly compact cardinals

and weakly ineffable limits of weakly ineffable cardinals. This is true since
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ineffable cardinals are Π1
2-indescribable [2] (p. 315) and being weakly ineffable

or weakly compact is a Π1
2- statement satisfied by ineffable cardinals. We will

see below that a Ramsey cardinal is a limit of ineffable cardinals. However,

since being Ramsey is a Π1
2-statement, the least Ramsey cardinal cannot be

ineffable.

Theorem 2.12. If κ is a weakly Ramsey cardinal, then κ is a weakly ineffable

limit of ineffable cardinals.

Proof. Fix
→
A = 〈Aα | α < κ〉 with each Aα ⊆ α. Choose a weak κ-model M

containing
→
A and Vκ for which there exists a κ-powerset preserving embedding

j : M → N . Consider j(
→
A) and, in particular, A = j(

→
A)(κ). Since A ⊆ κ,

by the powerset preservation property, A ∈M . I will show that the set S =

{α < κ | A ∩ α = Aα} is stationary in M . Observe that j(
→
A)(κ) = j(A) ∩ κ,

and hence κ ∈ j(S). Let C be any club in M , then clearly κ ∈ j(C). Thus,

κ ∈ j(C) ∩ j(S). It follows that C ∩ S 6= ∅. Since S is stationary in M , it

must have size κ. So we have shown that κ is weakly ineffable. As in the

proof of Theorem 2.10, to show that κ is a limit of ineffable cardinals, we

show that N |= “κ is ineffable”. The argument above actually shows that κ

is ineffable in M . Since M and N have the same subsets of κ, they have the

same clubs on κ. Hence they agree on stationarity, and thus, κ is ineffable
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in N . This completes the proof that κ is a limit of ineffable cardinals.

The conclusion of Theorem 2.12 cannot be improved to say that κ is

ineffable since a Ramsey cardinal is always weakly Ramsey and the least

Ramsey cardinal is not ineffable. In fact, I will show later on that even the

strongly Ramsey cardinals are not necessarily ineffable (Corollary 2.58).

Definition 2.13. An uncountable regular cardinal κ is subtle if for every

sequence 〈Aα | α < κ〉 with Aα ⊆ α and every club C on κ, there exist

ordinals α < β in C such that Aβ ∩ α = Aα.

Proposition 2.14. If κ is a weakly Ramsey cardinal, then κ is subtle.

It is known that weakly ineffable cardinals are subtle, but I will give a

direct proof here.

Proof. Fix any
→
A = 〈Aα | α < κ〉 with Aα ⊆ α and a club C on κ. Choose

a weak κ-model M containing
→
A and C for which there exists a κ-powerset

preserving j : M → N . Define S and A as in the proof of Theorem 2.12 and

recall that M thinks that S is stationary. Thus, there are α < β in S ∩ C.

Clearly for such α < β, we have Aβ ∩ α = A ∩ β ∩ α = Aα.

Corollary 2.15. If κ is a weakly Ramsey cardinal, then ♦κ holds.
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Proof. If κ is subtle, then ♦κ holds. 1

Next, we examine the strength of the other Ramsey-like embedding prop-

erties.

Theorem 2.16. If κ is a super Ramsey cardinal, then κ is the κth ineffably

Ramsey cardinal.

Proof. If κ has the super Ramsey embedding property, then we can choose

M ≺ Hκ+ in the proof of Theorem 2.12. This insures that if M thinks

that a set is stationary, then M is correct about this. Therefore the proof of

Theorem 2.12 shows in this case that κ is ineffable. Once we show that having

the Ramsey embedding property is equivalent to being Ramsey (Theorem

2.35), it will follow that κ is also Ramsey. Thus, κ is ineffably Ramsey. We

already saw that if j : M → N is κ-powerset preserving and M is a κ-model,

then N |= “κ is ineffable”. I will also show later that if j : M → N is κ-

powerset preserving and M is a κ-model, then N |= “κ is Ramsey” (Corollary

2.36). This shows that κ is a limit of ineffably Ramsey cardinals.

Theorem 2.17. If κ is a super Ramsey cardinal, then κ is the κth strongly

Ramsey cardinal.

1See [2], p. 315 for a proof that ineffable cardinals have diamond and observe that only
subtleness is needed.
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Proof. Choose a κ-model M ≺ Hκ+ for which there exists a κ-powerset

preserving embedding j : M → N . Note that Vκ ∈ M since M is a κ-model

(use the Replacement axiom in M). As usual, it suffices to show that κ

is a strongly Ramsey cardinal in N . By Proposition 2.9, there is always a

κ-powerset preserving embedding witnessing the strong Ramsey embedding

property whose target has size κ. It follows that Hκ+ |= “κ is a strongly

Ramsey cardinal”. Therefore M |= “κ is a strongly Ramsey cardinal” by

elementarity and N agrees about this since M and N have the same elements

with transitive closure of size ≤ κ.

The most surprising result is the following:

Theorem 2.18. There are no totally Ramsey cardinals.

Proof. Suppose that there exists a totally Ramsey cardinal and let κ be

the least totally Ramsey cardinal. Choose any κ-model M ≺ Hκ+ and a

κ-powerset preserving embedding j : M → N . The strategy will be to

show that κ is totally Ramsey in N . Observe, first, that HN
κ+ = M . If

B ∈ HN
κ+ , then B ∈ M by the powerset preservation property. Conversely,

sinceM ≺ Hκ+ , ifB ∈M , thenM thinks |Trcl(B)| ≤ κ, and henceB ∈ HN
κ+ .

Thus, to show that κ is totally Ramsey in N , we need to verify in N that

every κ-model m ≺M has a κ-powerset preserving embedding. So let m ∈ N
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be a κ-model such that m ≺ M . Observe that m ∈ M and m ≺ Hκ+ . By

Proposition 2.9, Hκ+ contains a κ-powerset preserving embedding for m. By

elementarity, M contains some κ-powerset preserving embedding h : m→ n.

Since M thinks that |Trcl(h)| ≤ κ, it must be in N as well. Thus, κ is totally

Ramsey in N . It follows that there is a totally Ramsey cardinal α below κ.

This is, of course, impossible since we assumed that κ was the least totally

Ramsey cardinal. Thus, there cannot be any totally Ramsey cardinals.

This is surprising since, as was pointed out earlier, these embedding prop-

erties without powerset preservation are equivalent modulo the assumption

that κ<κ = κ. Once we add the powerset condition on the embeddings, the

equivalence is strongly violated. Of course, now the question arises whether

there can be any super Ramsey cardinals.

Theorem 2.19. If κ is a measurable cardinal, then κ is the κth super Ramsey

cardinal.

Proof. Fix A ⊆ κ. Let j : V →M be an ultrapower by a measure on κ, then

j is κ-powerset preserving. First, we reduce j to a κ-powerset preserving em-

bedding of sets by considering the restriction j : Hκ+ → HM
j(k)+ . The problem

is that the set Hκ+ is still too big. So second, in some sense, we would like

to take an elementary substructure of size κ of the embedding we currently
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have. To make this precise, consider the structure 〈HM
j(κ)+ , Hκ+ , j〉. This is

a structure whose universe is HM
j(κ)+ with a unary relation Hκ+ and a binary

relation j. Observe that 〈HM
j(κ)+ , Hκ+ , j〉 |= “j is a κ-powerset preserving em-

bedding from Hκ+ to HM
j(κ)+”. Now we can take an elementary substructure

〈N ′, K, h′〉 of size κ such that A ∈ N ′, κ ⊆ N ′, and N ′<κ ⊆ N ′. The last is

possible, by the usual Skolem-Lowenheim type construction, since κ is inac-

cessible. By elementarity, we have that A ∈ K, κ ⊆ K, and K<κ ⊆ K. Also

we have K ≺ Hκ+ , and since κ ⊆ K, we have that K is transitive. Thus,

K is a κ-model containing A and elementary in Hκ+ . Let π : N ′ → N be

the Mostowski collapse and observe that π � K = id. Finally, let h = π′′h′.

Elementarity and the fact that π is an isomorphism imply that h : K → N is

a κ-powerset preserving embedding. This concludes the proof that κ is super

Ramsey. It remains to show that κ is a limit of super Ramsey cardinals. It

will suffice to show that M |= “κ is super Ramsey”. But this follows since

the h we built has transitive closure of size κ and is therefore in M .

Corollary 2.20. Con( ZFC + ∃ measurable cardinal) =⇒ Con( ZFC +

∃ proper class of super Ramsey cardinals)

Next, observe that we cannot hope for any of the cardinals with the

Ramsey-like embeddings to have property (8) of weakly compact cardinals
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from Theorem 2.1. In fact, the following is true:

Proposition 2.21. If κ has the property that every A ⊆ κ is contained in

a weak κ-model M for which there exists a κ-powerset preserving embedding

j : M → N such that j′′{B ⊆ κ | B ∈ M} is an element of N , then κ is a

limit of measurable cardinals.

Proof. Fix a weak κ-model M containing Vκ for which there exists a κ-

powerset preserving j : M → N such that X = j′′{B ⊆ κ | B ∈ M}

is an element of N . Define U = {B ⊆ κ | B ∈ M and κ ∈ j(B)} and

observe that U is a normal M -ultrafilter. Since X ∈ N , we can define

{C ∩ κ | C ∈ X and κ ∈ C} = {B ⊆ κ | κ ∈ j(B)} = U in N . Therefore

U is an element of N . But, by the powerset preservation property, U is also

a normal N -ultrafilter, and hence N thinks that κ is measurable. It follows

that κ must be a limit of measurable cardinals.

For example, if κ is 2κ-supercompact, then κ will have the above prop-

erty. To see this, fix a 2κ-supercompact embedding j : V → M and A ⊆ κ.

Choose some cardinal λ such that j(λ) = λ and j′′2κ ∈ HM
λ+ . As before, we

first restrict j to a set embedding j : Hλ+ → HM
λ+ . Observe that HM

λ+ ⊆ Hλ+ .

Thus, it makes sense to consider the structure 〈Hλ+ , HM
λ+ , j〉. Take an ele-

mentary substructure 〈K ′, N ′, h′〉 of 〈Hλ+ , HM
λ+ , j〉 of size κ such that A ∈ K ′,
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j′′2κ ∈ K ′, κ + 1 ⊆ K ′, and K ′<κ ⊆ K ′. Let π : K ′ → K be the Mostowski

collapse, π � N ′ = N , and h = π′′h′. Observe that N is the Mostowski

collapse of N ′. It is easy to see that K is a κ-model containing A, the map

h : K → N is a κ-powerset preserving embedding, and h′′{B ⊆ κ | B ∈ K}

is an element of N .

Property (2) of weakly compact cardinals from Theorem 2.1 is called the

Extension Property. Finally, I will show that the weak Ramsey cardinals

also have an extension-like property. Suppose X ⊆ P(κ). The structure

〈Vκ, B〉B∈X will be a structure in the language consisting of ∈ and unary

predicate symbols for every element of X with the natural interpretation.

Theorem 2.22. A cardinal κ is weakly Ramsey if and only if every A ⊆ κ

belongs to a collection X ⊆ P(κ) such that the structure 〈Vκ, B〉B∈X has a

proper transitive elementary extension 〈W,B∗〉B∈X with P(κ)W = X.

Proof. (=⇒): Suppose that κ is a weakly Ramsey cardinal and A ⊆ κ. Fix

a weak κ-model M containing A and Vκ for which there exists a κ-powerset

preserving embedding j : M → N . Let X = {B ⊆ κ | B ∈ M}. It is easy to

verify that 〈Vκ, B〉B∈X ≺ 〈Vj(κ), j(B)〉B∈X.

(⇐=): Fix A ⊆ κ. The set A belongs to a collection X ⊆ P(κ) such that the

structure 〈Vκ, B〉B∈X has a proper transitive elementary extension 〈W,B∗〉B∈X
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with P(κ)W = X. Since Vκ satisfies that Hα+ exists for every α < κ, it follows

by elementarity that Hκ+ exists in W . Let M = HW
κ+ and observe that M is

a weak κ-model containing A. Define U = {B ∈ X | k ∈ B∗}. I claim that U

is a weakly amenable normal M -ultrafilter. See ahead to Definition 2.26 and

Proposition 2.27 for an explanation of weakly amenable ultrafilters. It should

be clear that U is an ultrafilter. To show that U is normal, fix a regressive

f : B → κ in M for some B ∈ U . Since we can code f as a subset of κ and

P(κ)W = X, we can think of f being in X. Now we can consider the regressive

f ∗ : B∗ → κ∗ and let f ∗(κ) = α < κ. The set C = {ξ ∈ κ | f(ξ) = α} is in

W . Since it is clear that κ ∈ C∗, we have C ∈ U . Thus, U is normal. To

show that U is weakly amenable, suppose B ⊆ κ × κ is in M . We need to

see that the set C = {α ∈ κ | Bα ∈ U} is in M . Again, since we can code B

as a subset of κ, we think of B as being in X. In W , we can define the set

{α ∈ κ | κ ∈ B∗α} and it is clear that this set is exactly C. This completes

the argument that C ∈M , and hence U is weakly amenable.

Next, I will show that the ultrapower of M by U is well-founded. It

will help first to verify that if C ∈ X codes a well-founded relation on κ,

then C∗ codes a well-founded relation on OrdW . If C ∈ X codes a well-

founded relation, 〈Vκ, B〉B∈X satisfies that C � α has a rank function for all

α < κ. It follows that 〈W,B∗〉B∈X satisfies that C∗ � α has a rank function



CHAPTER 2. RAMSEY-LIKE EMBEDDING PROPERTIES 82

for all α < OrdW . We can assume that W has size κ since if this is not

the case, we can take an elementary substructure of size κ which contains

Vκ as a subset and collapse it. Since κ is weakly compact and we assumed

that W has size κ, we can find a proper well-founded elementary extension

〈X,E,B∗∗〉B∈X for the structure 〈W,∈, B∗〉B∈X (Theorem 2.1 (1)). There

is no reason to expect that X is an end-extension or that E is the true

membership relation, but that is not important for us. We only care that E

is well-founded. By elementarity, it follows that 〈X,E,B∗∗〉B∈X satisfies that

C∗∗ � α has a rank function for all α < OrdX . In particular, if α > OrdW in

X, then 〈X,E,B∗∗〉B∈X satisfies that C∗∗ � α has a rank function. Since the

structure 〈X,E,B∗∗〉B∈X is well-founded and can only add new elements to

C∗, if C∗ was not well-founded to begin with, X would detect this. Hence

C∗ is really well-founded. Now, we go back to proving that the ultrapower of

M by U is well-founded. Suppose towards a contradiction that there exists

a membership descending sequence . . . E [fn]E . . . E [f1]E [f0] of elements of

the ultrapower. Each fn : κ → M is an element of M and for every n ∈ ω,

the set An = {α ∈ κ | fn+1(α) ∈ fn(α)} ∈ U . In M , fix some Fn ⊆ κ coding

the function fn. We can use the codes F0 and F1 and the set A0 to define

B0 ⊆ κ, which codes for every α ∈ A0, a membership isomorphism from the

transitive closure of F1(α) to the subset of the transitive closure of F0(α) that
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corresponds to the transitive closure of f1(α). In this way, we define Bn for

every n ∈ ω. Observe that 〈Vκ, B〉B∈X satisfies that for every α ∈ A0, the set

B0 codes a membership isomorphism from the transitive closure of F1(α) to

a subset of the transitive closure of F0(α) that corresponds to the transitive

closure of an element of F0(α). Since A0 ∈ U , we know that κ ∈ A∗0. Hence

〈W,B∗〉B∈X satisfies that the set B∗0 codes a membership isomorphism from

the transitive closure of F ∗1 (κ) to a subset of the transitive closure of F ∗0 (κ)

that corresponds to the transitive closure of an element of F ∗0 (κ). The same

statement holds of course for all n ∈ ω. Since each Fn was well-founded, then

so is each F ∗n by the above argument. Hence we can Mostowski collapse each

F ∗n to obtain some function gn : OrdW → Ord. Finally, observe that the

gn(κ) form a descending ∈-sequence. This follows since the transitive closure

of each F ∗n+1(κ) was membership isomorphic to the transitive closure of an

element of F ∗n(κ). Thus, we reached a contradiction showing that the the

ultrapower of M by U is well-founded. Let N be the Mostowski collapse of

M/U and observe finally that since U was weakly amenable, the ultrapower

embedding j : M → N is κ-powerset preserving (Proposition 2.27).

Question 2.23. If κ is Ramsey, does it follow that κ is the κth weakly

Ramsey cardinal?
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This question has been answered affirmatively by Ian Sharpe [24] (see

Section 2.5 for details).

Question 2.24. Are weakly Ramsey cardinals consistent with V = L?

2.3 Ramsey Cardinals

In this section, I will give a proof that Ramsey cardinals are exactly the

cardinals with the Ramsey embedding property. Before that we need to

verify some facts about product M -ultrafilters and κ-powerset preserving

embeddings.

Definition 2.25. A cardinal κ is Ramsey if every coloring F : [κ]<ω → 2

has a homogenous set of size κ.

Definition 2.26. Suppose M is a weak κ-model and U is a normal M -

ultrafilter on κ. Then U is weakly amenable if for every A ⊆ κ×κ in M , the

set {α ∈ κ | Aα ∈ U} ∈M .

It is easy to see that if U is weakly amenable, then for every

A ⊆ κn × κ in M , the set {→α ∈ κn | A→
α
∈ U} ∈ M . If U is a weakly

amenable normal M -ultrafilter on κ, we can define product ultrafilters Un

on P(kn) ∩M for every n ∈ ω. We define Un by induction on n such that

A ⊆ κn × κ is in Un+1 = Un × U if and only if A ∈ M and {→α ∈ κn |



CHAPTER 2. RAMSEY-LIKE EMBEDDING PROPERTIES 85

A→
α
∈ U} ∈ Un. Note that this definition makes sense only in the presence of

weak amenability. It turns out that weakly amenable normal M -ultrafilters

on κ are exactly the ones that give rise to κ-powerset preserving embeddings.

Proposition 2.27. If M is a weak κ-model and j : M → N is the ultrapower

by a normal M-ultrafilter U on κ, then U is weakly amenable if and only if

j is κ-powerset preserving. ([11], p. 246)

Proof. (=⇒): Suppose j : M → N is the ultrapower by a weakly amenable

normal M -ultrafilter U on κ. Fix A ⊆ κ in N and let A = [f ]U . Observe

that for all α < κ, we have α ∈ A↔ [cα]U ∈ [f ]U ↔ {ξ ∈ κ | α ∈ f(ξ)} ∈ U .

In M , we can define B = {〈α, ξ〉 ∈ κ×κ | α ∈ f(ξ)}. It follows, by the weak

amenability of U , that C = {α ∈ κ | Bα ∈ U} ∈M . But clearly C = A, and

hence A ∈M .

(⇐=): Suppose j : M → N is the ultrapower by a normal M -ultrafilter U

on κ and j is κ-powerset preserving. Fix A ⊆ κ × κ in M and let B =

{α ∈ κ | Aα ∈ U}. We need to show that B ∈ M . Observe that Aα ∈ U

if and only if κ ∈ j(Aα) = j(A)α. Thus, B = {α ∈ κ | κ ∈ j(A)α} is in

N . By the powerset preservation property, B ∈ M . Thus, U is weakly

amenable.

Notice that with the definition of weakly amenable ultrafilters we can
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restate the Ramsey embedding property. We say that an ultrafilter U is

ω-closed if whenever 〈An | n ∈ ω〉 is a sequence of elements of U , the inter-

section ∩n∈ωAn 6= ∅.

Proposition 2.28. A cardinal κ has the Ramsey embedding property if and

only if every A ⊆ κ is contained in a weak κ-model M for which there exists

an ω-closed weakly amenable normal M-ultrafilter on κ.

This holds since an ω-closed ultrafilter must give rise to a well-founded

ultrapower. The next couple of propositions address the issue of iterating

ultrapowers.

Lemma 2.29. Suppose M is a weak κ-model, U is a weakly amenable normal

M-ultrafilter on κ, and j : M → N is the well-founded ultrapower by Un

with critical point κ. Define j(U) = {A ⊆ j(κ) | A = [f ]Un and {→α ∈ κn |

f(
→
α) ∈ U} ∈ Un}. Then j(U) is well-defined and j(U) is a weakly amenable

normal N-ultrafilter on j(κ) such that A ∈ U implies j(A) ∈ j(U). ([11],

p. 246)

Proof. First, let us verify that j(U) is well-defined. Suppose A ⊆ j(κ) in N

and A = [f ]Un = [g]Un . Then X = {→α ∈ κn | f(
→
α) = g(

→
α)} ∈ Un. Let

X1 = {→α ∈ κn | f(
→
α) ∈ U} and X2 = {→α ∈ κn | g(

→
α) ∈ U}. Observe that

X1 ∈ Un implies that X1 ∩X ∈ Un, which, in turn, implies that X2 ∈ Un.
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Next, we check that j(U) is an ultrafilter. Let A = [fA]Un and B = [fB]Un

be elements of N and let Ac denote the complement of A. If E = [fE]Un is

any set, define XE = {→α ∈ κn | fE(
→
α) ∈ U}. Suppose A ⊆ B ⊆ j(κ)

and A ∈ j(U). Then XA ∈ Un and Y = {→α ∈ κn | f(
→
α) ⊆ g(

→
α)} ∈ Un.

Therefore XA ∩ Y ⊆ XB, and hence XB ∈ Un. This shows that B ∈ j(U).

Suppose A and B are both in j(U). Let C = [fC ]Un = A ∩ B and Z =

{→α ∈ κn | fA(
→
α) ∩ fB(

→
α) = fC(

→
α)} ∈ Un. Therefore XA ∩ XB ∩ Z ⊆ XC ,

and hence XC ∈ Un. This shows that C ∈ j(U). Suppose A ⊆ j(κ) is not

in j(U). We can assume without loss of generality that fA(
→
α) ⊆ κ for all

→
α ∈ κn. Define fAc : κn → M so that fAc(

→
α) is the complement of fA(

→
α) in

κ, then clearly Ac = [fAc ]Un . Since A is not in j(U), the set XA is not in Un.

It follows that the complement of XA is in Un, but the complement of XA

is precisely XAc . Thus, XAc ∈ Un, and hence Ac ∈ j(U). Finally, it is clear

that j(κ) ∈ j(U). This completes the proof that j(U) is an ultrafilter.

Next, we check that j(U) is normal. Fix A = [fA]Un ∈ j(U) and a regres-

sive [fF ]Un = F : A→ j(κ). First, we can assume without loss of generality

that fA(
→
α) ∈ U for all

→
α ∈ κn. This follows by the weak amenability of

U since it allows us to tell which f(
→
α) are in U , and once we know that

we can make f(
→
α) = κ on the rest. Second, we can assume without loss of

generality that fF (
→
α) : fA(

→
α) → κ is regressive for all

→
α ∈ κn. Consider
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the set C = {〈→α, β, γ〉 | fF (
→
α)(γ) = β} and let D = {〈→α, β〉 | C〈→α,β〉 ∈ U}.

Then D ∈ M by weak amenability. In M , define h : κn → M by letting

h(
→
α) be the least β such that 〈→α, β〉 ∈ D. Again in M , define l : κn → M

by l(
→
α) = {γ ∈ κ | fF (

→
α)(γ) = h(

→
α)}. Observe that for all

→
α ∈ κn, we have

l(
→
α) ∈ U and fF (

→
α) is constant on l(

→
α). Thus, F is constant on [l]Un ∈ j(U).

This completes the proof that j(U) is normal.

Next, we show that j(U) is weakly amenable. Fix A = [f ]Un ⊆ j(κ)×j(κ)

in N . We need to show that B = {ξ ∈ j(κ) | Aξ ∈ j(U)} ∈ N . We can

assume without loss of generality that f(
→
α) ⊆ κ × κ for all

→
α ∈ κn. Define

g : κn → M by g(
→
α) = {ξ ∈ κ | f(

→
α)ξ ∈ U}. Let us verify that g ∈ M .

Define C = {〈→α, ξ, β〉 | 〈ξ, β〉 ∈ f(
→
α)} and define D = {〈→α, ξ〉 | C〈→α,ξ〉 ∈ U}.

Observe that D ∈ M by weak amenability. We see that g(
→
α) = {ξ ∈ κ |

〈→α, ξ〉 ∈ D}, and hence g ∈ M . It remain to show that [g]Un = B. Let

[h]Un ∈ [g]Un and assume without loss of generality that h(
→
α) ∈ g(

→
α) for all

→
α ∈ κn. Thus, by definition of g, we have fA(

→
α)

h(
→
α)
∈ U for all

→
α ∈ κn.

It follows that E = {→α ∈ κn | f(
→
α)

h(
→
α)
∈ U} ∈ Un, and hence [f ]Un [h]Un

∈

j(U). Thus, [g]Un ⊆ B has been established. Now suppose [h]Un ∈ B,

then [f ]Un [h]Un
∈ j(U), and therefore E ∈ Un, which, in turn, implies that

[h]Un ∈ [g]Un . Thus, B ⊆ [g]Un has been established.

Finally, we check that A ∈ U implies j(A) ∈ j(U). We need to show that
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[cA]Un ∈ j(U), which is true if and only if {→α ∈ κn | A ∈ U} = κ ∈ Un.

Question 2.30. If the ultrapower by U is well-founded, is the ultrapower

by j(U) necessarily well-founded?

The next lemma is a standard fact from iterating ultrapowers (see, for

example, [8], ch. 0) that must be checked here since we are restricted to only

using functions that are elements of the respective models.

Lemma 2.31. Suppose M is a weak κ-model, U is a weakly amenable normal

M-ultrafilter on κ, and jU : M →M/U is the well-founded ultrapower by U .

Suppose further that jUn : M → M/Un and hUn : M/U → (M/U)/Un are

the well-founded ultrapowers by Un. Then the ultrapower jjUn (U) : M/Un →

(M/Un)/jUn(U) by jUn(U) and the ultrapower jUn+1 : M →M/Un+1 by Un+1

are also well-founded. Moreover, (M/Un)/jUn(U) = (M/U)/Un = M/Un+1

and the following diagram commutes:

M
jU - M/U

M/Un

jUn

?

jjUn (U)

- (M/Un)/jUn(U)

hUn

?

j
U n

+
1

-
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Proof. We will define an isomorphism Φ between (M/Un)/jUn(U) and

M/Un+1. Fix F : κn × κ → M with F ∈ M . Define f→
α

: κ → M

by f→
α

(β) = F (
→
α, β) and define G : κn → M by G(

→
α) = f→

α
. Observe

that G ∈ M by Replacement and consider f = [G]Un ∈ M/Un. We have

that f : jUn(κ)→M/Un, and hence [f ]jUn (U) is in (M/Un)/jUn(U). Define

Φ([F ]Un+1) = [f ]jUn (U). Standard arguments show that Φ is well-defined

and preserves membership (see, for example, [8], ch. 0). I will show that

Φ is onto. Fix [f ]jUn (U) ∈ (M/Un)/jUn(U), then f : jUn(κ) → M/Un and

f = [G]Un where G : κn → M is an element of M . We can assume with-

out loss of generality that G(
→
α) : κ → M for all

→
α ∈ κn. Use G to define

F : κn × κ → M reversing the earlier procedure. Clearly such F ∈ M and

Φ([F ]Un+1) = [f ]jUn (U).

Next, we define an isomorphism Ψ between (M/U)/Un and M/Un+1.

Fix f : κn → M/U with f ∈ M/U , then f = [g]U where g : κ → M and

g ∈ M . Let f(
→
α) = [f→

α
]U where f→

α
: κ → M and f→

α
∈ M . Observe that

[f→
α

]U = [g]U([c→
α

]U), which implies that {ξ ∈ κ | f→
α

(ξ) = g(ξ)(
→
α)} ∈ U .

Define g→
α

: κ → M by g→
α

(ξ) = g(ξ)(
→
α) if

→
α ∈ dom(g(ξ)) and ∅ otherwise.

The sequence 〈g→
α
| →α ∈ κn〉 ∈ M . It should be clear that [f→

α
]U = [g→

α
]U

for all
→
α ∈ κn. Define F : κn × κ → M by F (

→
α, ξ) = g→

α
(ξ) and observe

that F ∈ M . Define Ψ : (M/U)/Un → M/Un+1 by Ψ([f ]Un) = [F ]Un+1 .
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Again, standard arguments shows that Ψ is well-defined and membership

preserving (see [8], ch. 0). So we need only to verify that Ψ is onto. Fix

F ′ : κn × κ→M with F ′ ∈ M . Define 〈F ′→
α
| →α ∈ κn〉 ∈ M such that

F ′→
α

(ξ) = F (
→
α, ξ). Define g : κ → M such that each g(β) is a function with

domain βn and g(ξ)(
→
α) = F ′→

α
(ξ). Observe that dom([g]U) = kn = [id]nU since

{ξ ∈ κ | dom(g(ξ)) = ξn} = κ ∈ U . I claim Ψ([[g]U ]Un) = [F ′]Un+1 . First,

we argue that [g]U(
→
α) = [F ′→

α
]U . As before, [g]U(

→
α) = [g]U([c→

α
]U), and so we

need to show that {ξ ∈ κ | g(ξ)(
→
α) = F ′→

α
(ξ)} ∈ U . But the set {ξ ∈ κ |

g(ξ)(
→
α) = F ′→

α
(ξ)} ⊇ {ξ ∈ κ | →α ∈ dom(g(ξ))}, and the later set is clearly

in U . Let Ψ([[g]U ]Un) = [F ]Un+1 and g→
α

be defined from g by the above

construction. It follows that for all
→
α ∈ κn, we have [g→

α
]U = [F ′→

α
]U , and

therefore {ξ ∈ κ | g→
α

(ξ) = F ′→
α

(ξ)} ∈ U . Finally, this shows that {→α ∈ κn |

{ξ ∈ κ | F (
→
α, ξ) = F ′(

→
α, ξ)} ∈ U} = κn ∈ Un. Thus, [F ]Un+1 = [F ′]Un+1 as

promised.

It is a standard argument to verify that the diagram commutes.

Proposition 2.32. If M is a weak κ-model and U is an ω-closed weakly

amenable normal M-ultrafilter on κ, then the ultrapowers of M by Un are

well-founded for all n ∈ ω.

Proof. We argue by induction on n that for every weak κ-model M and every
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ω-closed weakly amenable normal M -ultrafilter U on κ, the ultrapower of M

by Un is well-founded. We already noted earlier that if U is an ω-closed

M -ultrafilter, the ultrapower of M by U is well-founded. So suppose that for

every M and every ω-closed weakly amenable normal M -ultrafilter U , the

ultrapowers of M by Um are well-founded for every m ≤ n. From Lemma

2.31, we know that if the ultrapower of M by U and the ultrapower of M/U

by Un are well-founded, then the ultrapower of M by Un+1 is well-founded

as well. This completes the induction step.

Lemma 2.33. Suppose M is a weak κ-model and U is a weakly amenable

normal M-ultrafilter on κ such the embeddings jUn : M → M/Un are well-

founded for all n ∈ ω. Then A ∈ Un if and only if 〈κ, jU(κ), . . . , jUn−1(κ)〉 ∈

jUn(A).

Proof. The proof is by induction on n. Since j : M → M/U is a normal

ultrapower, A ∈ U if and only if κ ∈ jU(A). Assume that the statement

holds for n. To prove the statement for n + 1, consider the commutative
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diagram below:

M
jU - M/U

M/Un

jUn

?

jjUn (U)

- (M/Un)/jUn(U)

hUn

?

j
U n

+
1

-

Suppose 〈κ, jU(κ), . . . , jUn(κ)〉 ∈ jUn+1(A), then 〈κ, jU(κ), . . . , jUn(κ)〉 ∈

jjUn (U)(jUn(A)), and so jUn(κ) ∈ jjUn (U)(jUn(A))〈κ,jU (κ),...,jUn−1 (κ)〉. It fol-

lows that jUn(κ) ∈ jjUn (U)(jUn(A)〈κ,jU (κ),...,jUn−1 (κ)〉) since the critical point of

jjUn (U) is jUn(κ). Since jUn(U) is a normal ultrafilter on jUn(κ), we have that

jUn(A)〈κ,jU (κ),...,jUn−1 (κ)〉 ∈ jUn(U). By the inductive assumption, we know

that [id]Un = 〈κ, jU(κ), . . . , jUn−1(κ)〉, and therefore we have jUn(A)[id]Un ∈

jUn(U). But now this implies that {→α ∈ κn | A→
α
∈ U} ∈ Un. So A ∈ Un+1

as desired. For the forward implication, just reverse the steps above.

Lemma 2.34. Suppose M is a weak κ-model and U is a weakly amenable

normal M-ultrafilter on κ such that the ultrapowers by Un are well-founded

for all n ∈ ω. If A ∈ Un, then there exists B ∈ U such that for all

α1 < · · · < αn ∈ B, we have 〈α1, . . . , αn〉 ∈ A.
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Proof. I will argue by induction on n. Throughout the proof, I will be using

the machinery of diagonal intersections in disguise. It is easier to see what is

going on in this instance without using the terminology of diagonal intersec-

tions. The base case n = 1 is clearly trivial. So suppose the statement holds

for n. Let A ∈ Un+1, then Z = {→α ∈ κn | A→
α
∈ U} ∈ Un. By the inductive

assumption, there is a set Y ∈ U such that for all β1 < · · · < βn ∈ Y ,

we have 〈β1, . . . , βn〉 ∈ Z. Define B = {ξ ∈ Y | ∀β1 < · · · < βn ∈ Y

if βn < ξ, then ξ ∈ A〈β1,...,βn〉}, then j(B) = {ξ ∈ j(Y ) | ∀β1 < · · · <

βn ∈ j(Y ) if βn < ξ, then ξ ∈ j(A)〈β1,...,βn〉}. Recall that B ∈ U if and

only if κ ∈ j(B). It is clear that κ ∈ j(Y ). If β1 < · · · < βn ∈ j(Y ) and

βn < κ, then β1, . . . , βn ∈ Y . It follows that κ ∈ j(A〈β1,...,βn〉) = j(A)〈β1,...,βn〉

since A〈β1,...,βn〉 ∈ U . So κ ∈ j(B), and hence B ∈ U . Also clearly if

β1 < · · · < βn < ξ are in B, then 〈β1, . . . , βn, ξ〉 ∈ A.

We are now ready to prove that cardinals with the Ramsey embedding

property are Ramsey. The other direction will involve a much more compli-

cated argument starting with Definition 2.37.

Theorem 2.35. A cardinal κ has the Ramsey embedding property if and only

if κ is Ramsey.

Proof of the forward direction. Fix a coloring F : [κ]<ω → 2 and choose a
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weak κ-model M containing F for which there exists an ω-closed weakly

amenable normal M -ultrafilter U on κ. Let j : M → N be the ultrapower by

U . We need to show that F has a homogenous set H of size κ. First, observe

that if 〈An | n ∈ ω〉 is a sequence such that each An ∈ U , then ∩n∈ωAn has

size κ. To see this, suppose ∩n∈ωAn has size less than κ. Choose α < κ such

that ∩n∈ωAn is contained in α and let B = {ξ ∈ κ | ξ > α} ∈ U . But then

B∩ (∩n∈ωAn) = ∅, which contradicts that U is ω-closed. Define fn : [κ]n → 2

by fn = F � [κ]n and observe that 〈fn | n ∈ ω〉 ∈ M . The strategy will be

to find for every n ∈ ω, a set Hn ∈ U homogenous for fn. Then ∩n∈ωHn will

have size κ and be homogenous for F . Let jUn(fn)(κ, jU(κ), . . . , jUn−1(κ)) =

i ∈ 2 and consider A = {→α ∈ κn | fn(
→
α) = i}. Clearly A ∈ Un since

〈κ, jU(κ), . . . , jUn−1(κ)〉 ∈ jUn(A). By Proposition 2.34, there exists B ∈ U

such that for all β1 < · · · < βn ∈ B, we have 〈β1, . . . , βn〉 ∈ A. Letting

B = Hn, we get the desired result.

Corollary 2.36. If κ is a strongly Ramsey cardinal, then κ is the κth Ramsey

cardinal.

Proof. Clearly κ is Ramsey. So we need to show that κ is a limit of Ramsey

cardinals. Fix a κ-model M for which there exists a κ-powerset preserving

j : M → N . As usual, we show that N |= “κ is Ramsey”. Fix a coloring
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F : [κ]<ω → 2 in N . By the powerset preservation property, F ∈M . We can

argue, as in Theorem 2.35, to construct Hn ∈ U homogenous for F � [k]n.

Since M<κ ⊆M , the sequence 〈Hn | n ∈ ω〉 ∈M , and therefore H = ∩n∈ωHn

is in M as well. Hence H ∈ N , and so N |= “κ is Ramsey”.

Now we begin to build up the machinery required to show that if κ is

Ramsey, then κ has the Ramsey embedding property. Recall that a partition

property κ→ (α)nγ means that every coloring F : [κ]n → γ has a homogenous

set of order-type α.

Definition 2.37. A cardinal κ is α-Erdős if α is a limit ordinal and κ is the

least cardinal such that κ→ (α)<ω2 .

Observe that κ is Ramsey if and only if κ is κ-Erdős. Also recall that

α-Erdős cardinals are inaccessible.

Theorem 2.38. If κ is α-Erdős, then κ→ (α)<ωβ for every β < κ.

Lemma 2.39. Suppose κ is α-Erdős and A is a structure in some countable

language such that κ ⊆ A. Then there is I ⊆ κ of order-type α such that I

are indiscernibles for A.

See [9] (p. 298) for a discussion of the above concepts. The results below

are from [3] (p. 128).
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Definition 2.40. Suppose κ is a cardinal. A function f : [κ]<ω → κ is said

to be regressive if f(α1, . . . , αn) < α1 for every α1 > ∅.

Definition 2.41. Suppose κ is a cardinal and A = 〈Lκ[A], A〉 where A ⊆ κ.

Then I ⊆ κ is a set of good indiscernibles for A if for all γ ∈ I:

1. 〈Lγ[A], A〉 ≺ 〈Lκ[A], A〉.

2. γ is a cardinal.

3. I − γ is a set of indiscernibles for 〈Lκ[A], A, ξ〉ξ∈γ.

Lemma 2.42. If κ is α-Erdős and C is a club on κ, then every regressive

f : [C]<ω → κ has a homogenous set of order-type α.

Proof. Fix a regressive f : [C]<ω → κ where C is a club on κ. Since κ

is α-Erdős, for every ξ < κ, we have ξ 9 (α)<ω2 . Therefore for every

ξ < κ, there is a counterexample hξ : [ξ]<ω → 2 for which there is no

homogenous set of order-type α. Let fn = f � [C]n and define gn : [C]n → 2

by gn(ξ1, . . . , ξn) = hξn(ξ1, . . . , ξn−1). We consider the structure A =

〈κ,∈, C, f1, . . . , fn, . . . , g1, . . . , gn, . . .〉. Since this is a structure in a count-

able language and C has size κ, Lemma 2.39 tells us that there is a set

I ⊆ C of indiscernibles for A of order-type α. Choose such an I with the

least first element and let I = {iξ | ξ < α}. I claim that for every ξ < α, the
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ordinal iξ is a limit point of C. Suppose to the contrary that this is not the

case, then since iξ are indiscernibles, we have A |= “iξ is not a limit point of

C” for all ξ < α. Thus, each iξ is a successor element of C. Define jξ to be

the predecessor of iξ in C. It follows that {jξ | ξ < α} are indiscernibles for

A. But this is impossible since I had the least first element by assumption.

So every iξ is a limit point of C.

I will now show that the set I is homogenous for f . Suppose to the con-

trary that this is not the case, then there exist two sequences iξ1 < · · · < iξn

and iα1 < · · · < iαn such that f(iξ1 , . . . , iξn) 6= f(iα1 , . . . , iαn). We can as-

sume without loss of generality that ξn < α1. Define u0 = 〈i0, . . . , in−1〉

and u1 = 〈in, . . . , i2n−1〉. Since α is a limit ordinal, it is possible, continu-

ing in this manner, to define uξ for ξ < α. By indiscernibility, it must be

that either f(u0) < f(u1) or f(u0) > f(u1). Suppose f(u0) > f(u1), then

by indiscernibility, we have an infinite descending sequence in the ordinals,

which is impossible. It follows that f(u0) < f(u1), and hence f(uξ) < f(uβ)

for all ξ < β < α. Define dξ = f(uξ) and let cξ be the least element of

C above dξ. Since d0 < d1, it follows that c0 ≤ c1. So either c0 < c1 or

c0 = c1. First, suppose c0 < c1, then by indiscernibility, cξ < cβ for all

ξ < β < α. Therefore {cξ | ξ < α} are indiscernibles for A. Recall that

d0 = f(u0) < i0 since f is regressive. But since i0 is a limit point of C, it
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must be that c0 < i0. Again, this is impossible since we chose I to have the

least first element. So c0 = c1, and hence all the cξ are equal to each other

by indiscernibility. Thus, dξ < c0 for all ξ < α. I claim that this implies

{dξ | ξ < α} are homogenous for hc0 , which will be a contradiction. By in-

discernibility, it suffices to show that hc0(d0, . . . , dn−1) = hc0(dn, . . . , d2n−1).

Suppose to the contrary that hc0(d0, . . . , dn−1) 6= hc0(dn, . . . , d2n−1), then

gn+1(d0, . . . , dn−1, c0) 6= gn+1(dn, . . . , d2n−1, c0) by definition. But by indis-

cernibility:

1. gn+1(d0, . . . , dn−1, c0) 6= gn+1(d2n, . . . , d3n−1, c0)

2. gn+1(dn, . . . , d2n−1, c0) 6= gn+1(d2n, . . . , d3n−1, c0)

This situation is impossible since gn+1 has only two colors. So we reached a

contradiction showing that hc0 has a homogenous set. This, in turn, contra-

dicts the fact that hc0 was a counterexample. Thus, finally it follows that I

is homogenous for f .

Lemma 2.43. If κ is Ramsey and A ⊆ κ, then 〈Lκ[A], A〉 has a collection

I of good indiscernibles of size κ.

Proof. Define C ′ = {α ∈ κ | α is a cardinal and 〈Lα[A], A〉 ≺ 〈Lκ[A], A〉},

then C ′ is a club. Fix any bijection f : κ×κ→ κ−{∅}. Use f to inductively
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define a pairing function g : κ<ω → κ such that id = g � κ : κ → κ, and

given g � [κ]n, we define g � [κ]n+1 : [κ]n+1 → κ by g(α1, α2 . . . , αn+1) =

f(α1, g(α2, . . . , αn+1)). Let C ′′ = {α ∈ κ | α× α is closed under f}, then C ′′

is a club. Observe that for all α ∈ C ′′, the set [α]<ω is closed under g. Let C =

C ′∩C ′′∩{ξ ∈ κ | ξ > ω}, then C is a club. Fix an enumeration 〈ϕm | m ∈ ω〉

of formulas in the language of 〈Lκ[A], A〉. Consider the following condition

on an ordered tuple 〈α1, . . . , α2n〉 of length 2n of elements of κ:

(*) there exist ordinals δ1, . . . , δk with δk < α1 and m ∈ ω such that

〈Lκ[A], A〉 2 ϕm(
→
δ , α1, . . . , αn)↔ ϕm(

→
δ , αn+1, . . . , α2n)

If 〈α1, . . . , α2n〉 satisfies (*), let w(
→
α) be the least λ = g(m,

→
δ ) where

→
δ and

m witness (*), and ∅ otherwise. Define h : [C]<ω → κ by:

h(α1, . . . , α2n+1) = ∅,

h(α1, . . . , α2n) = w(
→
α).

It follows that the value of h is either ∅ or h(α1, . . . , α2n) = g(m, δ1, . . . , δk)

where δk < α1 and m < ω < α1. Since C is closed under g, the function h

is regressive. By Lemma 2.42, the function h is homogenous on a set I ⊆ C

of size κ. I claim that the value of h on I is ∅ for every n ∈ ω. First, let us

argue that if this is the case, then I are good indiscernibles for 〈Lκ[A], A〉.
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Observe that since the range of f excludes ∅, the function h(α1, . . . , α2n) =

∅ if and only if
→
α does not satisfy (*). Fix γ ∈ I. Since γ ∈ C, it follows

that γ is a cardinal and 〈Lγ[A], A〉 ≺ 〈Lκ[A], A〉. So it remains to show that

I − γ are indiscernibles for 〈Lκ[A], A, ξ〉ξ∈γ. Suppose to the contrary that

this is not the case. Then there exists a formula ϕm, ordinals δ1, . . . , δk < γ,

and two ordered n-tuples α1 < · · · < αn and β1 < · · · < βn in I such

that 〈Lκ[A], A〉 |= ϕm(
→
δ ,
→
α) but 〈Lκ[A], A〉 2 ϕm(

→
δ ,
→
β). I claim that we

can assume without loss of generality that βn < α1. We can always choose

γ1 < · · · < γn ∈ I such that γ1 > αn, βn. If 〈Lκ[A], A〉 |= ϕm(
→
δ ,
→
γ ), we can

take the
→
γ and

→
β sequences. If 〈Lκ[A], A〉 2 ϕm(

→
δ ,
→
γ ), we can take the

→
γ

and
→
α sequences. This shows that the assumption is really without loss of

generality. Finally, we can conclude that it is impossible that h(
→
β,
→
α) = ∅

since
→
δ and m witness otherwise. Therefore I are good indiscernibles for

〈Lκ[A], A〉.

It remains to prove that the value of h on I is always ∅. Suppose to

the contrary that this is not the case. Then there is n such that for all

α1 < · · · < α2n in I, the function h(
→
α) = λ = g(m, δ1, . . . , δk) since I is

homogenous for h. Fix some α1 < · · · < αn < αn+1 < · · · < α2n < α2n+1 <

· · · < α3n in I. It follows that:

1. h(α1, . . . , αn, αn+1, . . . , α2n) = λ
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2. h(α1, . . . , αn, α2n+1, . . . , α3n) = λ

3. h(αn+1, . . . , α2n, α2n+1, . . . , α3n) = λ

From this we conclude that:

1. 〈Lκ[A], A〉 2 ϕm(
→
δ , α1, . . . , αn)↔ ϕm(

→
δ , αn+1, . . . , α2n)

2. 〈Lκ[A], A〉 2 ϕm(
→
δ , α1, . . . , αn)↔ ϕm(

→
δ , α2n+1, . . . , α3n)

3. 〈Lκ[A], A〉 2 ϕm(
→
δ , αn+1, . . . , α2n)↔ ϕm(

→
δ , α2n+1, . . . , α3n)

To see that this is impossible, suppose, for example, that

〈Lκ[A], A〉 |= ϕm(
→
δ , α1, . . . , αn). Then 〈Lκ[A], A〉 2 ϕm(

→
δ , αn+1, . . . , α2n)

by (1). This implies that 〈Lκ[A], A〉 |= ϕm(
→
δ , α2n+1, . . . , α3n) by (3). Finally,

this last statement implies that 〈Lκ[A], A〉 2 ϕm(
→
δ , α1, . . . , αn). Thus, we

have reached a contradiction. The argument is similar if you suppose that

〈Lκ[A], A〉 2 ϕm(
→
δ , α1, . . . , αn).

Lemma 2.44. If κ is inaccessible and A ⊆ κ, then 〈Lκ[A], A〉 |= ZFC in the

extended language.

Proof.

Pairing: Let a and b be in Lκ[A], then there is α < κ such that a and b are

already in Lα[A]. Thus, clearly 〈a, b〉 ∈ Lκ[A].
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Separation: Let X and
→
b be in Lκ[A] and ϕ(x,

→
y ) be a formula in the lan-

guage of 〈Lκ[A], A〉. Define Y = {a ∈ X | 〈Lκ[A], A〉 |= ϕ(a,
→
b )}. Let α < κ

such that X and
→
b are in Lα[A] and 〈Lα[A], A〉 ≺ 〈Lκ[A], A〉, then clearly Y

is definable over 〈Lα[A], A〉, and therefore Y ∈ Lα+1[A].

Union: Let X ∈ Lκ[A], then there is α < κ such that X ∈ Lα[A]. It follows

that ∪X ∈ Lα+1[A].

Powerset: Let X ∈ Lκ[A], then there is α < κ such that X ∈ Lα[A]. Since

|Lβ[A]| = |β| for all β, it follows that |X| ≤ |α| < κ. Since κ is inaccessible,

|P(X)| < κ. Again by the inaccessibility of κ, there must be δ < κ such that

P(X) ∩ Lκ[A] = P(X) ∩ Lδ[A]. Let B = P(X) ∩ Lδ[A], then B ∈ Lδ+1[A]

and Lκ[A] |= B = P(X).

Infinity: ω ∈ Lκ[A].

Replacement: Let X and
→
b be in Lκ[A] and ϕ(x, y,

→
z ) be a formula in

the language of 〈Lκ[A], A〉 such that 〈Lκ[A], A〉 |= ∀x ∈ X ∃! y ϕ(x, y,
→
b ).

Then there exists α < κ such that X and
→
b are in Lα[A] and 〈Lα[A], A〉 ≺

〈Lκ[A], A〉. Define Y = {y ∈ Lκ[A] | ∃x ∈ X 〈Lκ[A], A〉 |= ϕ(x, y,
→
b )}. Since

X ∈ Lα[A], it follows that for every x ∈ X, there is a unique y ∈ Lα[A]

such that 〈Lκ[A], A〉 |= ϕ(x, y,
→
b ). Thus, Y is definable over 〈Lα[A], A〉, and

hence Y ∈ Lα+1[A].

Choice: In 〈Lκ[A], A〉, use the usual method of defining a well-ordering in
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L[A].

We are now ready to prove that Ramsey cardinals have the Ramsey em-

bedding property.

Proof of the backward direction of Theorem 2.35. Fix A ⊆ κ and consider

the structure A = 〈Lκ[A], A〉. By Lemma 2.44, A |= ZFC. As was noted

above, A has a definable well-ordering, and therefore definable Skolem func-

tions. By Lemma 2.43, the structure A has a collection I of good indis-

cernibles of size κ. For every γ ∈ I and n ∈ ω, let
→
γ = {γ1, . . . , γn}

where γ1 < · · · < γn are the first n elements in I above γ. Given γ ∈ I

and n ∈ ω, define
∼
Anγ = SclA(γ + 1 ∪ {→γ}), the Skolem closure using the

definable Skolem functions of 〈Lκ[A], A〉. Since 〈Lκ[A], A〉 |= ZFC, it fol-

lows that 〈Lκ[A], A〉 satisfies that Hλ exists for every λ. Also it holds in

〈Lκ[A], A〉 that for every cardinal λ, the structure 〈HAλ+ , A〉 |= ZFC−. Thus,

it is really true that 〈HAλ+ , A〉 |= ZFC− by the absoluteness of satisfaction.

Since 〈
∼
Anγ , A〉 ≺ 〈Lκ[A], A〉 and γ ∈

∼
Anγ , we have HAγ+ ∈

∼
Anγ . Next, define

Anγ =
∼
Anγ ∩HAγ+ . From now on, to simplify notation, I will write Hγ+ instead

of HAγ+ , but I will always mean the Hγ+ of A.

Lemma 2.44.1. Anγ is transitive and 〈Anγ , A〉 |= ZFC−.
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Proof. First, we show that Anγ is transitive. Fix a ∈ Anγ and b ∈ a. The set

a is coded by a subset of γ× γ in 〈Lκ[A], A〉. By elementarity,
∼
Anγ contains a

set E ⊆ γ×γ coding a and the Mostowski collapse π : 〈γ,E〉 → Trcl(a). Let

α ∈ γ such that 〈Lκ[A], A〉 |= π(α) = b. Since γ ⊆
∼
Anγ , the ordinal α ∈

∼
Anγ ,

and so by elementarity, b ∈
∼
Anγ . It is clear that b ∈ Anγ also. Thus, we have

shown that Anγ is transitive.

Next, we show that 〈Anγ , A〉 |= ZFC−. Let π :
∼
Anγ → N be the Mostowski

collapse. Since Anγ ⊆
∼
Anγ is transitive, it follows that π(x) = x for all x ∈ Anγ .

Therefore π(Hγ+) = {π(x) | x ∈ Hγ+ ∩
∼
Anγ = Anγ} = {x | x ∈ Anγ} = Anγ .

Also observe that Hγ+ ∩ A ∈ Lκ[A], and therefore Hγ+ ∩ A ∈
∼
Anγ . By

the transitivity of Anγ , the ordinals of Anγ is some ordinal α ⊆
∼
Anγ . Therefore

π(ξ) = (ξ) for all ξ ∈ α and the image π(Hγ+∩A) = (Hγ+∩A)∩
∼
Anγ = Anγ∩A.

We conclude that 〈Anγ , A〉 is an element of the Mostowski collapse N . Since

π is an isomorphism, it follows that N thinks Anγ is its Hγ+ . From this we

conclude that N |= “〈Anγ , A〉 |= ZFC−”. But satisfaction is absolute, and so

it is really true that 〈Anγ , A〉 |= ZFC−.

Lemma 2.44.2. For every γ ∈ I and n ∈ ω, we have Anγ ≺ An+1
γ .

Proof. It is certainly clear that
∼
Anγ ≺

∼
An+1
γ since these are Skolem closures of

sets that extend each other. Let ρ :
∼
An+1
γ → N ′ be the Mostowski collapse.
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It remains to observe that:

〈Anγ , A〉 |= ϕ(a)↔

〈N, π′′A〉 |= “〈Anγ , A〉 |= ϕ(a)”↔

〈
∼
Anγ , A〉 |= “〈Hγ+ , A〉 |= ϕ(a)”↔ (π(a) = a and π(〈Hγ+ , A〉) = 〈Anγ , A〉)

〈
∼
An+1
γ , A〉 |= “〈Hγ+ , A〉 |= ϕ(a)”↔

〈N ′, ρ′′A〉 |= “〈An+1
γ , A〉 |= ϕ(a)”↔

〈An+1
γ , A〉 |= ϕ(a).

Recall that if a ∈
∼
Anγ , then a = h(

→
b , γ,

→
γ ) where h is a definable Skolem

function, the sequence
→
b ⊆ γ, and

→
γ = {γ1, . . . , γn} are the first n elements

above γ in I. Given γ < δ ∈ I, define fnγδ :
∼
Anγ →

∼
Anδ by fnγδ(a) = h(

→
b , δ,

→
δ )

where a = h(
→
b , γ,

→
γ ) is as above. Observe that since I − γ are indiscernibles

for 〈Lκ[A], A, ξ〉ξ∈γ, the map fnγδ is clearly well-defined and elementary. Also

fnγδ(γ) = δ and fnγδ(ξ) = ξ for all ξ < γ. So the critical point of fnγδ is γ.

Finally, note that for all γ < δ < β ∈ I, we have fnγβ ◦ fnβδ = fnγδ.

Lemma 2.44.3. The map fnγδ � Anγ : Anγ → Anδ is elementary.

Proof. Fix a ∈ Anγ and recall that
∼
Anγ thinks a ∈ Hγ+ . By elementarity of

fnγδ, it follows that
∼
Anδ thinks fnγδ(a) ∈ Hδ+ . Therefore fnγδ : Anγ → Anδ . So it
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remains to check elementarity:

〈Anγ , A〉 |= ϕ(a)↔

〈
∼
Anγ , A〉 |= “〈Hγ+ , A〉 |= ϕ(a)”↔

〈
∼
Anδ , A〉 |= “〈Hδ+ , A〉 |= ϕ(fnγδ(a))”↔

〈Anδ , A〉 |= ϕ(fnγδ(a)).

For γ ∈ I, define Un
γ = {X ∈ P(γ) ∩ Anγ | γ ∈ fnγδ(X) for some δ > γ}.

Observe that we could have equivalently used “for all δ > γ” in the definition.

Lemma 2.44.4. Un
γ is a normal Anγ -ultrafilter on γ.

Proof. First, let us verify that Un
γ is an ultrafilter. Clearly γ ∈ Un

γ since

γ ∈ fnγγ1
(γ) = γ1 where γ1 is the least element in I above γ. Let X ∈ Un

γ and

suppose X ⊆ Y ⊆ γ where Y ∈ Anγ . Since X ∈ Un
γ , we have γ ∈ fnγγ1

(X).

Since X ⊆ Y , it follows that fnγγ1
(X) ⊆ fnγγ1

(Y ), and hence γ ∈ fnγγ1
(Y ).

Thus, Y ∈ Un
γ . Suppose X and Y are in Un

γ , then γ ∈ fnγγ1
(X) and γ ∈

fnγγ1
(Y ). It clearly follows that γ ∈ fnγγ1

(X ∩ Y ) = fnγγ1
(X) ∩ fnγγ1

(Y ). Thus,

X ∩ Y ∈ Un
γ . Finally, suppose X is not in Un

γ and let Xc be the complement

of X in γ. Then γ /∈ fnγγ1
(X), and so clearly γ ∈ fnγγ1

(Xc). Thus, Xc ∈ Un
γ .

Next, we check that Un
γ is normal. Fix X ∈ Un

γ and a regressive



CHAPTER 2. RAMSEY-LIKE EMBEDDING PROPERTIES 108

F : X → γ in Anγ . Then γ ∈ fnγγ1
(X) and fnγγ1

(F ) : fnγγ1
(X) → γ1 is re-

gressive. Let fnγγ1
(F )(γ) = α < γ and define Y = {ξ ∈ γ | F (ξ) = α}. The

set Y ∈ Anγ since Y is definable from F and α and Y ∈ Hγ+ . Also clearly

Y ∈ Un
γ since γ ∈ fnγγ1

(Y ).

Observe that if a0, . . . , an ∈ Lγ[A] for some γ ∈ I, then for every formula

ϕ(
→
x), we have 〈Lκ[A], A〉 |= ϕ(

→
a) ↔ 〈Lγ[A], A〉 |= ϕ(

→
a) ↔ 〈Lκ[A], A〉 |=

“〈Lγ[A], A〉 |= ϕ(
→
a)”. It follows that for every γ ∈ I, the model 〈Lκ[A], A〉

has a truth predicate definable from γ for formulas with parameters from

Lγ[A]. For example, this implies that
∼
Anγ is definable in

∼
An+1
γ . To see this,

recall that x ∈
∼
Anγ if and only if “∃h∃→v < γ h is a Skolem term and x =

h(
→
v , γ, γ1, . . . , γn)”. This is a definition for

∼
Anγ in

∼
An+1
γ since

∼
An+1
γ has γn+1,

from which it can define a truth predicate for Lγn+1 [A].

Lemma 2.44.5. The ultrafilter Un
γ ∈ An+2

γ .

Proof. In
∼
An+2
γ , we have Un

γ = {x ∈ P(γ) | ∃h∃→v < γ h is a Skolem term

and h = (
→
v , γ, γ1, . . . , γn) ∧ γ ∈ h(

→
v , γ1, γ2, . . . , γn+1)}. This follows since

γn+2 ∈
∼
An+2
γ , and therefore we can define a truth predicate for Lγn+2 [A],

which is good enough for the definition above. So far we have shown that

Un
γ is in

∼
An+2
γ . To finish the argument, observe that 〈Lκ[A], A〉 |= Un

γ ∈ Hγ+ ,

and therefore Un
γ ∈ An+2

γ .
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It should be clear that Un
γ ⊆ Un+1

γ and fnγδ ⊆ fn+1
γδ . Define Aγ = ∪n∈ωAnγ

and Uγ = ∪n∈ωUn
γ . Also define fγδ = ∪n∈ωfnγδ : Aγ → Aδ and observe that

it is elementary in the language with a predicate for A. Since each Un
γ was a

normal Anγ -ultrafilter on γ, it is easy to see that Uγ is a normal Aγ-ultrafilter

on γ.

Lemma 2.44.6. The normal Aγ-ultrafilter Uγ is weakly amenable.

Proof. Consider B ⊆ γ × γ with B ∈ Aγ. Define C = {ξ ∈ γ | Bξ ∈ Uγ}.

We need to show that C ∈ Aγ. Since B ∈ Aγ, it follows that B ∈ Anγ for

some n ∈ ω. But then C = {ξ ∈ γ | Bξ ∈ Un
γ } and Un

γ ∈ An+2
γ ⊆ Aγ. Thus,

C ∈ Aγ.

Now for every γ ∈ I, we have an associated structure 〈Aγ,∈, A, Uγ〉.

Also if γ < δ in I, we have an elementary embedding fγδ : Aγ → Aδ with

critical point γ between the structures 〈Aγ, A〉 and 〈Aδ, A〉. Observe also

that X ∈ Uγ if and only if fγδ(X) ∈ Uδ. This is a directed system of

models, and so we can take the direct limit of this directed system. Define

〈B,E,A′, V 〉 = limγ∈I〈Aγ,∈, A, Uγ〉.

Lemma 2.44.7. The relation E on B is well-founded.

Proof. The elements of B are functions t with domains {ξ ∈ I | ξ ≥ α} for
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some α ∈ I satisfying the properties:

1. t(γ) ∈ Aγ,

2. for γ < δ in domain of t, we have t(δ) = fγδ(t(γ)),

3. there is no ξ ∈ I ∩ α for which there is a ∈ Aξ such that fξα(a) = t(a).

Note that each t is determined once you know any t(ξ) by extending uniquely

forward and backward. It follows, by standard arguments (for example, [9],

p. 157), that B |= ϕ(t1, . . . , tn) if and only if ∃γAγ |= ϕ(t1(γ), . . . , tn(γ)) if

and only if for all γ in the intersection of the domains of the ti, the structure

Aγ |= ϕ(t1(γ), . . . , tn(γ)). It is good to keep in mind that this truth definition

holds only of atomic formulas in the case where the formulas involve the

predicate for the ultrafilter.

Suppose to the contrary that E is not well-founded, then there is a

descending E-sequence · · ·E tnE · · ·E t1E t0. Find γ0 such that Aγ0 |=

t1(γ0) ∈ t0(γ0). Next, find γ1 > γ0 such that Aγ1 |= t2(γ1) ∈ t1(γ1). In

this fashion, define an increasing sequence γ0 < γ1 < · · · < γn < · · · such

that Aγn |= tn+1(γn) ∈ tn(γn). Let γ ∈ I such that γ > supn∈ωγn. It follows

that for all n ∈ ω, the structure Aγ |= fγnγ(tn+1(γn)) ∈ fγnγ(tn(γn)), and

therefore Aγ |= tn+1(γ) ∈ tn(γ). But, of course, this is impossible. Thus, E

is well-founded.
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Let 〈Aκ,∈, A∗, Uκ〉 be the Mostowski collapse of 〈B,E,A′, V 〉.

Lemma 2.44.8. The cardinal κ ∈ Aκ.

Proof. Fix α ∈ κ and let γ ∈ I be the least ordinal greater than α, then

fγδ(α) = α for all δ > γ. Define tα to have domain {ξ ∈ I | ξ ≥ γ} such

that tα(ξ) = α. I claim that tα is an element of B. We need to show that

it cannot be extended further backward (condition (3) in proof of Lemma

2.44.7). Suppose β < γ is in I, then β ≤ α. If ξ < β, then fβγ(ξ) = ξ. The

value of fβγ(β) = γ. Thus, if ξ > β, then fβγ(ξ) > γ. Hence the value of

fβγ(ξ) can never be α. This shows that tα is in B. Next, observe that tα

has exactly α predecessors in B, namely tξ for ξ < α. Hence tα collapses to

α in Aκ. This shows that κ ⊆ Aκ. Define tκ to have domain I such that

tκ(γ) = γ. Clearly tαE tκ for all α ∈ κ. Suppose sE tκ, then there is γ in

domain of s such that s(γ) ∈ tκ(γ) = γ. Let s(γ) = α < γ. Since each t is

determined by a single coordinate, this clearly implies that s = tα. Thus, tκ

collapses to κ, and so κ ∈ Aκ.

Define jγ : Aγ → Aκ such that jγ(a) is the collapse of the function t for

which t(γ) = a. This makes sense since, by the above remark, specifying the

value of t on a coordinate completely determines t. The maps jγ are fully

elementary in the language of 〈Aγ, A〉 and elementary for atomic formulas in
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the language with a predicate for the ultrafilter. Observe that jγ(ξ) = ξ for

all ξ < γ since if t(γ) = ξ, then t = tξ. Also jγ(γ) = κ since if t(γ) = γ,

then t = tκ. So the critical point of each jγ is κ. Finally, if γ < δ in I, then

jδ ◦ fγδ = jγ. For every element a of Aκ, there is γ ∈ I such that for all

δ ≥ γ, the element a is the image of something in Aδ under jδ. For example,

this shows that if a and b are two elements of Aκ, then there is γ ∈ I and

a′, b′ ∈ Aγ such that a = jγ(a
′) and b = jγ(b

′).

Lemma 2.44.9. The set Uκ consists of subsets of κ.

Proof. Fix X ∈ Uκ, then X = jγ(Y ) for some γ ∈ I and Y ∈ Aγ. By the

elementarity of jγ for atomic formulas, it follows that Y ∈ Uγ, and hence

Y ⊆ γ. Thus, X = jγ(Y ) ⊆ jγ(γ) = κ.

Lemma 2.44.10. The set Uκ is a normal Aκ-ultrafilter on κ.

Proof. The set κ is in Uκ since γ ∈ Uγ and jγ(γ) = κ for any γ ∈ I. Suppose

X ∈ Uκ and X ⊆ Y ⊆ κ with Y ∈ Aκ. There is γ ∈ I such that X = jγ(X
′)

and Y = jγ(Y
′). It follows that X ′ ∈ Uγ and X ′ ⊆ Y ′. Therefore Y ′ ∈ Uγ,

and hence jγ(Y
′) = Y ∈ Uκ by elementarity. The argument for intersections

and complements is similar. For normality, fix X ∈ Uκ and a regressive

F : X → κ in Aκ. Let F = jγ(F
′) and X = jγ(X

′). It follows that
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F ′ : X ′ → γ is regressive on X ′ ∈ Uγ. Thus, F ′ is constant on some Y ′ ⊆ X ′

in Uγ, and hence F is constant on jγ(Y
′) = Y ∈ Uκ.

Lemma 2.44.11. The Aκ-ultrafilter Uκ is weakly amenable.

Proof. Fix Y ⊆ κ× κ and define X = {α ∈ κ | Yα ∈ Uκ}. We need to show

that X ∈ Aκ. Let Y = jγ(Y
′), then Y ′ ⊆ γ × γ and X ′ = {α ∈ γ | Y ′α ∈ Uγ}

is in Aγ by the weak amenability of Uγ. It is easy to see that jγ(X
′) = X.

Lemma 2.44.12. A set X ∈ Uκ if and only if there exists α ∈ I such that

{ξ ∈ I | ξ > α} ⊆ X.

Proof. Fix X ⊆ κ in Aκ and α ∈ I such that for all γ > α, there is X ′ ∈ Aγ

with jγ(X
′) = X. Consider γ > α, then:

X ∈ Uκ ↔

X ′ ∈ Uγ ↔

γ ∈ fγγ1(X ′)↔

jγ1(γ) ∈ jγ1 ◦ fγγ1(X ′) = jγ(X
′)↔

γ ∈ jγ(X ′) = X.

Thus, if X ∈ Uκ, then {ξ ∈ I | ξ > α} ⊆ X. Now suppose for some α, the

set {ξ ∈ I | ξ > α} ⊆ X. Let β ∈ I such that for all δ > β in I, there is
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X ′ ∈ Aδ such that jδ(X
′) = X. Choose any γ larger than β and α, then

γ ∈ jγ(X ′) = X. Follow the backward arrows to conclude that X ∈ Uκ.

Lemma 2.44.13. The Aκ-ultrafilter Uκ is ω-closed.

Proof. Fix 〈An | n ∈ ω〉 a sequence of elements of Uκ. We need to show that

∩n∈ωAn 6= ∅. For each An, there exists γn ∈ I such that Xn = {ξ ∈ I |

ξ > γn} ⊆ An. Thus, ∩n∈ωXn ⊆ ∩n∈ωAn and clearly ∩n∈ωXn has size κ.

It remains to show that A ∈ Aκ.

Lemma 2.44.14. The set A∗ � κ = A, and hence A ∈ Aκ.

Proof. Fix α ∈ A and let γ ∈ I such that γ > α, then 〈Aγ, A〉 |= α ∈ A. It

follows that 〈Aκ, A〉 |= jγ(α) ∈ A∗, but jγ(α) = α, and so α ∈ A∗. Thus,

A ⊆ A∗. Now fix α ∈ A∗ � κ and let γ ∈ I such that γ > α, then jγ(α) = α,

and so jγ(α) ∈ A∗. It follows that α ∈ A. Thus, A∗ � κ ⊆ A. We conclude

that A = A∗ � κ.

We have found a weak κ-model M containing A for which there exists an

ω-closed weakly amenable normal M -ultrafilter on κ, namely M = Aκ. This

concludes the proof that if κ is Ramsey, then κ has the Ramsey embedding

property.
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I will end this section by giving an interesting reformulation of the Ramsey

embedding property.

Proposition 2.45. A cardinal κ is Ramsey if and only if every A ⊆ κ is

contained in a weak κ-model M |= ZFC for which there exists j : M → N an

ultrapower by an ω-closed normal M-ultrafilter such that M ≺ N .

The difference from the earlier definition of the Ramsey embedding prop-

erty is that now for every A ⊆ κ, we have A ∈M where M is a model of all

of ZFC and j : M → N an ultrapower by an ω-closed normal M -ultrafilter

such that not only do M and N have the same subsets of κ, but actually

M ≺ N .

Proof. Fix A ⊆ κ and choose a weak κ-model M containing A and Vκ for

which there exists an ω-closed weakly amenable normal M -ultrafilter U on

κ. Let j : M → N be the ultrapower by U . I will refer to the commutative

diagram from Lemma 2.31. For the case n = 1, the diagram becomes the
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following:

M
j

- N = M/U

N = M/U

j

?

jj(U)

- K = N/j(U)

hU

?

j
U

2

-

Let M ′ = V N
j(κ), then M ′ is a transitive model of ZFC since Vκ |= ZFC. Let

K ′ = V K
jj(U)(j(κ)) = V K

hU (j(κ)). Observe that since M ′ is transitive, hU � M ′ :

M ′ → K ′ is the same as the ultrapower of M ′ by U . It remains to show

that M ′ ≺ K ′, but this follows easily from the jj(U) side of the commutative

diagram since jj(U) �M ′ : M ′ → N ′ and jj(U) is identity on M ′.

Corollary 2.46. A cardinal κ is strongly Ramsey if and only if every A ⊆ κ

is contained in a κ-model M |= ZFC for which there exists an elementary

embedding j : M → N with critical point κ such that M ≺ N .

Proof. Using the previous proof it suffices to show that M ′ is closed under

< κ-sequences. We can assume without loss of generality that N is closed

under < κ-sequences (Proposition 2.9). Therefore V N
j(κ) must be closed under

< κ-sequences since N thinks that j(κ) is inaccessible.
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Question 2.47. If κ is a weakly Ramsey cardinal, does there exist for every

A ⊆ κ, a weak κ-model M |= ZFC and an elementary embedding j : M → N

with critical point κ such that M ≺ N?

In the above proofs, we get elementary embeddings j : M → N such that

M = V N
j(κ). It is also worth noting that, on the opposite side of the spec-

trum, it is always possible to get κ-powerset preserving embeddings where

M = HN
κ+ .

Proposition 2.48. If j : M → N is a κ-powerset preserving embedding

of weak κ-models and A ⊆ κ is in M , then there is another κ-powerset

preserving embedding of weak κ-models h : M ′ → N ′ such that A ∈ M ′ and

M ′ = HN ′

κ+ .

Proof. Define M ′ = {x ∈ M | M |= |Trcl(x)| ≤ κ} and N ′ = {x ∈ N | N |=

|Trcl(x)| ≤ j(κ)}. Clearly M ′ is a transitive subclass of M containing A. It

is easy to check that j �M ′ : M ′ → N ′ is a κ-powerset preserving embedding

of κ-models and M ′ = HN ′

κ+ .

2.4 Indestructibility for Ramsey Cardinals

In this section, I will prove some basic indestructibility results for strongly

Ramsey cardinals. These results will be obtained with the usual techniques
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for lifting embeddings. That is, I will start with a ground model having the

embedding property, force with a certain poset and show that the forcing

extension still satisfies the embedding property by lifting the ground model

embedding to the forcing extension. For details about lifting arguments see

[8] (ch. 1). I will make use of the following key lemmas from [8] (ch. 1).

Lemma 2.49 (The Lifting Criterion). Suppose that j : M → N is an ele-

mentary embedding of two models of ZFC− having forcing extensions M [G]

and N [H] by poset P and j(P) respectively. The embedding j lifts to an

embedding j : M [G]→ N [H] with j(G) = H if and only if j′′G ⊆ H.

Thus, whenever we want to lift an embedding j : M → N , we are always

looking for an N -generic filter H such that j′′G ⊆ H.

Lemma 2.50 (The Diagonalization Criterion). If P is a poset in a model M

of ZFC− and for some cardinal δ the following criterion are satisfied,

1. M<δ ⊆M ,

2. P is ≤ δ-closed in M ,

3. M has at most δ many antichains of P,

then there is an M-generic filter for P.
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Lemma 2.51 (Ground Closure Criterion). Suppose that M ⊆ V is a model

of ZFC−, M<δ ⊆M , and there is in V , an M-generic filter H ⊆ P for poset

P ∈M . Then M [H]<δ ⊆M [H]. The same statement holds for M δ ⊆M .

Lemma 2.52 (Generic Closure Criterion). Suppose that M ⊆ V is a model

of ZFC−, M<δ ⊆ M , and P ∈ M has δ-c.c.. If G ⊆ P is V -generic, then

M [G]<δ ⊆M [G] in V [G]. The same statement holds for M δ ⊆M under the

assumption that P has δ+-c.c..

A forcing iteration P is said to have Easton support if direct limits are

taken at inaccessible cardinals and inverse limits are taken everywhere else.

If δ and γ are cardinals, I will call Add(δ, γ) the poset that adds γ many

subsets to δ with conditions of size less than δ.

Theorem 2.53. If κ is a strongly Ramsey cardinal, then this is preserved in

a forcing extension by the class forcing of the GCH.

Proof. Let P be the Ord-length Easton support iteration where at stage

α if α is an infinite cardinal in V Pα , we force with Add(α+, 1), and with

the trivial poset otherwise. The poset P forces ZFC + GCH [8] (ch. 2). It

is clearly enough in our case to consider Pκ, the iteration up to κ, since

the forcing above κ is ≤ κ-closed, and therefore cannot destroy the strong

Ramsey embedding property. Let G ⊆ Pκ be V -generic. We need to show
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that κ has the strong Ramsey embedding property in V [G]. Fix A ⊆ κ in

V [G] and let Ȧ be a nice Pκ-name such that ȦG = A. Observe that since we

take direct limits at inaccessible stages, we can regard Pκ as being a subset of

Vκ, and therefore Ȧ ∈ Hκ+ . Fix a κ-model M containing Ȧ and Pκ for which

there exists a κ-powerset preserving j : M → N . By Proposition 2.9, we can

assume that N is also a κ-model. The strategy will be to lift j to M [G] in

V [G]. Since Ȧ ∈M , clearly A will be in M [G]. Also since Pκ has κ-c.c. (see

[8], ch. 2 for chain conditions of Easton support iterations), by the generic

closure criterion, we will have M [G]<κ ⊆ M [G] in V [G]. Thus, we will be

done if we can lift the embedding j to M [G] and show that the lift is still

κ-powerset preserving in V [G]. To do this we first need to find an N -generic

filter H for j(Pκ) containing j′′G. Elements of Pκ have bounded support in

κ, and so elements of j′′G are simply elements of G with trivial coordinates

stretching until j(κ). Since M and N agree on the definition of Pκ, we can

factor j(Pκ) = Pκ ∗ Ṗtail. Observe that if we can find an N [G]-generic filter

Gtail for (Ṗtail)G = Ptail, the filter G ∗ Gtail will contain j′′G and we can lift

j by the lifting criterion. I will show that Gtail exists by showing that N [G]

and Ptail satisfy the requirements of the diagonalization criterion in V [G].

By the generic closure criterion, we have N [G]<κ ⊆ N [G]. We assumed N to

have size κ, and therefore N [G] has size κ as well. So N [G] contains at most
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κ many antichains of Ptail. Finally, by analyzing the GCH forcing iteration,

it is clear that N |= “Ptail is ≤ κ-closed” since the first nontrivial forcing in

Ptail is Add(κ+, 1). So in V [G], we have j : M [G] → N [G][Gtail]. The final

step is to show that the lift of j is still κ-powerset preserving. The model

N [G] satisfies that Ptail is ≤ κ-closed, and therefore the subsets of κ are the

same for N [G] and N [G][Gtail]. It remains to show that M [G] and N [G]

have the same subsets of κ. Let B ∈ N [G] be a subset of κ. Let Ḃ ∈ N

be a nice Pκ-name for B, then |Trcl(Ḃ)| ≤ κ, and therefore by the powerset

preservation property, Ḃ ∈ M . It follows that B ∈ M [G], completing the

argument.

Next, I will show that strongly Ramsey cardinals can have fast functions.

A fast function is a generic function that acts like the Laver function on

a supercompact cardinal. It is also similar to a diamond sequence in that

it exhibits all possible behavior below κ. For a cardinal κ, the fast function

forcing Fκ consists of conditions that are partial functions p ... κ→ κ such that

γ ∈ dom(p) implies p′′γ ⊆ γ, and for every inaccessible cardinal γ ≤ κ, we

have |dom(p � γ)| < γ. The ordering is inclusion. The union f ...κ→ κ of the

generic filter for Fκ is called a fast function. Observe that if κ is inaccessible,

the forcing Fκ ⊆ Vκ.
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For any γ < κ, define F[γ,κ) to be the set of all p ∈ Fκ whose domain

is contained in [γ, κ). If p ∈ Fκ, define the poset Fκ � p to be Fκ below

p. A useful fact about the fast function forcing is that for any p ∈ Fκ and

γ ∈ dom(p), the poset Fκ � p is isomorphic to Fγ � (p � γ)×F[γ,κ) � (p � [γ, κ)).

This basically tells us that the poset Fκ can be viewed as a product. For

example, if γ ≤ α and p = {〈γ, α〉}, then Fκ factors as Fγ × F(α,κ). Observe

that in this case the second factor F(α,κ) is clearly ≤ α-closed. For a detailed

analysis of the fast function forcing, see [8] (ch. 2).

Theorem 2.54. If κ is a strongly Ramsey cardinal, then this is preserved in

a forcing extension V [f ] by the fast function forcing. Moreover, if j : M → N

is any κ-powerset preserving embedding of κ-models and θ < j(κ), then

there is a κ-powerset preserving lift of j to j : M [f ] → N [j(f)] such that

j(f)(κ) = θ.

Proof. Let f be a V -generic fast function. Fix any κ-powerset preserving

embedding of κ-models j : M → N in V and θ < j(κ). Since Fκ is a

definable subset of Vκ and Vκ ∈M , we get that Fκ ∈M by Separation. First,

we need to verify that M [f ]<κ ⊆M [f ] in V [f ]. I will show that for arbitrarily

large inaccessible cardinals α < κ, we have M [f ]α ⊆M [f ] in V [f ]. It will be

useful to observe that the sets Dβ = {p ∈ Fκ | ∃α > β α is inaccessible and
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α /∈ dom(f)} are dense in Fκ. To see this, fix q ∈ Fκ and choose some

β < α < γ above the domain of q such that α is inaccessible. Let p =

q ∪ {〈β, γ〉}, then p ≤ q and α /∈ dom(p). Now given β < κ, let α > β be

some inaccessible not in the domain of f . By density, this implies that there

is γ < α in the domain of f such that f(γ) = δ > α. Let p be a condition in

the generic containing 〈γ, δ〉. Below p, the poset Fκ factors as Fγ×F(δ,κ). Let

f = fγ × f(δ,κ). We need to show that M [fγ][f(δ,κ)]
α ⊆ M [fγ][f(δ,κ)] in V [f ].

By the generic closure criterion, M [fγ]
α ⊆M [fγ] in V [fγ] since Fγ is clearly

α+-c.c.. Also since F(δ,κ) is ≤ α-closed, M [fγ]
α ⊆ M [fγ] in V [f ]. Finally,

by the ground closure criterion, M [fγ][f(δ,κ)]
α ⊆ M [fγ][f(δ,κ)] in V [f ]. Next,

we lift the embedding j. According to N , the poset j(Fκ) = Fj(κ) is the

poset to add a fast function on j(κ). The condition p = 〈κ, θ〉 is clearly an

element of Fj(κ), and so we can factor Fj(κ) below p to get Fκ × F(κ,j(κ)) � p.

Let F(κ,j(κ)) � p = Ftail. Our strategy will be to find an N -generic filter for

Fκ × Ftail containing j′′f = f . The condition p will then be in its upward

closure, guaranteeing that j(f)(k) = θ. Since Fκ×Ftail is a product, the order

in which we force does not matter. It suffices to find an N -generic filter for

Ftail in V since we already have f being V -generic for the Fκ part of the

forcing. We verify the diagonalization criterion for N and Ftail in V . Recall

that N is a κ-model by assumption. It remains to note that in N , the poset
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Ftail is ≤ κ-closed by our observations above. So in V , there is an N -generic

filter ftail for Ftail. Therefore we can lift j : M → N to j : M [f ]→ N [f ][ftail]

in V [f ]. Since f ×ftail = j(f), we have j(f)(κ) = θ. It remains to check that

the lift of j is still κ-powerset preserving. Since Ftail is ≤ κ-closed, there are

no new subsets of κ in N [ftail], and so M and N [ftail] have the same subsets

of κ. Fix B ⊆ κ in N [ftail][f ]. Let Ḃ be a nice Fκ-name for B in N [ftail],

then |Trcl(Ḃ)| ≤ κ. By the previous observation, Ḃ ∈ M . It follows that

B ∈M [f ], completing the argument.

It follows from the method of iterating ultrapowers (see Section 2.5) that

if κ is strongly Ramsey, then for every A ⊆ κ, there exists a κ-powerset

preserving j : M → N with N arbitrarily large.

Question 2.55. Theorem 2.54 shows that we can lift every κ-powerset pre-

serving embedding of κ-models in the forcing extension V [f ] by Fκ. Can we

lift a κ-powerset preserving j : M → N where M is a κ-model but N has

size larger than κ?

Let κ be a cardinal. A slim κ-Kurepa tree is a κ-tree with at least κ+

many branches in which every level α ≥ ω has size at most |α|. For every

inaccessible cardinal, the tree 2<κ is a κ-Kurepa tree but not slim. So the

addition of the slimness requirement is an attempt to make the existence
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of Kurepa trees a meaningful question for large cardinals. We know that if

κ is a measurable cardinal, then there cannot exist a slim κ-Kurepa tree.

Ineffable cardinals also cannot have slim Kurepa trees (See [2], p. 317).

Theorem 2.56 (with T. Johnstone and J. Reitz). It is relatively consistent

with ZFC that κ is strongly Ramsey and there exists a slim κ-Kurepa tree.

Proof. For an inaccessible κ, I will define a poset S which adds a slim κ-

Kurepa tree. The elements of S are ordered triples 〈T, f, g〉 having the prop-

erties:

1. T ⊆ κ is a normal slim β-tree for some ordinal β < κ.

2. f : T → [T ] such that α ∈ f(α) for all α ∈ T .

3. g ... κ+ → [T ] has domain of size at most |β|.

We define 〈T ′, f ′, g′〉 < 〈T, f, g〉 in S if:

1. T ′ end-extends T and T ′ 6= T .

2. For all α ∈ T , the branch f ′(α) extends f(α).

3. For all α ∈ dom(g), the branch g′(α) extends g(α).

Lemma 2.56.1. The poset S has size κ+, it is < κ-closed, and has κ+-c.c..
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Proof. Fixing β < κ, we see that there are at most κ|β| = κ many β-trees

whose universe is a subset of κ. This is true since κ was assumed to be

inaccessible. Also there are κ many f and κ+ many g for every T . It follows

that S has size κ+.

Next, we check that S is < κ-closed. Let δ < κ and 〈〈Tα, fα, gα〉 | α < δ〉

be a strictly decreasing sequence of conditions in S. Suppose that each Tα is a

γα-tree. We need to find a lower bound for this sequence. Define T = ∪α<δTα

and let γ be the height of T . Observe that γ = supα<δγα. Clearly T is a slim

γ-tree and γ < κ since κ was assumed to be inaccessible. Define f : T → [T ]

by f(ξ) = ∪β≤α<δfα(ξ) where β is the least ordinal such that ξ ∈ Tβ. Define

g ... κ+ → [T ] such that dom(g)= ∪α<δdom(gα) and for every ξ ∈ dom(g), we

have g(ξ) = ∪β≤α<δgα(ξ) where β is the least ordinal such that ξ ∈ dom(gβ).

To see that |dom(g)| ≤ γ, observe that |dom(gα)| ≤ |γα|, and therefore

|dom(g)| ≤ supα<δ|γα|. Since we assumed that the sequence of conditions is

strictly decreasing, we know each tree is strictly taller than the previous one,

and therefore δ ≤ γ. It follows that supα<δ|γα| ≤ |γ|. Here is precisely where

we need the requirement that strictly stronger conditions have strictly taller

trees. So 〈T, f, g〉 is a lower bound for our sequence.

Finally, let us show that S has κ+-c.c.. Suppose A ⊆ S has size κ+. We

need to show that A cannot be an antichain. Since there are only κ many
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T and κ many f for every fixed T , we can assume without loss of generality

that all elements of A have the same tree T and the same f . Thus, only g

varies. Define X = {dom(g) | g appears in A} and observe that X must have

size κ+ since there are less than κ many g with a fixed domain. Applying a

∆-system argument, we see that, without loss of generality, we can assume

X has a root r. Clearly any two g that agree on r must be compatible and

there are less than κ many ways of defining g on r. We conclude that there

are κ+ many g with the same r, and therefore there are κ+ many compatible

elements in A. Hence A cannot be an antichain.

Thus, the forcing S does not collapse any cardinals. Suppose G ⊆ S is

V -generic. Define T to be the union of T that appear in elements of G.

Since G is a filter, it is clear that T is a slim tree.

Lemma 2.56.2. The tree T is a slim κ-Kurepa tree in V [G].

Proof. For every α < κ, define Dα = {〈T, f, g〉 ∈ S | ht(T ) ≥ α}. I claim that

Dα is dense in S. If this is so, then T will have height κ. Fix 〈T, f, g〉 ∈ S.

If T has height ≥ α, we are done. So suppose the height of T is less than

α. We will build up T to height α recursively. Suppose 〈T, f, g〉 has been

extended to 〈Tβ, fβ, gβ〉 ∈ S with Tβ of height β. If β = γ+ 1, we will extend

Tβ to Tβ+1 of height β + 1 by adding two successor nodes to every node in
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Tβ. Extend fβ and gβ in the obvious fashion to obtain 〈Tβ+1, fβ+1, gβ+1〉. If

β is a limit ordinal, we build Tβ+1 from Tβ by adding a node on level β to

every branch mentioned in fβ and gβ. The function fβ guarantees that the

tree Tβ has many branches, and therefore can be extended to a tree of height

β + 1. Since 〈Tβ, fβ, gβ〉 was an element of S, it follows that the βth level of

Tβ+1 has size at most |β|, and hence Tβ+1 is a slim (β + 1)-tree. Extend fβ

and gβ in the obvious fashion to obtain 〈Tβ+1, fβ+1, gβ+1〉. At limit stages

use the < κ-closure of S. This concludes the proof that T is a slim κ-tree

and it remains to show that T has κ+ many branches. Observe that the sets

Eα = {〈T, f, g〉 ∈ S | α ∈ dom(g)} for α < κ+ are dense in S. This is clear

since we do not require g to be one-to-one. For every α < κ+, we can union

up the g(α) for g appearing in elements of G to get a branch of T . If we can

show that any such two branches are distinct, we will be done. This uses the

fact that S does not collapse any cardinals. Fixing α 6= β ∈ κ+, observe that

it is dense that α and β appear in the domain of g and g(α) 6= g(β). This is

true since we can extend any tree to a successor level and separate the two

branches. Therefore the κ+ many branches obtained from the generic filter

are distinct.

Notice that it is easy to modify S to a poset Q which adds a slim κ-tree
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with κ many branches. It is just necessary to change the definition of g to

g ... κ→ [T ]. The poset Q has size κ.

Next, I define a κ-length Easton support iteration Pκ where at stage α if

α is an inaccessible cardinal in V Pα , we force with the poset Qα which adds a

slim α-tree with α-many branches, and with the trivial poset otherwise. The

iteration Pκ has size κ and κ-c.c. (see [8] for a discussion of chain conditions

of Easton support iterations). Observe that if α < κ is inaccessible, then

we can factor Pκ = Pα ∗ Q̇α ∗ Ṗ(α,κ) where Qα is the poset which adds a

slim α-tree with α many branches. There is a nontrivial forcing at stage α

since forcing with Pα preserves inaccessible cardinals. The poset Pα ∗ Q̇α has

α+-c.c.. If H ⊆ Pα ∗ Q̇α is V -generic, then the poset P(α,κ) = (Ṗ(α,κ))H will

be ≤ α-closed in V [H].

Let Gκ ∗G be V -generic for Pκ ∗ Ṡ. I claim that κ has the strong Ramsey

embedding property in V [Gκ][G] and V [Gκ][G] has a slim κ-Kurepa tree.

It is easy to see that Pκ preserves inaccessible cardinals, and therefore κ

remains inaccessible in V [Gκ]. It follows, by Lemma 2.56.2, that there is a

slim κ-Kurepa tree in V [Gκ][G].

Fix A ⊆ κ in V [Gκ][G] and let Ȧ be a nice Pκ∗ Ṡ-name such that ȦGκ∗G =

A. Since Pκ ∗ Ṡ has κ+-c.c., every antichain in Ȧ has size at most κ, and

therefore Ȧ ∈ Hκ+ . To make all the arguments go through nicely, it will help
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to think of elements of S as coded by subsets of κ+, and therefore names for

elements of Ṡ simply become nice names for subsets of κ+. But now we cannot

use the same techniques we have used before because the poset Pκ ∗ Ṡ does

not have size κ, and therefore cannot be put into a κ-model. This is the extra

difficulty we must overcome. I show how to do that below. Let γ < κ+ such

that γ contains the domain of every g mentioned in Ȧ. Observe that there is

an obvious automorphism of S under which elements with g whose domain is

contained in γ get moved to elements with g whose domain is contained in κ.

The image of Ȧ under this automorphism when interpreted by the image of

the generic filter under the same automorphism will still yield A. Thus, we

can assume without loss of generality that the domain of every g mentioned

in Ȧ is contained in κ. Next, consider {〈T, f, g〉 ∈ S | dom(g) ⊆ κ} and

observe that this is precisely the poset Q defined above which adds a slim

κ-tree with κ many branches. I will argue that it suffices to force with Pκ ∗ Q̇

over M , which has size κ as needed (to see that Pκ ∗ Q̇ has size κ use the

fact that Pκ has κ-c.c.). The following lemma is key to this argument:

Lemma 2.56.3. If G ⊆ S is V -generic, then the restriction of G to Q is

V -generic for Q.

Proof. We need to show that for every dense set D of Q, the intersection
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D ∩ (G � Q) 6= ∅. Given a dense subset D of Q, define D′ = {p ∈ S |

∃q ∈ D p ≤ q}. I claim that D′ is dense in S. If it is so, then we are clearly

done. Fixing p ∈ S, we need to find r ∈ D′ such that r ≤ p. First, we

will build p′ ∈ Q such that for all q ∈ Q below p′, the condition p will be

compatible with q. Once we have such p′, it is easy to find r. To see this,

let q ∈ D below p′. By assumption, q is compatible with p, and hence there

is r below both p and q. But then r ∈ D′. This completes the argument for

the denseness of D′. It remains to construct p′. Let p = 〈T, f, g〉. Define

g′ ... κ+ → [T ] such that for α < κ in the domain of g, we have g′(α) = g(α)

and for α ≥ κ in the domain of g, there is ξ < κ in the domain of g′ such

that g′(ξ) = g(α). That is, we “copied over” branches from g that were on

coordinates greater than κ to coordinates less than κ. Define p′ = 〈T, f, g′〉.

To see that p′ works, fix q = 〈Tq, fq, gq〉 ≤ p′ in Q. We need to show that q

and p are compatible. Define g′′ ... κ+ → [Tq] by g′′(ξ) = gq(ξ) for all ξ < κ

and g′′(ξ) = g(ξ) for all ξ ≥ κ. Observe that each g′′(ξ) is a branch through

Tq since q was below p′ and p′ had all the branches from p “copied over”.

Finally, let S be any proper extension of Tq with g′′ extended to a function

h ...κ+ → [S] and fq extended to a function l : S → [S] in the obvious fashion.

It should now be clear that 〈S, l, h〉 is below both q and p.
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Let H be the restriction of G to Q. The strategy, as hinted above, will

be to find a κ-model M containing Ȧ and Pκ ∗ Q̇ for which there exists a

κ-powerset preserving embedding j : M → N of κ-models. We will lift j to

M [Gκ][H] in V [Gκ][G]. This suffices since clearly ȦGκ∗G = ȦGκ∗H .

Fix a κ-model M containing Pκ ∗ Q̇ and Ȧ for which there exists a κ-

powerset preserving embedding j : M → N of κ-models. First, we will lift

j to M [Gκ] in V [Gκ][G]. To do this, we need to find an N -generic filter for

j(Pκ) containing j′′Gκ as a subset. Observe that j(Pκ) factors as j(Pκ) =

Pκ ∗ Q̇ ∗ Ṗtail. It is key here that at stage κ, in the iteration j(Pκ), we force

with Q̇. We already have a generic filter Gκ ∗ H for Pκ ∗ Q̇ and clearly

j′′G ⊆ Gκ ∗ H. So, as usual, we only need an N [Gκ][H]-generic filter for

Ptail = (Ṗtail)Gκ∗H . Let us verify the diagonalization criterion for N [Gκ][H]

and Ptail in V [Gκ][G]. Since N has size κ, the model N [Gκ][H] has size κ

as well, and therefore can contain at most κ many antichains of Ptail. Also

clearly N [Gκ][H] satisfies that Ptail is ≤ κ-closed. It only requires some work

to show that N [Gκ][H]<κ ⊆ N [Gκ][H] in V [Gκ][G]. Fix an inaccessible α < κ

and factor Pκ = Pα ∗ Q̇α ∗ Ṗ(α,κ). Since Pα ∗ Q̇α has α+-c.c., by the generic

closure criterion, N [G � (Pα ∗ Q̇α)]α ⊆ N [G � (Pα ∗ Q̇α)] in V [G � (Pα ∗ Q̇α)].

The remaining part of the forcing is ≤ α-closed, and so N [G � (Pα ∗ Q̇α)]α ⊆

N [G � (Pα ∗ Q̇α)] in V [Gκ]. Thus, N [G � (Pα ∗ Q̇α)]<κ ⊆ N [G � (Pα ∗ Q̇α)] in
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V [Gκ]. By the ground closure criterion, it follows that N [Gκ]
<κ ⊆ N [Gκ] in

V [Gκ]. The poset S is < κ-closed, and hence N [Gκ]
<κ ⊆ N [Gκ] in V [Gκ][G].

Finally, by the ground closure criterion again, N [Gκ][H]<κ ⊆ N [Gκ][H] in

V [Gκ][G]. Since we verified the diagonalization criterion, we can conclude

that V [Gκ][G] has an N [Gκ][H]-generic filter Gtail for Ptail. So letting j(Gκ) =

Gκ ∗H ∗Gtail, we are able to lift j to j : M [Gκ]→ N [j(Gκ)] in V [Gκ][G].

Next, we must lift j to M [Gκ][H]. For this step, we need to find an

N [j(Gκ)]-generic filter for the poset j(Q) containing j′′H = H as a subset.

By elementarity, N [j(Gκ)] thinks that j(Q) is the poset to add a slim j(κ)-

tree with j(κ) many branches. Observe that by our choice of a generic filter

for j(Pκ), the set H ∈ N [j(Gκ)]. Using H, we can define 〈T ,F ,G〉 where T

is the slim κ-tree that is the union of the trees in H, the function F is the

union of the f that appear in H, and the function G is the union of the g that

appear in H. Clearly 〈T ,F ,G〉 is an element of j(Q) and a master condition

for our lift. That is, we will build a generic filter for j(Q) by diagonalization

below the condition 〈T ,F ,G〉 to ensure that j′′H = H is contained in it.

So we have to verify the diagonalization criterion for j(Q) and N [j(Gκ)] in

V [Gκ][G]. Once again, the model N [j(Gκ)] has size κ and thinks that j(Q) is

< j(κ)-closed. We only need to verify the closure. By the previous argument,

N [Gκ][H]<κ ⊆ N [Gκ][H] in V [Gκ][G]. By the ground closure criterion, we
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can extend this to N [j(Gκ)]
<κ ⊆ N [j(Gκ)] in V [Gκ][G]. Since we verified the

diagonalization criterion, we can conclude that V [Gκ][G] has an N [j(Gκ)]-

generic filter for j(Q). So we can lift j to j : M [Gκ][H] → N [j(Gκ)][j(H)].

By the arguments already used, it is easy to see that M [Gκ][H] is a κ-model.

To finish the argument, it only remains to check that the lift of j is κ-

powerset preserving. The model N [j(Gκ)] satisfies that j(Q) is < j(κ)-closed,

and therefore the subsets of κ are the same for N [j(Gκ)] and N [j(Gκ)][j(H)].

Also the last factor Ptail of j(Pκ) is ≤ κ-closed, and therefore the subsets of

κ are the same for N [j(Gκ)] and N [Gκ][H]. We are left with showing that

M [Gκ][H] and N [Gκ][H] have the same subsets of κ. Fix B ⊆ κ in N [Gκ][H]

and let Ḃ be a nice Pκ∗Q̇-name for B in N . Clearly |Trcl(Ḃ)| ≤ κ in N , and

therefore Ḃ ∈ M as well. It follows that B ∈ M [Gκ][H], which completes

the argument that the lift of j is a κ-powerset preserving embedding.

Corollary 2.57. It is relatively consistent with ZFC that κ is Ramsey and

there exists a slim κ-Kurepa tree.

Corollary 2.58. It is relatively consistent with ZFC that there is a strongly

Ramsey cardinal that is not ineffable.

Proof. An ineffable cardinal cannot have a slim Kurepa tree [2]. But we just

showed that it is relatively consistent that there is a strongly Ramsey cardinal



CHAPTER 2. RAMSEY-LIKE EMBEDDING PROPERTIES 135

κ having a slim κ-Kurepa tree. This cardinal cannot be ineffable.

The first two results about the GCH and the generic fast function extend

to cardinals with the super Ramsey embedding property as well. This is easy

to see once we have the lemmas below.

Lemma 2.59. For every poset P ∈ Hλ and every V -generic G ⊆ P, we have

H
V [G]
λ = Hλ[G].

Proof. I will begin by showing that the statement holds for regular λ. So

assume that λ is regular. I will show that if p ∈ P and p 
 |Trcl(τ)| < λ,

then there exists σ ∈ Hλ such that p 
 τ = σ. I will argue by induction on

the rank of τ . So suppose that the statement holds for all P-names τ with

rank α < β. Fix p ∈ P and τ of rank β such that p 
 |Trcl(τ)| < λ. Since

|P| < λ and λ is regular, there is γ < λ such that p 
 |Trcl(τ)| ≤ γ. It follows

that there is a nice P-name Ȧ ∈ Hλ for a subset of γ× γ such that p 
 “Ȧ is

well-founded and π̇ : 〈γ, Ȧ〉 → Trcl(τ) is the Mostowski collapse”. We will

construct a P-name σ ∈ Hλ such that p 
 τ = σ. For every q ≤ p and every

ξ ∈ γ, check if q 
 π̇(ξ) = ρ for some ρ in the domain of τ . If this is the case,

we choose one such ρ. By the inductive assumption, there is a µ ∈ Hλ such

that q 
 µ = ρ since ρ has rank less than β and q 
 ρ ∈ τ . Choose one such µ

and put the pair 〈q, µ〉 into σ. Since P ∈ Hλ and each µ ∈ Hλ, it is clear that
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the name σ will be in Hλ. I will show that if H ⊆ P is V -generic and p ∈ H,

then τH = σH , from which it will follow that p 
 τ = σ. Let x ∈ σH , then

there is 〈q, ν〉 ∈ σ such that x = νH and q ∈ H. It follows, by construction,

that there is some ξ ∈ γ such that q 
 π̇(ξ) = ν. But since q ∈ H, it really

is true that π̇H(ξ) = νH , and hence νH ∈ τH . So σH ⊆ τH . Suppose that

x ∈ τH , then there is 〈r, ν〉 ∈ τ such that x = νH and r ∈ H. Find q in H

below both r and p such that q 
 π̇(ξ) = ν for some ξ ∈ γ. Since ν is in

the domain of τ , there is another name ζ ∈ Hλ such that q 
 π̇(ξ) = ζ and

〈q, ζ〉 ∈ σ. But then clearly ζH = νH = x ∈ σ. So τH ⊆ σH . This completes

the inductive step. It follows that H
V [G]
λ ⊆ Hλ[G]. We still need to show the

inclusion in the other direction. Here we need to show that if τ ∈ Hλ is a

P-name, then |Trcl(τH)| < λ in any generic extension. Again, we argue by

induction on the rank of τ . So suppose that the statement is true for τ of

rank α < β. Fix some τ ∈ Hλ of rank exactly β and a V -generic H ⊆ P.

In V [H], the element τH = {µH | 〈µ, p〉 ∈ τ and p ∈ H}. Since clearly

each µ ∈ Hλ and rank of µ is less than β, by the inductive assumption,

we conclude that |Trcl(µH)| < λ. Now since |H| < λ as well, we see that

|Trcl(τH)| has size less than λ. This completes the inductive step. It follows

that Hλ[G] ⊆ H
V [G]
λ . This finishes the argument for regular λ.

To complete the argument, suppose that λ is singular. Since P ∈ Hλ,
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there is a cardinal γ < λ such that P ∈ Hγ+ . Now observe that H
V [G]
λ =

∪γ<δ<λHV [G]

δ+ . But ∪γ<δ<λHV [G]

δ+ = ∪γ<δ<λHδ+ [G] = Hλ[G].

Lemma 2.60. Suppose P is a poset, G ⊆ P is V -generic, and M ≺ Hλ is

transitive and contains P. Then M [G] ≺ Hλ[G].

Proof. By the Tarski-Vaught test, it suffices to verify that if Hλ[G] |=

∃xϕ(x, a) for some a ∈M , then M has a witness for ϕ(x, a) as well. Suppose

Hλ[G] |= ∃xϕ(x, a) for some a ∈ M . Fix a P-name ȧ such that ȧG = a and

p ∈ G such that Hλ |= “p 
 ∃xϕ(x, ȧ)”. Since P ∈ M and M is transitive,

it follows that p ∈ M as well. But then M [G] |= ∃xϕ(x, a) by the usual

theorems about forcing.

Now the next two theorems follow easily.

Theorem 2.61. If κ is a super Ramsey cardinal, then this is preserved in a

forcing extension by the class forcing of the GCH.

Theorem 2.62. If κ is a super Ramsey cardinal, then this is preserved in a

forcing extension V [f ] by the fast function forcing. Moreover, if j : M → N

is any κ-powerset preserving embedding of κ-models and θ < j(κ), then

there is a κ-powerset preserving lift of j to j : M [f ] → N [j(f)] such that

j(f)(κ) = θ.
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2.5 Iterably Ramsey Cardinals

There are other definitions of large cardinal notions that would fit in well

with the series of definitions in this chapter. Lemma 2.29 shows that given

an ultrapower j : M0 → M1 by a weakly amenable normal M0-ultrafilter on

κ, we can construct a weakly amenable normal M1-ultrafilter on j(κ) and

let M2 be the corresponding ultrapower of M1. If M2 is well-founded, we

repeat the process. We can continue this process for ω many steps, resulting

in the sequence 〈Mn, Un〉 of models with their ultrafilters. At the ωth step,

we can take the direct limit 〈Mω, Uω〉 of these structures. It can be shown

that Uω is a weakly amenable normal Mω-ultrafilter. If Mω is well-founded,

we can collapse it and proceed to iterate further. For the proofs involved in

this construction, see [11] (p. 244). We can continue this process as long

as the iterates are well-founded. It is shown in [11] (p. 244) that if U0 is

ω-closed, then every model in this iteration will, in fact, be well-founded.

It is also known that this assumption is not necessary [11] (p. 256). If

M is a transitive model of ZFC−, I will call an M -ultrafilter U iterable if

it is normal weakly amenable and the construction described above can be

iterated through all ordinals. It was just stated above that every ω-closed

weakly amenable normal M -ultrafilter is iterable. This naturally leads to the
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following large cardinal notion:

Definition 2.63. A cardinal κ is iterably Ramsey if every A ⊆ κ is contained

in a weak κ-model M for which there exists an iterable M -ultrafilter on κ.

Ramsey cardinals would be an example of iterably Ramsey cardinals. It

also easily follows that iterable cardinals imply 0#. It has recently been

shown by Ian Sharpe [24] that iterably Ramsey cardinals are strictly weaker

than Ramsey cardinals. In fact, he showed that a Ramsey cardinal κ is the

κth iterably Ramsey cardinal. Observe that this answers Question 2.23 affir-

matively. Another notion that is closely related to iterably Ramsey cardinals

is the following:

Definition 2.64. A cardinal κ has the High Ramsey Embedding Property

if every A ⊆ κ is contained in a weak κ-model M for which there exist κ-

powerset preserving elementary embeddings jα : M → Nα with OrdNα > α

for all ordinals α. We say that a cardinal is high Ramsey if it has the high

Ramsey embedding property.

It should be clear that iterably Ramsey cardinals are high Ramsey and

high Ramsey cardinals imply 0#.

Question 2.65. Are weakly Ramsey cardinals iterably Ramsey?
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Question 2.66. Are high Ramsey cardinals weaker than iterably Ramsey

cardinals?
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