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This is joint work with Gunter Fuchs and Joel David Hamkins (CUNY).
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Classic Ehrenfeucht’s lemma

Models of arithmetic

Peano Arithmetic

The first-order language of arithmetic is LA = {+, ·, <, 0, 1}.
Peano Arithmetic (PA) is a collection of statements in LA codifying the
fundamental properties of the natural numbers.

I Commutativity and associativity of addition and multiplication, distributive law,
ordering is discrete with least element 0, 0 is the additive identity, etc.

I Induction scheme: for every LA-formula ϕ(x , ~y),

∀~y [(ϕ(0, ~y) ∧ (∀x ϕ(x , ~y)→ ϕ(x + 1, ~y)))→ ∀xϕ(x , ~y)].

PA proves the least-number principle:
every definable (with parameters) set has a <-least element.

The standard model of PA is N.

A countable nonstandard model of PA looks like:

) ( ) ( ) ( ) ( )

N Z Z Z Z

densely many copies of Z
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Classic Ehrenfeucht’s lemma

Models of set theory

Zermelo-Fraenkel set theory (with choice)

The first-order language of set theory is LS = {∈}.
Zermelo-Fraenkel set theory (ZF(C)) is a collection of statements in LS codifying
the fundamental properties of sets.

A model M |= ZF is the union of the von Neumann hierarchy M =
⋃
α∈ORD VM

α :

I VM
0 = ∅,

I VM
α+1 = PM(Vα) (Powerset of VM

α ),

I VM
λ =

⋃
α<λ VM

α for limit ordinals λ.

I If a ∈ M, then rank(a) = α is least such that a ∈ VM
α+1.

...

...

Vω

Vω+1

Vα

Vα+1

M

•
a

Theorem: (Lévy-Montague reflection) For every n, there are unboundedly many
ordinals α in M such that VM

α ≺Σn M.

There is an active exchange of concepts, methods and techniques between model theory
of models of PA and model theory of models of ZF.
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Classic Ehrenfeucht’s lemma

Some general model theory

Suppose M is a first-order structure and P ⊆ M.

Definition:

a 6= b in M are indiscernible if they have the same type:
for every ϕ(x), M |= ϕ(a)↔ ϕ(b).

a 6= b in M are P-indiscernible if they have the same type with parameters from P.

Otherwise they are (P)-discernible.

It is common for models to have indiscernible elements:

A first-order structure (in a countable language) of size greater than 2ω has
indiscernible elements.

A non-rigid first-order structure has indiscernible elements.

If T is a first-order theory with an infinite model, then there are models of T with
sets of indiscernible elements of any cardinality (by compactness).

Victoria Gitman Ehrenfeucht principles in set theory British Logic Colloquium 5 / 23



Classic Ehrenfeucht’s lemma

Ehrenfeucht’s lemma in arithmetic

A powerful tool in model theory of models of PA is

Ehrenfeucht’s lemma: (Ehrenfeucht, ’73) If a 6= b in a model M |= PA and b is
definable from a in M, then a and b are discernible in M.

Here is an application.

Theorem: If M |= PA is the Skolem closure of a single element a ∈ M, then it has no
non-trivial automorphisms.

Proof:

a is the only element of its type by Ehrenfeucht’s lemma.

An automorphism of M must take a to a and therefore fixes everything. �

Note: Given any first-order structure, we can ask if Ehrenfeucht’s lemma holds there.

Question: Does Ehrenfeucht’s lemma hold for models of ZF?
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Classic Ehrenfeucht’s lemma

Proof of Ehrenfeucht’s lemma

Proof: Suppose a 6= b and b is definable from a.
Fix a definable function f (x) such that f (a) = b.

Case 1: a < f (a) = b

G is the graph whose edges are pairs
{x , f (x)} such that x < f (x).

G has an edge between a and b.

G is loop-free.

d(x , y) is the length of the shortest
path between x and y in G , if
connected.

c is <-least in the connected
component of a and b (exists by the
least-number principle).

d(c, a) and d(c, b) differ by 1.

d(c, a) is even iff d(c, b) is odd.

a

b

c

.

.

.
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Classic Ehrenfeucht’s lemma

Proof of Ehrenfeucht’s lemma (continued)

f (x) is a definable function such that f (a) = b.

Case 2: a > f (a) = b

d(x) is the number of times f (x) can be iterated before the values stop decreasing.

d(x) exists by the least-number principle.

d(a) and d(b) differ by 1.

a b = f (a) f (f (a)) f 3(a) f 4(a) f 6(a) f 7(a)

�
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Classic Ehrenfeucht’s lemma

Ordinal definable sets

Suppose M |= ZF and fix a definable bijection F : ORD<ωM 1−1−−→
onto

ORD.

Definition:

A set is ordinal definable if it is definable with ordinal parameters
(using F , we can always assume that there is a single ordinal parameter).

OD is the collection of all ordinal definable sets.

HOD is the collection of all hereditarily ordinal definable sets.

Lemma: A set a ∈ OD iff M satisfies that a is ordinal definable in some Vα.

Proof:
(⇒): If a ∈ OD, then a is defined by the same formula in some Vα (by reflection).

(⇐): Suppose M satisfies that a is defined by pϕ(x , β)q in Vα.
Note that ϕ might be nonstandard. But

ψ(x , pϕq, β, α) := ∃y y = Vα ∧ y |= pϕ(x , β)q

defines a in M. �

Corollary: The collection OD is first-order definable in M.
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Classic Ehrenfeucht’s lemma

A definable well-ordering of OD

Lemma: M has a definable well-ordering < of OD.

Proof: Fix x , y ∈ OD.

x is definable in Vα by pϕ(x , ξ)q, where α and F (pϕq, ξ) are least.

y is definable in Vβ by pψ(x , µ)q, where β and F (pψq, µ) are least.

x < y if α < β or α = β and F (pϕq, ξ) < F (pψq, µ). �

Lemma: HOD is a transitive model of ZFC.

Proof:

Transitivity is by definition.

ZF a is direct verification.

If a ∈ OD, then the well-ordering of OD restricted to a is ordinal definable.
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Classic Ehrenfeucht’s lemma

The axiom: V = HOD

Definition: The axiom V = HOD states that every set is hereditarily ordinal definable.

Corollary: If M |= ZF, then M is a model of V = HOD iff M has a definable
well-ordering.

Proof:
(⇒): M has a definable well-ordering of ordinal definable sets.

(⇐): Assume (wlog) order-type of well-ordering is ORD. Each a ∈ M is the αth-element
for some ordinal α. �
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Classic Ehrenfeucht’s lemma

Ehrenfeucht’s lemma and ordinal definable sets

Theorem: If a 6= b in a model M |= ZF, a is ordinal definable and b is definable from a
in M, then a and b are discernible¸ in M.

“Ehrenfeucht’s lemma holds for ordinal definable sets.”

Proof:

b is ordinal definable.

Use same argument as for models of PA with the well-ordering < of OD-sets. �

Corollary: Ehrenfeucht’s lemma holds for every model of ZF + V = HOD.
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Classic Ehrenfeucht’s lemma

A counterexample to Ehrenfeucht’s lemma

Theorem: (Fuchs, G., Hamkins) If M |= ZFC and M[c] is the Cohen forcing extension,
then there are a 6= b in M[c] such that a and b are inter-definable, but a and b are
M-indiscernible.

Proof:

Poset P to add a Cohen real is isomorphic to finite-support product
∏

i<ω P.

The poset
∏

i<ω P adds ω-many Cohen reals:
I conditions: finite functions p : dom(p)→ <ω2 on ω,
I order: q ≤ p if dom(p) ⊆ dom(q) and for all n ∈ dom(p), q(n) extends p(n).

1 3 6

p

1 3 6

q

8
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Classic Ehrenfeucht’s lemma

A counterexample to Ehrenfeucht’s lemma (continued)

G ⊆
∏

i<ω P is M-generic.

C = {ci | i < ω}.
E = {c2i | i < ω} and O = {c2i+1 | i < ω}.
〈C ,E〉 and 〈C ,O〉 are M-indiscernible.

c1 c3 ci
G

〈ci | i < ω〉

Ċ , Ė , and Ȯ are P-names for C , E , and O.

Suppose M[G ] |= ϕ(〈C ,E〉, d) with d ∈ M. Then there is q  ϕ(〈Ċ , Ė〉, ď) in G .

If i ∈ dom(q) is even/odd, then there is odd/even mi such that q(i) ⊆ cmi .

π : P→ P is an automorphism such that
I π switches even and odd coordinates.
I π(i) = mi for all i ∈ dom(q).

H = π " G is M-generic for
∏

i<ω P and M[G ] = M[H].

q ∈ H.

ĊH = C , ĖH = O, and ȮH = E .

M[H] = M[G ] |= ϕ(〈C ,O〉, d). �
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Classic Ehrenfeucht’s lemma

Is Ehrenfeucht’s lemma equivalent to V = HOD?

Question: If Ehrenfeucht’s lemma holds in M |= ZF(C), is M a model of V = HOD?
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Ehrenfeucht Principles

Ehrenfeucht Principles

Parametric generalizations of Ehrenfeucht’s lemma.

Definition: (Fuchs, G., Hamkins) Let M |= ZF and let A,P,Q ⊆ M. The principle
EL(A,P,Q) for M asserts that if a ∈ A, a 6= b, and b is definable in M from a with
parameters from P, then a and b are Q-discernible.

“P-definability from A implies Q-discernibility.”

Observation:

EL(M, ∅, ∅) is Ehrenfeucht’s lemma.

EL(OD, ∅, ∅) holds for every M |= ZF.

EL(M[c], ∅,M) fails in every Cohen forcing extension M[c].

EL(M, ∅, ∅) implies EL(M,P,P) for every P.

EL(A,P,Q) gets stronger if A,P are enlarged or Q is diminished.
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Ehrenfeucht Principles

Interesting Ehrenfeucht principles
Suppose M |= ZF.

EL(M,ORD,ORD)

If a 6= b and b is definable from a with ordinal parameters, then a and b are
ORD-discernible.

First-order expressible (similar argument to definability of OD).

EL(M,M, ∅)
M contains no indiscernibles.

(Leibniz) Identity of Indiscernibles: any two objects differ on some property.

(Enayat) M is Leibnizian.

Theorem: (Enayat, ’04) There are uncountable Leibnizian models of set theory.

Theorem: (Mycielski, ’95) A theory T extending ZF has a Leibnizian model iff T
proves the Leibniz-Mycielski axiom (next slide).

EL(M,M,ORD)

Any a 6= b are ORD-discernible.

First-order expressible.
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Liebniz-Mycielski axiom

Leibniz-Mycielski axiom

Leibniz-Mycielski axiom (LM): (Mycielski, ’95) If a 6= b in M |= ZF, then a and b are
discernible in some Vα.

Observation: Suppose M |= ZF.

LM is equivalent to EL(M,M,ORD).

Proof: Fix a 6= b.

(⇒): Suppose LM holds.
I Vα |= ϕ(a) ∧ ¬ϕ(b).
I ψ(x , α) := ∃y y = Vα ∧ y |= ϕ(x).
I M |= ψ(a, α) ∧ ¬ψ(b, α).

(⇐): Suppose EL(M,M,ORD) holds.
I M |= ϕ(a, β) ∧ ¬ϕ(b, β) for some ordinal β.
I Vγ |= ϕ(a, β) ∧ ¬ϕ(b, β) (by reflection).
I δ codes 〈β, γ〉.
I γ, β are definable in Vδ+1 without parameters.
I a and b are discernible in Vδ+1. �
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Liebniz-Mycielski axiom

Leibniz-Mycielski axiom (continued)

Corollary:

LM is first-order expressible.

LM is equivalent to LM∗: If a 6= b in M |= ZF, then M satisfies that a and b are
discernible in some Vα.

Observation: V = HOD→ LM over ZF.

Question: Is LM equivalent to V = HOD over ZF(C)?
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Liebniz-Mycielski axiom

Leibniz-Mycielski axiom (continued)

Theorem: (Enayat, ’04) M |= ZF + LM iff M has a definable injection from M into
subsets of ordinals

F : M
1−1−−→ <ORD2.

Proof:
(⇒): Suppose LM holds.

Fix a set a. Let βa be least above rank(a) such that Vβa ≺Σ2 M.

Ta consists of pairs 〈pϕq, α〉 such that Vα |= pϕ(a)q for some α < βa.

Suppose a 6= b and (wlog) rank(a) ≤ rank(b).

Vγ |= ϕ(a) ∧ ¬ϕ(b) for some γ < βb.

〈p¬ϕq, γ〉 is in Tb but not in Ta.

Ta 6= Tb.

F (a) = Ta (viewed as subset of ordinals via coding).

(⇐): Suppose F : M
1−1−−→ <ORD2 and a 6= b. Then (wlog) α ∈ F (a), but α /∈ F (b). �
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Liebniz-Mycielski axiom

LM and choice principles

Corollary: If M |= ZF + LM, then M has a definable linear ordering.

Proof: <ORD2 is linearly ordered lexicographically. �

The existence of a definable linear ordering is a weak global choice principle.

Theorem: (Easton, ’64) There are models of ZFC without a definable linear ordering.

Proof: Consider the class forcing extension V [G ], where a Cohen subset is added to
every regular cardinal. �.

Question: Are there models of ZFC having a definable linear ordering, but no definable
well-ordering (V = HOD fails)?

Question: Is LM equivalent over ZF(C) to the existence of a definable linear ordering?
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Liebniz-Mycielski axiom

LM and choice principles (continued)

Theorem: (Solovay, ’04) LM does not imply (even countable) AC over ZF.

Proof: Similar to Cohen’s argument that countable AC fails in L({ci | i < ω}), where ci
are the Cohen reals explicitly added by

∏
i<ω P. But uses Jensen reals.

Work in L.

Jensen forcing Q:
I A subposet of Sacks forcing which has the ccc in L (constructed using ♦).
I Adds a unique Q-generic real over L.
I The collection of all Jensen reals in any V is Π1

2-definable.

Q∗ =
∏

i<ω Q (finite-support).

Theorem: (Kanovei, ’14) If G ⊆ Q∗ is L-generic, then the Jensen reals {ci | i < ω}
added explicitly by G are the only Jensen reals in L[G ].

Consider L(C), where C = {ci | i < ω}.
I countable AC fails in L(C).
I C is definable in L(C) (as the collection of all Jensen reals).
I Every set in L(C) is ordinal definable from a unique minimal finite subset of C .
I L(C) has a definable injection into subsets of ordinals.
I L(C) is a model of LM. �
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Liebniz-Mycielski axiom

Questions

Question: Suppose V |= ZFC. Which arrows reverse?

V = HOD

Ehrenfeucht’s lemma holds for V

V = HOD

Leibniz-Mycielski axiom

V has a definable linear order

Thank you!
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