Ehrenfeucht principles in set theory

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

> British Logic Colloquium September 3, 2015

This is joint work with Gunter Fuchs and Joel David Hamkins (CUNY).

2

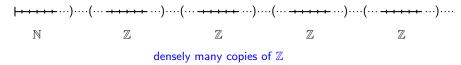
Models of arithmetic

Peano Arithmetic

- The first-order language of arithmetic is $\mathcal{L}_A = \{+, \cdot, <, 0, 1\}.$
- Peano Arithmetic (PA) is a collection of statements in \mathcal{L}_A codifying the fundamental properties of the natural numbers.
 - Commutativity and associativity of addition and multiplication, distributive law, ordering is discrete with least element 0, 0 is the additive identity, etc.
 - Induction scheme: for every \mathcal{L}_A -formula $\varphi(x, \vec{y})$,

 $\forall \vec{y} [(\varphi(0, \vec{y}) \land (\forall x \, \varphi(x, \vec{y}) \rightarrow \varphi(x + 1, \vec{y}))) \rightarrow \forall x \varphi(x, \vec{y})].$

- PA proves the least-number principle: every definable (with parameters) set has a <-least element.
- \bullet The standard model of PA is $\mathbb{N}.$
- A countable nonstandard model of PA looks like:

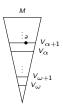


イロト 不得下 イヨト イヨト 二日

Models of set theory

Zermelo-Fraenkel set theory (with choice)

- The first-order language of set theory is $\mathcal{L}_S = \{\in\}$.
- Zermelo-Fraenkel set theory (ZF(C)) is a collection of statements in \mathcal{L}_S codifying the fundamental properties of sets.
- A model $M \models \text{ZF}$ is the union of the von Neumann hierarchy $M = \bigcup_{\alpha \in \text{ORD}} V_{\alpha}^{M}$:
- $\blacktriangleright V_0^M = \emptyset,$
- $V^M_{lpha+1}=P^M(V_lpha)$ (Powerset of V^M_lpha),
- $V_{\lambda}^{M} = \bigcup_{\alpha < \lambda} V_{\alpha}^{M}$ for limit ordinals λ .
- If $a \in M$, then rank $(a) = \alpha$ is least such that $a \in V_{\alpha+1}^M$.



• **Theorem**: (Lévy-Montague reflection) For every *n*, there are unboundedly many ordinals α in *M* such that $V_{\alpha}^{M} \prec_{\Sigma_{n}} M$.

There is an active exchange of concepts, methods and techniques between model theory of models of PA and model theory of models of ZF.

Some general model theory

Suppose *M* is a first-order structure and $P \subseteq M$.

Definition:

- a ≠ b in M are indiscernible if they have the same type: for every φ(x), M ⊨ φ(a) ↔ φ(b).
- $a \neq b$ in *M* are *P*-indiscernible if they have the same type with parameters from *P*.
- Otherwise they are (*P*)-discernible.

It is common for models to have indiscernible elements:

- A first-order structure (in a countable language) of size greater than 2^ω has indiscernible elements.
- A non-rigid first-order structure has indiscernible elements.
- If T is a first-order theory with an infinite model, then there are models of T with sets of indiscernible elements of any cardinality (by compactness).

Ehrenfeucht's lemma in arithmetic

A powerful tool in model theory of models of $\operatorname{P\!A}$ is

Ehrenfeucht's lemma: (Ehrenfeucht, '73) If $a \neq b$ in a model $M \models PA$ and b is definable from a in M, then a and b are discernible in M.

Here is an application.

Theorem: If $M \models PA$ is the Skolem closure of a single element $a \in M$, then it has no non-trivial automorphisms.

Proof:

- *a* is the only element of its type by Ehrenfeucht's lemma.
- An automorphism of M must take a to a and therefore fixes everything. \Box

Note: Given any first-order structure, we can ask if Ehrenfeucht's lemma holds there.

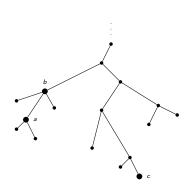
Question: Does Ehrenfeucht's lemma hold for models of ZF?

Proof of Ehrenfeucht's lemma

Proof: Suppose $a \neq b$ and b is definable from a. Fix a definable function f(x) such that f(a) = b.

Case 1: a < f(a) = b

- G is the graph whose edges are pairs $\{x, f(x)\}$ such that x < f(x).
- G has an edge between a and b.
- G is loop-free.
- d(x, y) is the length of the shortest path between x and y in G, if connected.
- c is <-least in the connected component of a and b (exists by the least-number principle).
- d(c, a) and d(c, b) differ by 1.
- d(c, a) is even iff d(c, b) is odd.

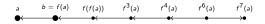


Proof of Ehrenfeucht's lemma (continued)

f(x) is a definable function such that f(a) = b.

Case 2: a > f(a) = b

- d(x) is the number of times f(x) can be iterated before the values stop decreasing.
- d(x) exists by the least-number principle.
- d(a) and d(b) differ by 1.



Ordinal definable sets

Suppose $M \models \text{ZF}$ and fix a definable bijection $F : \text{ORD}^{<\omega^M} \xrightarrow[]{1-1}{} \text{ORD}.$

Definition:

- A set is ordinal definable if it is definable with ordinal parameters (using *F*, we can always assume that there is a single ordinal parameter).
- OD is the collection of all ordinal definable sets.
- HOD is the collection of all hereditarily ordinal definable sets.

Lemma: A set $a \in OD$ iff M satisfies that a is ordinal definable in some V_{α} .

Proof:

 (\Rightarrow) : If $a \in OD$, then a is defined by the same formula in some V_{α} (by reflection).

(\Leftarrow): Suppose *M* satisfies that *a* is defined by $\lceil \varphi(x,\beta) \rceil$ in V_{α} . Note that φ might be nonstandard. But

$$\psi(x, \ulcorner \varphi \urcorner, \beta, \alpha) := \exists y \ y = V_{\alpha} \land y \models \ulcorner \varphi(x, \beta) \urcorner$$

defines a in M.

Corollary: The collection OD is first-order definable in M.

3

A definable well-ordering of OD

Lemma: *M* has a definable well-ordering < of OD.

Proof: Fix $x, y \in OD$.

- x is definable in V_{α} by $\lceil \varphi(x,\xi) \rceil$, where α and $F(\lceil \varphi \rceil,\xi)$ are least.
- y is definable in V_{β} by $\lceil \psi(x,\mu) \rceil$, where β and $F(\lceil \psi \rceil,\mu)$ are least.

x < y if $\alpha < \beta$ or $\alpha = \beta$ and $F(\ulcorner \varphi \urcorner, \xi) < F(\ulcorner \psi \urcorner, \mu)$. \Box

Lemma: HOD is a transitive model of ZFC.

Proof:

- Transitivity is by definition.
- ZF a is direct verification.
- If $a \in OD$, then the well-ordering of OD restricted to a is ordinal definable.

The axiom: V = HOD

Definition: The axiom V = HOD states that every set is hereditarily ordinal definable.

Corollary: If $M \models ZF$, then M is a model of V = HOD iff M has a definable well-ordering.

Proof:

 (\Rightarrow) : *M* has a definable well-ordering of ordinal definable sets.

(\Leftarrow): Assume (wlog) order-type of well-ordering is ORD. Each $a \in M$ is the α th-element for some ordinal α . \Box

Ehrenfeucht's lemma and ordinal definable sets

Theorem: If $a \neq b$ in a model $M \models ZF$, *a* is ordinal definable and *b* is definable from *a* in *M*, then *a* and *b* are discernible in *M*.

"Ehrenfeucht's lemma holds for ordinal definable sets."

Proof:

- *b* is ordinal definable.
- $\bullet\,$ Use same argument as for models of $\rm PA$ with the well-ordering < of $\rm OD\text{-sets.}$ $\Box\,$

Corollary: Ehrenfeucht's lemma holds for every model of ZF + V = HOD.

A counterexample to Ehrenfeucht's lemma

Theorem: (Fuchs, G., Hamkins) If $M \models \text{ZFC}$ and M[c] is the Cohen forcing extension, then there are $a \neq b$ in M[c] such that a and b are inter-definable, but a and b are *M*-indiscernible.

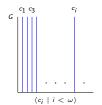
Proof:

- Poset \mathbb{P} to add a Cohen real is isomorphic to finite-support product $\prod_{i < \omega} \mathbb{P}$.
- The poset $\prod_{i < \omega} \mathbb{P}$ adds ω -many Cohen reals:
 - conditions: finite functions $p: dom(p) \rightarrow {}^{<\omega}2$ on ω ,
 - ▶ order: $q \le p$ if dom $(p) \subseteq$ dom(q) and for all $n \in$ dom(p), q(n) extends p(n).

< ロ > < 同 > < 三 > < 三

A counterexample to Ehrenfeucht's lemma (continued)

- $G \subseteq \prod_{i < \omega} \mathbb{P}$ is *M*-generic.
- $C = \{c_i \mid i < \omega\}.$
- $E = \{c_{2i} \mid i < \omega\}$ and $O = \{c_{2i+1} \mid i < \omega\}.$
- $\langle C, E \rangle$ and $\langle C, O \rangle$ are *M*-indiscernible.



- \dot{C} , \dot{E} , and \dot{O} are \mathbb{P} -names for C, E, and O.
- Suppose $M[G] \models \varphi(\langle C, E \rangle, d)$ with $d \in M$. Then there is $q \Vdash \varphi(\langle \dot{C}, \dot{E} \rangle, \check{d})$ in G.
- If $i \in \text{dom}(q)$ is even/odd, then there is odd/even m_i such that $q(i) \subseteq c_{m_i}$.
- $\pi:\mathbb{P}\to\mathbb{P}$ is an automorphism such that
 - π switches even and odd coordinates.
 - $\pi(i) = m_i$ for all $i \in \text{dom}(q)$.
- $H = \pi$ " G is M-generic for $\prod_{i < \omega} \mathbb{P}$ and M[G] = M[H].
- $q \in H$.
- $\dot{C}_H = C$, $\dot{E}_H = O$, and $\dot{O}_H = E$.
- $M[H] = M[G] \models \varphi(\langle C, O \rangle, d).$

Is Ehrenfeucht's lemma equivalent to V = HOD?

Question: If Ehrenfeucht's lemma holds in $M \models ZF(C)$, is M a model of V = HOD?

æ

・ロト ・回ト ・ヨト ・ヨト

Ehrenfeucht Principles

Parametric generalizations of Ehrenfeucht's lemma.

Definition: (Fuchs, G., Hamkins) Let $M \models ZF$ and let $A, P, Q \subseteq M$. The principle EL(A, P, Q) for M asserts that if $a \in A$, $a \neq b$, and b is definable in M from a with parameters from P, then a and b are Q-discernible.

"P-definability from A implies Q-discernibility."

Observation:

- $EL(M, \emptyset, \emptyset)$ is Ehrenfeucht's lemma.
- EL(OD, \emptyset , \emptyset) holds for every $M \models ZF$.
- $EL(M[c], \emptyset, M)$ fails in every Cohen forcing extension M[c].
- $EL(M, \emptyset, \emptyset)$ implies EL(M, P, P) for every *P*.
- EL(A, P, Q) gets stronger if A, P are enlarged or Q is diminished.

Interesting Ehrenfeucht principles Suppose $M \models ZF$.

EL(M, ORD, ORD)

- If $a \neq b$ and b is definable from a with ordinal parameters, then a and b are ORD-discernible.
- First-order expressible (similar argument to definability of OD).

 $\operatorname{EL}(M, M, \emptyset)$

- M contains no indiscernibles.
- (Leibniz) Identity of Indiscernibles: any two objects differ on some property.
- (Enayat) *M* is Leibnizian.
- Theorem: (Enayat, '04) There are uncountable Leibnizian models of set theory.
- **Theorem**: (Mycielski, '95) A theory *T* extending ZF has a Leibnizian model iff *T* proves the Leibniz-Mycielski axiom (next slide).

 $\mathrm{EL}(M,M,\mathrm{ORD})$

- Any $a \neq b$ are ORD-discernible.
- First-order expressible.

Leibniz-Mycielski axiom

Leibniz-Mycielski axiom (LM): (Mycielski, '95) If $a \neq b$ in $M \models ZF$, then a and b are discernible in some V_{α} .

Observation: Suppose $M \models ZF$.

• LM is equivalent to EL(M, M, ORD).

Proof: Fix $a \neq b$.

 (\Rightarrow) : Suppose LM holds.

•
$$V_{\alpha} \models \varphi(a) \land \neg \varphi(b).$$

•
$$\psi(x,\alpha) := \exists y \ y = V_{\alpha} \land y \models \varphi(x).$$

• $M \models \psi(a, \alpha) \land \neg \psi(b, \alpha).$

(\Leftarrow): Suppose EL(M, M, ORD) holds.

- $M \models \varphi(a, \beta) \land \neg \varphi(b, \beta)$ for some ordinal β .
- $V_{\gamma} \models \varphi(a, \beta) \land \neg \varphi(b, \beta)$ (by reflection).
- $\delta \operatorname{codes} \langle \beta, \gamma \rangle$.
- γ, β are definable in $V_{\delta+1}$ without parameters.
- a and b are discernible in $V_{\delta+1}$. \Box

(日) (同) (日) (日)

Leibniz-Mycielski axiom (continued)

Corollary:

- LM is first-order expressible.
- LM is equivalent to LM*: If a ≠ b in M ⊨ ZF, then M satisfies that a and b are discernible in some V_α.

Observation: $V = HOD \rightarrow LM$ over ZF.

Question: Is LM equivalent to V = HOD over ZF(C)?

イロト 不得下 イヨト イヨト

Leibniz-Mycielski axiom (continued)

Theorem: (Enayat, '04) $M \models \text{ZF} + \text{LM}$ iff M has a definable injection from M into subsets of ordinals

 $F: M \xrightarrow{1-1} < \operatorname{ORD} 2.$

Proof:

 (\Rightarrow) : Suppose LM holds.

- Fix a set a. Let β_a be least above rank(a) such that $V_{\beta_a} \prec_{\Sigma_2} M$.
- *T_a* consists of pairs ⟨[¬]φ[¬], α⟩ such that *V_α* ⊨ [¬]φ(*a*)[¬] for some α < β_a.
- Suppose $a \neq b$ and (wlog) rank(a) \leq rank(b).
- $V_{\gamma} \models \varphi(a) \land \neg \varphi(b)$ for some $\gamma < \beta_b$.
- $\langle \neg \varphi \neg, \gamma \rangle$ is in T_b but not in T_a .
- $T_a \neq T_b$.
- $F(a) = T_a$ (viewed as subset of ordinals via coding).

(⇐): Suppose $F: M \xrightarrow{1-1} < ORD 2$ and $a \neq b$. Then (wlog) $\alpha \in F(a)$, but $\alpha \notin F(b)$. \Box

- 31

LM and choice principles

Corollary: If $M \models \text{ZF} + \text{LM}$, then M has a definable linear ordering. **Proof**: ${}^{< \text{ORD}}2$ is linearly ordered lexicographically. \Box

The existence of a definable linear ordering is a weak global choice principle.

Theorem: (Easton, '64) There are models of ZFC without a definable linear ordering. **Proof**: Consider the class forcing extension V[G], where a Cohen subset is added to every regular cardinal. \Box .

Question: Are there models of ZFC having a definable linear ordering, but no definable well-ordering (V = HOD fails)?

Question: Is LM equivalent over ZF(C) to the existence of a definable linear ordering?

- 31

LM and choice principles (continued)

Theorem: (Solovay, '04) LM does not imply (even countable) AC over ZF.

Proof: Similar to Cohen's argument that countable AC fails in $L(\{c_i \mid i < \omega\})$, where c_i are the Cohen reals explicitly added by $\prod_{i < \omega} \mathbb{P}$. But uses Jensen reals. Work in L.

- \bullet Jensen forcing $\mathbb{Q}:$
 - A subposet of Sacks forcing which has the ccc in L (constructed using \Diamond).
 - Adds a unique Q-generic real over L.
 - The collection of all Jensen reals in any V is Π¹₂-definable.
- $\mathbb{Q}^* = \prod_{i < \omega} \mathbb{Q}$ (finite-support).
- Theorem: (Kanovei, '14) If G ⊆ Q^{*} is L-generic, then the Jensen reals {c_i | i < ω} added explicitly by G are the only Jensen reals in L[G].
- Consider L(C), where $C = \{c_i \mid i < \omega\}$.
 - countable AC fails in L(C).
 - C is definable in L(C) (as the collection of all Jensen reals).
 - Every set in L(C) is ordinal definable from a unique minimal finite subset of C.
 - L(C) has a definable injection into subsets of ordinals.
 - L(C) is a model of LM.

<ロ> <四> <四> <四> <三</p>

Questions

Question: Suppose $V \models \text{ZFC}$. Which arrows reverse?

Thank you!

æ

・ロト ・回ト ・ヨト ・ヨト