FORCING AND GAPS IN 2^{ω}

1. Introduction

The material in these notes draws mainly on Teruyuki Yorioka's thesis [Yor04] and Marion Scheepers' survey paper [Sch93].

For $a, b \in 2^{\omega}$, we say that a is eventually dominated by b, denoted by $a \leq^* b$, if $a(n) \leq b(n)$ for all but finitely many n. Let $\mathcal{A} = \langle a_{\alpha} \mid \alpha < \kappa \rangle$ and $\mathcal{B} = \langle b_{\beta} \mid \beta < \lambda \rangle$, where κ and λ are infinite regular cardinals, be a pair of sequences in 2^{ω} . The pair $(\mathcal{A}, \mathcal{B})$ is called a (κ, λ) -pregap if $a_{\alpha_1} \leq^* a_{\alpha_2} \leq^* b_{\beta_2} \leq^* b_{\beta_1}$ for all $\alpha_1 < \alpha_2 < \kappa$ and $\beta_1 < \beta_2 < \lambda$. That is, we have:

$$a_0 \leq^* a_1 \leq^* \cdots \leq^* a_\alpha \leq^* \cdots \leq^* b_\beta \leq^* \cdots \leq^* b_1 \leq^* b_0$$

We say that a set $c \in 2^{\omega}$ separates the pregap $(\mathcal{A}, \mathcal{B})$ if $a_{\alpha} \leq^* c \leq^* b_{\beta}$ for all $\alpha < \kappa$ and $\beta < \lambda$. That is, we have:

$$a_0 \leq^* a_1 \leq^* \cdots \leq^* a_\alpha \leq^* \cdots \leq^* c \leq^* \cdots \leq^* b_\beta \leq^* \cdots \leq^* b_1 \leq^* b_0$$

If there is no such set c, then we say that the pregap (A, B) is a (κ, λ) -gap.

Much of the literature on gaps also studies gaps in ω^{ω} under the eventual domination ordering and there similar results are obtained as the ones we discuss in this talk. In what follows we tacitly associate elements of 2^{ω} with subsets of ω .

Theorem 1.1 (Hadamard, 1894). There are no (ω, ω) -gaps.

Proof. Consider a pregap $(\mathcal{A}, \mathcal{B})$, where $\mathcal{A} = \langle a_n \mid n < \omega \rangle$ and $\mathcal{B} = \langle b_m \mid m < \omega \rangle$. Let \overline{b}_m denote the complement of b_m and define $c_n = a_n \setminus (\bigcup_{m \le n} \overline{b}_m)$. The set $c = \bigcup_{n < \omega} c_n$ separates $(\mathcal{A}, \mathcal{B})$.

Theorem 1.2 (Hausdorff, 1909). There is an (ω_1, ω_1) -gap.

For a proof see [Jec03] (Section 29).

In these notes, we focus on the interaction between (ω_1, ω_1) -gaps and forcing. In particular, we are interested in the following questions:

Question 1.3. Can we force to add an (ω_1, ω_1) -gap?

Let us call an (ω_1, ω_1) -gap destructible, if there is an ω_1 -preserving forcing which adds a set separating it. Note that every (ω_1, ω_1) -gap is trivially destructible, if we remove the requirement that the forcing is ω_1 -preserving, by collapsing ω_1 to ω . We call an (ω_1, ω_1) -gap indestructible if it is not destructible. Kunen showed (1976) that Hausdorff's gap is indestructible.

Question 1.4. Are there destructible (ω_1, ω_1) -gaps?

Question 1.5. Can we force to make an (ω_1, ω_1) -gap indestructible?

There is an "equivalent" way of defining (ω_1, ω_1) -gaps in 2^{ω} that makes the presentation of the concepts involved easier. Given a pair of sequences $(\mathcal{A}, \mathcal{B})$ in 2^{ω} , where $\mathcal{A} = \langle a_{\alpha} \mid \alpha < \omega_1 \rangle$ and $\mathcal{B} = \langle b_{\beta} \mid \beta < \omega_1 \rangle$, consider the corresponding pair $(\mathcal{A}, \overline{\mathcal{B}})$, where $\overline{\mathcal{B}} = \langle \overline{b}_{\beta} \mid \beta < \omega_1 \rangle$, where \overline{b}_{β} denotes the complement of b_{β} .

Now observe that $(\mathcal{A}, \mathcal{B})$ is a pregap if and only if $a_{\alpha_1} \leq^* a_{\alpha_2}$, $\bar{b}_{\alpha_1} \leq^* \bar{b}_{\alpha_2}$ for all $\alpha_1 < \alpha_2 < \omega_1$ and $a_\alpha \cap \bar{b}_\beta$ is finite for all $\alpha, \beta < \omega_1$. Observe also that a set c separates $(\mathcal{A}, \mathcal{B})$ if and only if $a_{\alpha} \leq^* c$ and $\bar{b}_{\alpha} \cap c$ is finite for all $\alpha < \omega_1$. Next, we consider the sequence $\mathcal{A}^* = \langle a_{\alpha}^* \mid \alpha < \omega_1 \rangle$, where a_{α}^* differs on finitely many coordinates from a_{α} in such a way that $a_{\alpha}^* \cap \overline{b}_{\alpha} = \emptyset$. Again, we have that $(\mathcal{A}, \mathcal{B})$ is a pregap if and only if $a_{\alpha_1}^* \leq^* a_{\alpha_2}^*$, $\overline{b}_{\alpha_1} \leq^* \overline{b}_{\alpha_2}$ for all $\alpha_1 < \alpha_2 < \omega_1$ and $a_{\alpha}^* \cap \overline{b}_{\beta}$ is finite for all $\alpha, \beta < \omega_1$. Also, again, a set c separates $(\mathcal{A}, \mathcal{B})$ if and only if $a_{\alpha}^* \leq^* c$ and $\bar{b}_{\alpha} \cap c$ is finite for all $\alpha < \omega_1$. This analysis shows that we can redefine an (ω_1, ω_1) -pregap in 2^{ω} as a pair of sequences $(\mathcal{A}, \mathcal{B})$, where $\mathcal{A} = \langle a_{\alpha} \mid \alpha < \omega_1 \rangle$ and $\mathcal{B} = \langle b_{\beta} \mid \beta < \omega_1 \rangle$, such that:

- $\begin{array}{ll} (1) \ \ a_{\alpha_1} \leq^* a_{\alpha_2} \ \text{and} \ b_{\alpha_1} \leq^* b_{\alpha_2} \ \text{for all} \ \alpha_1 < \alpha_2 < \omega_1, \\ (2) \ \ a_{\alpha} \cap b_{\beta} \ \text{is finite for all} \ \alpha, \beta < \omega_1, \end{array}$
- (3) $a_{\alpha} \cap b_{\alpha} = \emptyset$ for all $\alpha < \omega_1$.

We further redefine that a set c separates the pregap $(\mathcal{A}, \mathcal{B})$ if $a_{\alpha} \leq^* c$ and $b_{\alpha} \cap c$ is finite for all $\alpha < \omega_1$. We shall use the redefined terminology for the remainder of the notes.

We now introduce a Ramsey-theoretic characterization of when an (ω_1, ω_1) pregap $(\mathcal{A}, \mathcal{B})$ is a gap.

Lemma 1.6 (Folklore). An (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B})$ is a gap if and only if for every uncountable $X \subseteq \omega_1$, there are $\alpha, \beta \in X$ such that $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) \neq \emptyset$.

Proof. Suppose that $(\mathcal{A}, \mathcal{B})$, where $\mathcal{A} = \langle a_{\alpha} \mid \alpha < \omega_1 \rangle$ and $\mathcal{B} = \langle b_{\beta} \mid \beta < \omega_1 \rangle$, is not a gap and fix a separating set c such that $a_{\alpha} \leq^* c$ and $b_{\alpha} \cap c$ is finite for all $\alpha < \omega_1$. We argue that there is an uncountable $X \subseteq \omega_1$ and associated $n \in \omega$ and $s, t \in 2^n$ such that for all $\alpha \in X$:

- (1) $a_{\alpha} \cap n = s$ and $b_{\alpha} \cap n = t$,
- (2) $a_{\alpha} \setminus n \subseteq c$ and $b_{\alpha} \cap c \subseteq n$.

To see why, note that

$$\omega_1 = \bigcup_{n \in \omega, s, t \in 2^n} X_{(n, s, t)}$$

where

$$X_{(n,s,t)} = \{ \alpha < \omega_1 \mid a_\alpha \cap n = s, b_\alpha \cap n = t, a_\alpha \setminus n \subseteq c, b_\alpha \cap c \subseteq n \}.$$

Fix $\alpha, \beta \in X$. It is clear that $a_{\alpha} \setminus n \cap b_{\beta} \setminus n = \emptyset$. By our redefinition of a pregap, we have that $a_{\alpha} \cap b_{\alpha} = \emptyset$, from which it follows that $s \cap t = \emptyset$. Hence $a_{\alpha} \cap b_{\beta} \cap n = \emptyset$ as well. Thus, we have found an uncountable $X \subseteq \omega_1$ such that $(a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) = \emptyset$ for all $\alpha, \beta \in X$.

Conversely suppose that there is an uncountable $X \subseteq \omega_1$ such that for all $\alpha, \beta \in$ X, we have $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$. Since X is cofinal in ω_1 , it is clear that $c = \bigcup_{\alpha \in X} a_{\alpha}$ separates $(\mathcal{A}, \mathcal{B})$, and so it is not a gap.

For a pregap $(\mathcal{A}, \mathcal{B})$, suppose that $f_{(\mathcal{A}, \mathcal{B})} : [\omega_1]^2 \to 2$ is defined by $f_{(\mathcal{A}, \mathcal{B})}(\alpha, \beta) = 0$ if $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$ and otherwise $f_{(\mathcal{A},\mathcal{B})}(\alpha,\beta) = 1$. Lemma 1.6 states that $(\mathcal{A},\mathcal{B})$ is a gap if and only if $f_{(\mathcal{A},\mathcal{B})}$ cannot have an uncountable homogeneous set with value 0. If $(\mathcal{A}, \mathcal{B})$ is a gap, can $f_{(\mathcal{A}, \mathcal{B})}$ have an uncountable homogeneous set with value 1? The answer depends on whether the gap is destructible.

Lemma 1.7 (Kunen, 1976?). An (ω_1, ω_1) -gap $(\mathcal{A}, \mathcal{B})$ is destructible if and only if for every uncountable $X \subseteq \omega_1$, there are $\alpha \neq \beta \in X$ such that $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$.

Thus, (A, B) is a destructible gap if and only if $f_{(A,B)}$ does not have an uncountable homogeneous set. We shall prove Lemma 1.7 in Section 3.

2. Creating destructible gaps by forcing

In this section, we shall show that there is a destructible (ω_1, ω_1) -gap in the Cohen forcing extension, by constructing it from an (ω_1, ω) -gap of the ground model together with the Cohen real.

Theorem 2.1 (Todorčević, 1984). There is a destructible (ω_1, ω_1) -gap in the Cohen forcing extension.

Proof. Fix an (ω_1, ω_1) -gap in the ground model, which exists by Hausdorff's result. Let \mathbb{C} be the Cohen poset and $C \subseteq \mathbb{C}$ be V-generic. Also, let c be the Cohen real constructed from C. In V[C], we let $A \cap c = \langle a_\alpha \cap c \mid \alpha < \omega_1 \rangle$ and $B \cap c = \langle b_\beta \cap c \mid \beta < \omega_1 \rangle$. We shall argue that $(A \cap c, B \cap c)$ is a destructible gap by verifying the Ramsey-theoretic characterizations using density arguments. We shall show that every uncountable $X \subseteq \omega_1$ in V[c] has ordinals α, β such that $(a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) \neq \emptyset$ (gap) and also has ordinals $\gamma \neq \delta$ such that $(a_\gamma \cap b_\delta) \cup (a_\delta \cap b_\gamma) = \emptyset$ (destructible).

Fix an uncountable $X\subseteq\omega_1$ in V[C]. First, we claim that there is an uncountable $Y\subseteq\omega_1$ in V such that $Y\subseteq X$. Fix a \mathbb{C} -name \dot{X} such that $(\dot{X})_C=X$ and a condition $p\in C$ such that $p\Vdash \text{``}\dot{X}\subseteq\check{\omega}_1$ is uncountable". To verify the claim, we shall argue that it is dense below p to have a condition q and an uncountable $Y\subseteq X$ such that $q\Vdash \check{Y}\subseteq \dot{X}$. Fix $q'\le p$. Since q' forces that \dot{X} is an uncountable subset of ω_1 , there must be a condition $q_0\le q$ and an ordinal α_0 such that $q_0\Vdash\check{\alpha}_0\in\dot{X}$. Inductively, suppose that we have constructed a sequence of conditions $\langle q_\xi\mid \xi<\delta\rangle$ below q' for some $\delta<\omega_1$ and a corresponding increasing sequence of ordinals $\alpha_0<\alpha_1<\dots<\alpha_{\xi}\dots$ such that $q_\xi\Vdash\check{\alpha}_\xi\in\dot{X}$. Since q' forces that \dot{X} is an uncountable subset of ω_1 , there must be a condition q_δ and an ordinal $\alpha_\delta>\alpha_\xi$ for all $\xi<\delta$ such that $q_\delta\Vdash\check{\alpha}_\delta\in\dot{X}$. In this manner, we construct a sequence of conditions $\langle q_\xi\mid \xi<\omega_1\rangle$ below q' and a corresponding increasing sequence of ordinals $\alpha_0<\alpha_1<\dots<\alpha_\xi<\dots$ such that $q_\xi\Vdash\check{\alpha}_\xi\in\dot{X}$. Since $\mathbb C$ is countable there must a condition $q\in\mathbb C$ such that $q_\xi=q$ for uncountably many ξ . Let $Y=\{\alpha<\omega_1\mid q\Vdash\check{\alpha}_\xi\in\dot{X}\}$ and observe that clearly $q\Vdash\check{Y}\subseteq\dot{X}$.

Now we fix an uncountable $Y \subseteq X$ and a condition $q \in C$ such that $q \Vdash \check{Y} \subseteq \dot{X}$. We claim that below any condition $q' \leq q$, there is a condition r and ordinals $\alpha, \beta \in Y$ such that

$$(a_{\alpha} \cap b_{\beta} \cap r) \cup (a_{\alpha} \cap b_{\beta} \cap r) \neq \emptyset,$$

as well as a condition r' and ordinals $\gamma \neq \delta$ in Y such that

$$(a_{\gamma} \cap b_{\delta} \cap r') \cup (a_{\delta} \cap b_{\gamma} \cap r') = \emptyset.$$

It follows immediately from the claim that $(A \cap c, B \cap c)$ is a destructible gap in V[C]. To verify the claim, we fix a condition $q' \leq q$ and let n = dom(q). Consider the pair of sequences (A^*, B^*) , where $A^* = \langle a_{\alpha} \setminus n \mid \alpha < \omega_1 \rangle$ and $B^* = \langle b_{\beta} \setminus n \mid \beta < \omega_1 \rangle$, and note that it remains a gap in V. It follows that there exist $\alpha, \beta \in Y$ such that

$$S = (a_{\alpha} \setminus n \cap b_{\beta} \setminus n) \cup (a_{\beta} \setminus n \cap b_{\alpha} \setminus n) \neq \emptyset.$$

Thus, we may choose $m \in S$ and extend q' to a condition r with r(m) = 1. Next, we observe that there is an an uncountable $Z \subseteq Y$ and associated sequences $s, t \in 2^n$ such that for all $\alpha, \beta \in Z$, $a_{\alpha} \cap n = s$ and $b_{\beta} \cap n = t$. It follows that $a_{\alpha} \cap b_{\beta} \cap n = \emptyset$ for all $\alpha, \beta \in Z$, as $a_{\alpha} \cap b_{\alpha} = \emptyset$ for any α by assumption. Choose any two ordinals $\gamma \neq \delta$ in Z. Since $T = (a_{\gamma} \setminus n \cap b_{\delta} \setminus n) \cup (a_{\delta} \setminus n \cap b_{\gamma} \setminus n)$ is finite, we may extend q' to a condition r' with r'(m) = 0 for all $m \in T$.

Corollary 2.2. It is relatively consistent that there are destructible (ω_1, ω_1) -gaps.

3. Forcing to separate a gap

In this section, we study a forcing notion due to Laver (1979) that adds a set separating a destructible gap. We use this forcing to prove Lemma 1.7 and argue that under MA all (ω_1, ω_1) -gaps are destructible.

Fix an (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B})$, where $\mathcal{A} = \langle a_{\alpha} \mid \alpha < \omega_1 \rangle$ and $\mathcal{B} = \langle b_{\beta} \mid \beta < \omega_1 \rangle$. The forcing $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ consists of conditions $\langle L, R, s \rangle$ such that

- (1) L, R are finite subsets of ω_1 ,
- (2) $s \in 2^n$ for some $n < \omega$,
- (3) for all $\alpha \in L$, $\beta \in R$, $a_{\alpha} \cap b_{\beta} \subseteq n$.

Let $\langle L, R, s \rangle$ and $\langle L', R', s' \rangle$ be two conditions in $\mathbb{P}_{(\mathcal{A}, \mathcal{B})}$ with $s \in 2^n$ and $s' \in 2^{n'}$. Then $\langle L', R', s' \rangle \leq \langle L, R, s \rangle$ if

- (1) $L \subseteq L'$ and $R \subseteq R'$,
- (2) s' end-extends s,
- (3) for all $\alpha \in L$, $\beta \in R$, $a_{\alpha} \cap n' \setminus n \subseteq s'$ and $b_{\beta} \cap (n' \setminus n) \cap s' = \emptyset$.

The subsets L and R act as promises that s will grow into a separating set for $(\mathcal{A}, \mathcal{B})$. Let us argue that if $G \subseteq \mathbb{P}_{(\mathcal{A},\mathcal{B})}$ is V-generic, then the union $c = \bigcup_{\langle L,R,s \rangle \in G} s$ separates $(\mathcal{A},\mathcal{B})$ in V[G]. It suffices to show that for every $\alpha, \beta < \omega_1$, the set $\mathcal{D}_{\alpha,\beta} = \{\langle L,R,s \rangle \in \mathbb{P}_{(\mathcal{A},\mathcal{B})} \mid \alpha \in L, \beta \in R\}$ is dense in $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$. Given a condition $\langle L,R,s \rangle$, where $s \in 2^n$, we choose n' such that $a_\alpha \cap b_\beta \subseteq n'$ for all $\beta \in R$ and extend s to $s' \in 2^{n'}$ with s'(m) = 1 exactly when $a_\delta(m) = 1$ for some $\delta \in L$ and $m \geq n$. The condition $\langle L \cup \{\alpha\}, R, s' \rangle$ is below $\langle L, R, s \rangle$ since $a_\delta \cap b_\gamma \subseteq n$ for all $\delta \in L, \gamma \in R$. Similarly, we construct a condition $\langle L \cup \{\alpha\}, R, s' \rangle$ below $\langle L \cup \{\alpha\}, R, s' \rangle$.

Observe that two conditions $\langle L, R, s \rangle$ and $\langle L', R', s \rangle$ with the same sequence $s \in 2^n$ are incompatible precisely when there is $k \geq n$ and $\alpha \in L \cup L'$ and $\beta \in R \cup R'$ such that $\kappa \in a_{\alpha} \cap b_{\beta}$.

Lemma 3.1. If a pregap (A, B) is not a gap, then $\mathbb{P}_{(A,B)}$ has the ccc.

Proof. Suppose that a pregap $(\mathcal{A},\mathcal{B})$ is not a gap and fix a separating set c such that $a_{\alpha} \leq^* c$ and $b_{\beta} \cap c$ is finite for all $\alpha < \omega_1$. For a sequence $s \in 2^n$, we let $C(s) = \{\langle L, R, s \rangle \in \mathbb{P}_{(\mathcal{A},\mathcal{B})} \mid \forall \alpha \in L, \beta \in R \ a_{\alpha} \setminus c \subseteq n \ \text{and} \ b_{\beta} \cap c \subseteq n \}$. It follows that for any two conditions $\langle L, R, s \rangle$ and $\langle L', R', s \rangle$ in C(s), if $\alpha \in L$ and $\beta \in R'$, then $a_{\alpha} \cap b_{\beta} \subseteq n$. Thus, any two conditions in C(s) are compatible. Next, we argue that $\mathcal{D} = \bigcup_{s \in 2^{<\omega}} C(s)$ is dense in $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$. Given a condition $\langle L, R, s \rangle \in \mathbb{P}_{(\mathcal{A},\mathcal{B})}$ with $s \in 2^n$, we choose n' such that $a_{\alpha} \setminus n' \subseteq c$ and $b_{\beta} \setminus n' \cap c = \emptyset$ for all $\alpha \in L$, $\beta \in R$, and extend s to $s' \in 2^{n'}$ with s'(m) = 1 exactly when $a_{\alpha}(m) = 1$ for some $\alpha \in L$ and $m \geq n$. Since for all $\alpha \in R$, $\beta \in L$, $a_{\alpha} \cap b_{\beta} \subseteq n$, it follows that for $\beta \in R$, $b_{\beta} \cap (n' \setminus n) \cap s' = \emptyset$. Thus, $\langle L, R, s' \rangle$ is a condition in C(s') below $\langle L, R, s \rangle$. Now we suppose that P is an uncountable subset of $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$. For every $p \in P$, fix a condition

 $q_p \leq p$ with q_p in \mathcal{D} . Since there are only countably many $s \in 2^{<\omega}$, there is an s such that uncountably many of the q_p are in C(s). Choose any two conditions p and p' in P with q_p and $q_{p'}$ in C(s), and observe that p and p' are compatible. Thus, $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ cannot have uncountable antichains.

Theorem 3.2 (Kunen, Woodin?). Suppose (A, B) is an (ω_1, ω_1) -gap, then the following are equivalent:

- (1) $(\mathcal{A}, \mathcal{B})$ is destructible,
- (2) for every uncountable $X \subseteq \omega_1$, there are $\alpha \neq \beta$ in X such that $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$,
- (3) $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc.

Proof.

- $(1) \Rightarrow (3)$: Suppose that $(\mathcal{A}, \mathcal{B})$ is a destructible (ω_1, ω_1) -gap. Then there is some ω_1 -preserving forcing \mathbb{P} and a V-generic $G \subseteq \mathbb{P}$ such that $(\mathcal{A}, \mathcal{B})$ is no longer a gap in the forcing extension V[G]. Note that the definition of $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ produces the same poset whether applied in V or in V[G]. It follows by Lemma 3.1 that $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc in V[G]. But if $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ had an uncountable antichain in V, it would remain an uncountable antichain in V[G] since \mathbb{P} is ω_1 -preserving. Thus, $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc in V.
- (3) \Rightarrow (1): Suppose $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc, then it is an ω_1 -preserving forcing that destroys the gap $(\mathcal{A},\mathcal{B})$.
- (3) \Rightarrow (2): Suppose that $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc. For an ordinal $\alpha < \omega_1$, let $p_{\alpha} = \langle L, R, s \rangle$ where $L = \{\alpha\}$, $R = \{\alpha\}$, and $s = \emptyset$. Note that each p_{α} is a condition in $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ since by our assumption $a_{\alpha} \cap b_{\alpha} = \emptyset$ for any α . Fix an uncountable $X \subseteq \omega_1$ and consider the corresponding subset $P = \{p_{\alpha} \in \mathbb{P}_{(\mathcal{A},\mathcal{B})} \mid \alpha \in X\}$. Since $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc, there must be two conditions compatible conditions p_{α} and p_{β} in P. Let $q = \langle L, R, s \rangle$, where $s \in 2^n$, be a condition below both p_{α} and p_{β} . Note that $\alpha, \beta \in L \cap R$, and so $a_{\alpha} \cap b_{\beta} \subseteq n$ and $a_{\beta} \cap b_{\alpha} \subseteq n$. Also, $a_{\alpha} \cap n \subseteq s$ and $b_{\alpha} \cap n \cap s = \emptyset$ since $q \leq p_{\alpha}$ and $a_{\beta} \cap n \subseteq s$ and $b_{\alpha} \cap n \cap s = \emptyset$ since $q \leq p_{\beta}$. It follows that $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$.
- $\neg(3) \Rightarrow \neg(2)$: Suppose that $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ does not have the ccc and fix an uncountable antichain $\{\langle L_{\alpha}, R_{\alpha}, s_{\alpha} \rangle \mid \alpha < \omega_1 \}$ in $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$. Let $\{\xi_{\alpha} \mid \alpha < \omega_1 \}$ be an increasing sequence of ordinals such that ξ_{α} is larger than all ordinals in $L_{\alpha} \cup R_{\alpha}$. By thinning out, we may make the following list of assumptions.
- (1) There is $s \in 2^n$ such that all $s_{\alpha} = s$.
- (2) There are $k, m \in \omega$ such that for all $\alpha < \omega_1$,

$$|L_{\alpha}| = k$$
 and $|R_{\alpha}| = m$.

(3) There is a fixed l > n such that for all $\alpha < \omega_1$,

$$\forall \delta \in L_{\alpha} \ a_{\delta} \setminus l \subseteq a_{\xi_{\alpha}} \text{ and } \forall \delta \in R_{\alpha} \ b_{\delta} \setminus l \subseteq b_{\xi_{\alpha}}.$$

(4) There are sequences $s_i, t_j \in 2^l$ for i < k and j < m such that for all $\alpha < \omega_1$,

$$\{a_{\delta} \cap l \mid \delta \in L_{\alpha}\} = \{s_i \mid i < m\} \text{ and } \{b_{\delta} \cap l \mid \delta \in R_{\alpha}\} = \{t_i \mid j < k\}.$$

Let $X = \{\xi_{\alpha} \mid \alpha < \omega_1\}$. We shall argue that for all $\xi_{\alpha_1} \neq \xi_{\alpha_2} \in X$,

$$(a_{\xi_{\alpha_1}} \cap b_{\xi_{\alpha_2}}) \cup (a_{\xi_{\alpha_2}} \cap b_{\xi_{\alpha_1}}) \neq \emptyset.$$

Fix $\alpha_1 \neq \alpha_2$ in ω_1 . Since conditions $\langle L_{\alpha_1}, R_{\alpha_1}, s \rangle$ and $\langle L_{\alpha_2}, R_{\alpha_2}, s \rangle$ are incompatible, by our earlier observation, there must be $n' \geq n$ and $\alpha \in L_{\alpha_1} \cup L_{\alpha_2}$ and

 $\beta \in R_{\alpha_1} \cup R_{\alpha_2}$ with $n' \in a_{\alpha} \cap b_{\beta}$. Indeed, it must be that $n' \geq l$ by assumption (4). Now it follows using assumption (3) that $n' \in (a_{\xi_{\alpha_1}} \cap b_{\xi_{\alpha_2}}) \cup (a_{\xi_{\alpha_2}} \cap b_{\xi_{\alpha_1}})$.

Corollary 3.3. Under MA, every (ω_1, ω_1) -gap is indestructible.

Proof. Suppose to the contrary that MA holds and $(\mathcal{A}, \mathcal{B})$ is a destructible (ω_1, ω_1) -gap. It follows by Theorem 3.2 that $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ has the ccc. Notice that if a filter for the poset $\mathbb{P}_{(\mathcal{A},\mathcal{B})}$ meets ω_1 -many dense sets, namely $\mathcal{D}_{\alpha,\beta} = \{\langle L, R, s \rangle \in \mathbb{P}_{(\mathcal{A},\mathcal{B})} \mid \alpha \in L, \beta \in R\}$ for $\alpha, \beta < \omega_1$, then it may be used to construct a separating set for $(\mathcal{A},\mathcal{B})$. Thus, we have obtained a contradiction, showing that $(\mathcal{A},\mathcal{B})$ cannot be destructible.

4. Forcing to make a gap indestructible

If $(\mathcal{A}, \mathcal{B})$ is an (ω_1, ω_1) -gap, then the forcing to make it indestructible adds an uncountable subset X of ω_1 such that for all $\alpha, \beta \in X$, $(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset$ with conditions that are finite subsets of ω_1 .

References

- [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- [Sch93] M. Scheepers. Gaps in ω^{ω} . In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 439–561. Bar-Ilan Univ., Ramat Gan, 1993.
- [Yor04] T. Yorioka. Some results on gaps in $P(\omega)$ /fin. PhD thesis, Kobe University, 2004.