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Abstract. Jensen used ♦ to construct a forcing notion J of perfect trees

which has the ccc and adds a unique generic real. Given an inaccessible κ,

we generalize Jensen’s construction, using ♦κ+ (Cof(κ)), to obtain a forcing
notion J(κ) of perfect κ-trees that is <κ-closed, has the κ+-cc, and adds a

unique generic subset of κ. As is the case with the poset J, we show that

products and iterations of J(κ) have “unique generics” properties. We use a
non-linear iteration of J(κ) along a tree to produce a model of Kelley-Morse

with the Choice Scheme in which the second-order dependent choice principle
DCω fails.

1. Introduction

Second-order set theory has two types of objects: sets and classes. Unlike in
first-order set theory, where classes are relegated to the meta-theory, in second-
order set theory we are able to formally study properties of classes. Second-order
set theory is formalized in a two-sorted logic with separate sorts (variables and
quantifiers) for sets and classes. To distinguish between the two types of objects,
we will use lower case letters for sets and upper case letters for classes. Complexity
of formulas in second-order set theory is determined by the number of alternations
of class quantifiers. A second-order formula is Σ1

n (or Π1
n) if it has the form an

alternation of n class quantifiers followed by a first-order formula. A model of
second-order set theory is a triple V = (V,∈, C), where V consists of the sets, C
consists of the classes, and ∈ is the membership relation between sets and between
sets and classes. Each element of C is viewed as a sub-collection of V consisting
of those elements which are ∈-related to it. An axiomatization for second-order
set theory consists of axioms for sets, classes, and the interactions between the
two sorts. A typical axiomatization consists of the basic axioms: ZFC axioms for
sets, extensionality for classes, the class replacement axiom asserting that every
class function restricted to a set is a set, the global well-order axiom asserting that
there is a class well-ordering of all sets, together with some class existence axioms.
The most common class existence axioms take the form of comprehension axioms,
asserting that collections defined by formulas of some complexity are classes. One
of the weakest second-order axiomatizations is the theory GBC, which consists
of the above mentioned basic axioms together with comprehension for first-order
formulas. The theory GBC is equiconsistent with ZFC because every model of ZFC
that has a definable global well-order (such as the constructible universe L), when
taken together with its definable collections, is a model of GBC. We get increasingly
stronger second-order theories by extending the amount of available comprehension
to formulas of higher complexity. This hierarchy of theories culminates in the theory
Kelley-Morse KM, which consists of the basic axioms together with comprehension
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for all second-order formulas. The theory KM has consistency strength greater than
ZFC, but less than ZFC with the existence of an inaccessible cardinal.

Although, in terms of comprehension, KM is the strongest possible second-order
theory, it can be made much more robust by adding choice axioms for classes.
Analogously to how sets have much more structure in models of ZFC than in
models of ZF, classes have much more structure in models of KM together with
class choice axioms than they do in models of just KM. The two most common
choice principles used in the second-order context are the choice scheme CC and
the dependent choice schemes DCα (for a regular cardinal α or α = Ord). The
choice scheme asserts for every second-order formula ϕ(x,X,A), with parameter
A, that if for every set x, there is a class X such that ϕ(x,X,A) holds, then there
is a single class Y collecting on its slices witnesses for every set x, namely, for every
set x, ϕ(x, Yx, A) holds, where Yx = {y | 〈x, y〉 ∈ Y } is the x’s slice of Y . Given a
regular cardinal α or α = Ord, the dependent choice scheme DCα asserts for every
second-order formula ψ(X,Y,A), with parameter A, that if ψ defines a relation
without terminal nodes (for every class X, there is a class Y such that ψ(X,Y,A)
holds), then we can make α-many dependent choices along ψ, namely, there is a
class F such that for every ξ < α, ψ(F � ξ, Fξ, A) holds, where Fξ is the ξ-th slice
of F and F � ξ is the restriction of the class F to slices indexed by ordinals η < ξ
(F � ξ = {〈η, y〉 ∈ F | η < ξ}). The choice scheme is viewed as the analogue of AC
for classes and the DCα-scheme is viewed as the analogue of dependent choice DCα.
The second author and Hamkins showed that the theory KM is not strong enough
to prove even the weakest instances of the choice scheme, those where we make
only ω-many choices for a first-order formula. That is, it is consistent that there
is a model of KM and a first-order assertion ϕ(x,X) such that in the model, for
every n ∈ ω, there is a class X such that ϕ(n,X) holds, but there is no class Y such
that ϕ(n, Yn) holds for every n ∈ ω [GH]. Given this situation, the next natural
question which arises is whether the theory Kelley-Morse together with the choice
scheme KM+CC proves DCω, the weakest of the dependent choice principles. The
axiom of choice AC, of course, implies all the dependent choice axioms DCα over
ZF, but results from second-order arithmetic suggested that KM + CC may not be
able to prove at least some of the dependent choice principles DCα. The study of
the two fields has shown that there are many parallels as well as some differences
between these mathematical domains, with second-order arithmetic being the more
well-developed of the two because of its connections to analysis.

Second-order arithmetic has two types of objects: numbers and sets of numbers
(which we think of as the reals). A typical axiomatization of second-order arithmetic
consists of the basic axioms: the PA axioms for numbers and the set induction
axiom asserting that induction holds for every set, together with some set existence
axioms. The primary set existence axioms are again comprehension axioms and
choice principles for sets. The choice scheme CC, in this context, is the exact
analogue of the choice scheme in second-order set theory and the dependent choice
scheme DC is the exact analogue of DCω. The analogue of GBC is the second-
order arithmetic theory ACA0, which is equiconsistent with PA, and the analogue
of KM is the theory Z2, which has comprehension for all second-order formulas.
An argument, using Shoenfield absoluteness, shows that Z2 implies CC for Σ1

2-
formulas (note the contrast with the KM situation, where KM does not prove CC
even for first-order formulas) and that Z2 +CC implies DC for Σ1

2-formulas [Sim09].
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Feferman and Levy constructed a model of ZF in which ω1 is a countable union
of countable sets as a symmetric submodel of a forcing extension by the finite-
support product Πn<ω Coll(ω,ℵn) of collapse forcings [Lév70]. The reals of this
classical choiceless model form a model of Z2 in which CC optimally fails for a Π1

2-
assertion. The authors of the present article, together with Kanovei, showed that it
is consistent that there is a model of Z2 + CC in which DC fails for a Π1

2-assertion.
The model was obtained as the reals of a symmetric submodel of a forcing extension
by a tree iteration of Jensen’s forcing [FGK19].

Jensen’s forcing J is a subposet of Sacks forcing that was constructed by Jensen
in L using the guessing principle ♦. The forcing J has two key properties: it has the
ccc and it adds a unique (Π1

2-singleton) generic real over L. Jensen used the forcing
J to show that it is consistent to have a Π1

2-singleton non-constructible real (every
Σ1

2-singleton is in L by Shoenfield’s absoluteness) [Jen70]. Since then his forcing has
found a number of other applications. While ♦ is crucial to the construction of a
poset with the two key properties of J, the constructible universe is not. A subposet
of Sacks forcing with the ccc that adds a unique generic real can be constructed in
any universe with ♦, with only the complexity of the generic real possibly being
lost (see Section 6 for details).

Lyubetsky and Kanovei extended the “unique generics” property of Jensen’s
forcing to a finite-support ω-length product J<ω of J. They showed that in any
forcing extension L[G] by J<ω, the only generic reals for J are those added by the
slices of G [KL17]. Abraham showed that, for n < ω, a finite n-length iteration Jn
of J adds a unique n-length generic sequence of reals [Abr84]. The authors of the
current article and Kanovei showed that certain tree iterations of J have a “unique
generics” property, and this property was instrumental in obtaining the model of
second-order arithmetic satisfying AC but not DC.

In this paper, we generalize Jensen’s construction from ω to an inaccessible
cardinal κ to define an analogue of Jensen’s forcing with perfect κ-trees. We show
that if κ is an inaccessible cardinal and the guessing principle ♦κ+(Cof(κ)) holds,
then there is a poset J(κ), whose elements are perfect κ-trees ordered by the subset
relation, with the three key properties: it is <κ-closed, it has the κ+-cc, and it
adds a unique generic subset of κ. A number of obstacles needed to be overcome to
make Jensen’s construction work for perfect κ-trees. Perfect trees have several nice
properties properties, like the existence of greatest lower bounds for compatible
conditions, which fail for perfect κ-trees, and these properties played a significant
role in the construction of Jensen’s forcing. Another problem which did not arise
in the original construction was presented by the <κ-closure requirement. The
poset J is built up as the union of a continuous chain of posets of length ω1 with
maximal antichains being sealed at stages given by ♦ along the way. In the case
of the poset J(κ), we couldn’t simply take unions at the limit stages of building up
the analogous chain because then we would lose <κ-closure, but closing the union
under <κ-sequences could potentially unseal maximal antichains. We shall argue
that this doesn’t happen. We also define finite iterations and tree iterations of the
poset J(κ) partially analogously to how finite iterations Jn and tree iterations of J
were defined in [FGK19].

We show that bounded-support κ-length products of J(κ), finite iterations of
J(κ), and certain tree iterations of J(κ) have “unique generics” properties analogous
to those of Jensen’s forcing.
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Theorem 1.1. Suppose that κ is an inaccessible cardinal and ♦κ+(Cof(κ)) holds.
There is a poset J(κ) whose elements are perfect κ-trees ordered by the subset rela-
tion with the following three properties:

(1) J(κ) is <κ-closed.
(2) J(κ) has the κ+-cc.
(3) In any forcing extension by J(κ), there is a unique generic subset of κ. If

the starting universe is L, then the unique generic subset is a Π1
1-singleton.

Let J(κ)<κ denote the bounded-support κ-length product of the poset J(κ) and
let J(κ)n, for n < ω, denote the n-length iteration of J(κ) (defined in Section 11).

Theorem 1.2. Suppose that κ is an inaccessible cardinal and ♦κ+(Cof(κ)) holds.
In a forcing extension V [G] by J(κ)<κ, the only generic subsets of κ for J(κ) are
those added by the slices of G.

Theorem 1.3. Suppose that κ is an inaccessible cardinal, ♦κ+(Cof(κ)) holds, and
n ∈ ω. The iteration J(κ)n of the poset J(κ) of length n adds a unique n-length
generic sequence of subsets of κ.

Theorem 1.4. Suppose that κ is an inaccessible cardinal and ♦κ+(Cof(κ)) holds.
In any forcing extension by the tree iteration of J(κ) along the tree (κ+)<ω, for
every n ∈ ω, the only n-length generic sequences of subsets of κ for the iteration
J(κ)n are those arising from the n-length nodes of the generic tree.

For details on the definitions of the iterations J(κ)n and the tree iterations, see
Section 11.

We construct a symmetric submodel of a forcing extension by the tree iteration
of J(κ) along the tree (κ+)<ω such that in this model V = (Vκ,∈, Vκ+1) is a model
of KM + CC in which the scheme DCω fails.

Theorem 1.5. It is consistent that there is a model of KM + CC + ¬DCω.

2. κ-perfect posets

Throughout what follows we assume that κ is an inaccessible cardinal. We will
say that T ⊆ 2<κ is a tree if T 6= ∅ and whenever s ∈ T and t ≤ s (in the
sequence end-extension order), then t ∈ T . Given a tree T and a node t ∈ T , we
let Tt = {s ∈ T | s ≥ t or s ≤ t} be the subtree of T consisting of the stem up to t
together with everything above t. We will say that a tree T ⊆ 2<κ is a κ-tree if T
has height κ. Next, we define the notion of a perfect κ-tree T following [Kan80].

Definition 2.1. A tree T ⊆ 2<κ is a perfect κ-tree if it satisfies the following:

(1) Every node of T has a splitting node above it (T is splitting).
(2) For every limit ordinal α < κ, if s ∈ 2α and s � β ∈ T for every β < α, then

s ∈ T (T is closed).
(3) For every limit ordinal α < κ if s ∈ 2α and for cofinally many β < α, s � β

splits, then s splits (the splitting nodes of T are closed).

We define a partial order on perfect κ-trees by asserting that if T and S are perfect
κ-trees, then T ≤ S if T ⊆ S.

The following propositions from [Kan80] are not difficult to prove.

Proposition 2.2 ([Kan80]). If a tree T ⊆ 2<κ satisfies conditions (1) and (2)
above, then condition (3) is equivalent to the assertion that for every branch f ∈ 2κ

of T , the set Cf = {α < κ | f � α splits} is a club.
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In fact, even though we won’t make use of it, we note that given a perfect κ-tree
T , the subset of κ consisting of all limit levels of T at which every node splits is a
club.

Proposition 2.3. If T is a perfect κ-tree, then

C = {α < κ | every node in T ∩ 2α splits}
is a club.

Proof. Clearly C is closed, so it remains to check that it is unbounded. Fix α0 < κ.
Let α1 be a level above α0 such that for every node s ∈ T ∩ 2α0 , s splits below
level α1. Similarly, given αn for some n < ω, let αn+1 be a level above αn such
that for every node s ∈ T ∩ 2αn , s splits below level αn+1. Let α = supn<ωαn. Fix
a node t ∈ T ∩ 2α. We will show that t has cofinally many splitting nodes below
it. Fix β < α, and let n < ω be least such that αn > β. Let s ≤ t be such that
s ∈ 2αn ∩ T . Let γ < αn+1 be the least level having a node s′ ≥ s which splits. By
the leastness of γ, s′ ≤ t. Since t was arbitrary, it follows that every node on level
α of T splits. �

Proposition 2.4 ([Kan80]). Suppose that β < κ and {Tξ | ξ < β} is a ≤-decreasing
sequence of perfect κ-trees. Then T =

⋂
ξ<β Tξ is a perfect κ-tree.

Because of the presence of limit levels, the perfect κ-trees do not behave as
nicely as perfect trees (subtrees of 2<ω in which every node has a splitting node
above it). For instance, consider the standard fact that if T and S are perfect
trees whose intersection contains a perfect tree, then there is a maximal perfect
tree T ∧ S ⊆ T ∩ S, the meet of T and S. Let’s see that this maximality property
fails for perfect κ-trees.

Proposition 2.5. There are perfect κ-trees S and T whose intersection contains
a perfect κ-tree but no maximal one.

Proof. Fix some t ∈ 2ω. Let T be the tree 2<κ with all nodes ≥ t_00 and ≥ t_10
removed. Let S be the tree 2<κ with all nodes ≥ t_01 and ≥ t_11 removed.
Clearly, S and T are perfect κ-trees, and there are many different perfect κ-trees
contained in S ∩ T . Note next that a perfect κ-tree in the intersection of S and T
cannot contain the node t and therefore has to be bounded below t. Suppose that
R ⊆ S ∩ T is a perfect κ-tree and n is largest such that t � n ∈ R. Let t(n+ 1) = i.
Then R∪(2<κ)t�n+1_(1−i) is a perfect κ-tree contained in S∩T . Thus, there cannot
be a maximal perfect κ-tree contained in S ∩ T . �

Another example comes from considering closure under unions. While perfect
trees are closed under finite (<ω-sized) unions, and we would like, by analogy, for
perfect κ-trees to be closed under <κ-sized unions, they are not closed even under
ω-sized unions.

Proposition 2.6. There are ω-many perfect κ-trees {Tn | n < ω} whose union is
not a perfect κ-tree.

Proof. Let {rn | n < ω} be a sequence of distinct elements of 2ω such that for every
m < ω and s ∈ 2m, there is some rn with s ⊆ rn. For each n < ω, let Tn = (2<κ)rn ,
which is clearly a perfect κ-tree. Now observe that

⋃
n<ω Tn includes 2<ω, but does

not include every node in 2ω, and hence cannot be a perfect κ-tree because it fails
the closure requirement (2) from Definition 2.1. �
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Next, we will define the notion of a κ-perfect poset, whose elements are perfect
κ-trees ordered by the subset relation.

Definition 2.7. A collection P of perfect κ-trees ordered by the subset relation is
a κ-perfect poset if it satisfies the following conditions:

(1) 2<κ ∈ P.
(2) If T ∈ P and t ∈ T , then Tt ∈ P.
(3) If {Tξ | ξ < β}, with β < κ, is a ⊆-decreasing sequence of trees in P, then

T =
⋂
ξ<β Tξ ∈ P.

(4) Suppose T ∈ P, α < κ is a successor ordinal, and {T (s) | s ∈ T ∩ 2α} is a
collection of elements of P such that T (s) ⊆ Ts. Then

⋃
s∈2α T

(s) ∈ P.

We will refer to property (3) as the <κ-intersection property and to property (4)
as the weak union property.

Note that the union
⋃
s∈2α T

(s) in the definition of the weak union property must
be a perfect κ-tree because we chose α to be a successor ordinal. Note also that a
κ-perfect poset is <κ-closed by the <κ-intersection property.

We can actually strengthen the weak union property as follows. Suppose T is a
perfect κ-tree, X is an antichain of nodes on successor levels of T , with |X| < κ,
and

~T = {T (s) | s ∈ X}
is a collection of perfect κ-trees such that T (s) ⊆ Ts for every s ∈ X. We say that

a tree S is the tree T slimmed down by ~T if S is the result of replacing Ts by T (s)

in T for every s ∈ X.

Proposition 2.8. Suppose P is a κ-perfect poset, T ∈ P, X is an antichain of

nodes on successor levels of T , with |X| < κ, and ~T = {T (s) | s ∈ X} is a collection
of perfect κ-trees such that T (s) ⊆ Ts for every s ∈ X. Then the tree S, which is

the tree T slimmed down by ~T , is in P.

Proof. Let β < κ be a limit ordinal such that all nodes in X appear on levels
below β. For every successor ordinal α < β, let Xα = X ∩ 2α. Enumerate the
successor ordinals below β as {αξ | ξ < β}. Let S0 = T . Suppose we have defined
a ⊆-decreasing sequence {Sξ | ξ < γ} ⊆ P for some γ < β. Let S′γ =

⋂
ξ<γ Sξ,

which is in P by the <κ-intersection property. Let Sγ be S′γ slimmed down by
~Tγ = {T (s) | s ∈ Xαγ}, which is in P by the weak union property. Clearly Sγ ⊆ Sξ
for all ξ < γ. Now it is easy to see that S =

⋂
ξ<β Sξ, which must be in P by the

<κ-intersection property. �

The following proposition is standard. Given a perfect κ-tree T , we will denote
by [T ] the collection of all cofinal branches through T .

Proposition 2.9. Suppose that P is a κ-perfect poset and G ⊆ P is V -generic.
Then A =

⋂
T∈G T is a cofinal branch of every T ∈ G and for every T ∈ P, if

A ∈ [T ], then T ∈ G. Thus, A determines G.

Since A is a characteristic function of a subset of κ, we can view a generic filter for
a κ-perfect poset as a subset of κ.

Recall that perfect posets, whose elements are perfect trees ordered by subset,
are required to be closed under meets: if T and S are elements of a perfect poset,
then so is T ∧ S (see [FGK19] or [Abr84]). Closure under meets is an extremely
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useful property. In particular, it follows from it that if perfect trees T and S are
compatible (have a perfect tree in their intersection), then they are compatible in
any perfect poset to which they belong. This suggests that a useful property for
κ-perfect posets might be to insist that they respect compatibility of perfect κ-trees
in the following strong sense.

Definition 2.10. Let us say that a κ-perfect poset P has the <κ-compatibility
property if whenever X ⊆ P has size less than κ and

⋂
T∈X T contains a perfect

κ-tree, then there is a tree S ∈ P such that S ⊆
⋂
T∈X T .

If a κ-tree doesn’t have a subtree that is a perfect κ-tree, then a κ-perfect
forcing cannot add such a subtree (see Proposition 2.12 below). Suppose that λ is
an inaccessible cardinal. Let us first see that it is consistent to have a λ-tree T that
does not contain a subtree that is a perfect λ-tree and a forcing notion preserving
the inaccessibility of λ such that in the forcing extension, T has a perfect λ-tree as
a subset. Recall that S ⊆ λ is called fat stationary if for every club C ⊆ λ and
α < λ, the intersection S∩C contains a closed set of order-type α. A fat stationary
set is said to be non-trivial if it doesn’t contain a club. If λ is at least Mahlo,
then the complement of the regular cardinals in λ is a non-trivial fat stationary
set. Also, we can force with Add(λ, 1) to add a Cohen subset to λ and use the
characteristic function f of the Cohen subset to define fat stationary and co-fat
stationary sets S = f−1(0) and S̄ = f−1(1). If S is fat stationary, then the club
shooting forcing PS for S, whose conditions are closed bounded subsets of S ordered
by end-extension, is <λ-distributive and adds a club subset to S [AS83].

Proposition 2.11. It is consistent that λ is an inaccessible cardinal and there is
a λ-tree T without a subtree that is a perfect λ-tree and a poset P such that in
any forcing extension by P, λ remains inaccessible and T has a perfect λ-tree as a
subset.

Proof. Fix a stationary set S in λ. Define a κ-tree TS by s ∈ TS whenever s(α) = 0
for every α /∈ S. Note that TS splits precisely at levels α ∈ S. Let’s argue that T
contains a subtree that is a perfect κ-subtree if and only if S contains a club.

Suppose, first, that S contains a club C. Consider the tree TC consisting of
s ∈ 2<κ such that s(α) = 0 for every α /∈ C. Clearly TC is a subtree of TS . The
tree TC has a splitting node above every node because C is unbounded, and it is
obviously closed. Fix any branch f ∈ 2κ through TC , and observe that

Cf = {α < κ | f � α splits} = C,

and hence is a club. So by Proposition 2.2, TC is a perfect κ-tree. Next, suppose
that S does not contain a club. Suppose towards a contradiction that T ⊆ TS is a
perfect κ-tree. Fix a branch f ∈ 2κ through T , and observe that Cf is a club by
Proposition 2.2. But then Cf ⊆ S, contradicting our assumption that S does not
contain a club.

Now suppose further that S is a non-trivial fat stationary set and force with
the poset PS . Since PS is <κ-distributive, κ remains inaccessible in the forcing
extension by PS . By the above argument, the κ-tree TS does not have a subtree
that is a perfect κ-tree in V , but will have one in any forcing extension by PS . �

Proposition 2.12. Suppose P is a <κ-closed poset and T is a κ-tree. If T does
not have a subtree that is a perfect κ-tree, then it won’t have one in any forcing
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extension by P. In particular, a κ-perfect poset cannot add a subtree that is a perfect
κ-tree to a κ-tree without one.

Proof. Suppose that T is a κ-tree that doesn’t have any subtrees that are perfect
κ-trees. Suppose towards a contradiction that there is a forcing extension V [G] by
P in which T gets a perfect κ-tree as a subset, and fix a condition p ∈ P forcing this.
Let θ � κ be a regular cardinal and let X ≺ Hθ be an elementary substructure
of size κ such that p,P, T ∈ X and X<κ ⊆ X. Let π : X → M be the Mostowski
collapse map, and note that M<κ ⊆M . Let Q = π(P), q = π(p). Observe that we
have π(T ) = T since κ ⊆ X (follows from closure). By elementarity, in M , q forces
that T contains a perfect κ-tree as a subset. Since, by elementarity, Q is <κ-closed
in M and M<κ ⊆ M , we can build in V an M -generic filter G for M with q ∈ M
(see Proposition 4.2). But then T has a perfect κ-tree as a subset in M [G] ⊆ V ,
which contradicts our assumption.

�

Let’s describe the smallest κ-perfect poset Pmin, which we will construct in κ-
many steps as follows. Let

P0 = {(2<κ)t | t ∈ 2<κ}.
Suppose inductively that Pξ has been defined. Let P′ξ+1 be the collection of all trees

T ∈ Pξ slimmed down by some ~T = {T (s) | s ∈ 2β ∩ T} ⊆ Pξ, with β a successor
ordinal. Let Pξ+1 be the collection of all trees T =

⋂
α<β Tα for some ⊆-decreasing

sequence {Tα | α < β}, with β < κ, of trees in P′ξ+1. At limit stages, we take
unions. The poset

Pmin =
⋃
ξ<κ

Pξ.

The poset Pmin is κ-perfect by construction. Note also that it has size κ.
Given a tree T ∈ Pmin, let us say that α is a nice level of T if for every node t

on level α of T , Tt = (2<κ)t. Clearly, if α is a nice level of T and ᾱ > α, then ᾱ is
also a nice level of T .

Proposition 2.13. Every tree T ∈ Pmin has a nice level.

Proof. We will argue by induction on ξ < κ that every tree in Pξ has a nice level.
Clearly, every tree in P0 has a nice level. So suppose inductively that every tree
in Pξ has a nice level. Let S ∈ P′ξ+1. Then S is a tree T ∈ Pξ slimmed down by

some ~T = {T (s) | s ∈ 2β ∩ T} ⊆ Pξ, with β a successor ordinal. For each tree

T (s), let αs be a nice level and let γ be a nice level of T . Let α be above γ and
αs for every s ∈ T ∩ 2β . Then clearly α is a nice level for S. Next, suppose that
{Tη | η < β} ⊆ P′ξ+1, with β < κ, is a ⊆-decreasing sequence of trees. For each

η < β, let αη be a nice level of Tη. Let α > αη for every η < β and let T =
⋂
η<β Tη.

Then clearly α is a nice level for T . �

Proposition 2.14. The poset Pmin has the <κ-compatibility property.

Proof. Let X ⊆ Pmin be such that |X| < κ and
⋂
T∈X T contains a perfect κ-tree

S. Since X has size less than κ, there is a level α which is nice for every T ∈ X.
Thus, for every T ∈ X and t ∈ T ∩ 2α, Tt = (2<κ)t. Since S ⊆

⋂
T∈X T is a

perfect κ-tree, there is some t ∈ S on level α. So t ∈ T for every T ∈ X. But then
(2<κ)t ⊆ T for every T ∈ X, and so (2<κ)t ⊆

⋂
T∈X T . �
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Definition 2.15. Let P<κ denote the bounded support κ-length product of a κ-
perfect poset P. Conditions in P<κ are functions p : κ → P for which there is a
β < κ such that for every γ ≥ β, p(γ) = 2<κ. We call the domain of a condition
p ∈ P<κ the collection of all non-trivial coordinates of p.

3. Growing κ-perfect posets

In this section, we will show how to grow a κ-perfect poset to a larger κ-perfect
poset in a specially chosen forcing extension of V .

Definition 3.1. We associate to each κ-perfect poset P, the poset Q(P) whose
conditions are pairs (T, α) such that T ∈ P and α is a successor ordinal ordered so
that (T2, α2) ≤ (T1, α1) whenever α2 ≥ α1, T2 ⊆ T1, and T1 ∩ 2α1 = T2 ∩ 2α1 . We
call Q(P) the fusion poset for P because fusion arguments with perfect κ-trees in P
can be expressed by meeting well-chosen dense sets in Q(P).

The poset Q(P) is <κ-closed and adds a generic perfect κ-tree.

Proposition 3.2. The poset Q(P) is <κ-closed.

Proof. Suppose that {(Tξ, αξ) | ξ < β}, with β < κ, is a ≤-descending sequence
of conditions in Q(P). Let α =

⋃
ξ<β αξ. Let T =

⋂
ξ<β Tξ, which is in P by the

<κ-intersection property. Let’s verify that (T, α + 1) ≤ (Tξ, αξ) for every ξ < β.
Since the sequence is descending we have that Tη ∩2αξ = Tξ ∩2αξ for all ξ < η < β.
Thus, T ∩ 2αξ = Tξ ∩ 2αξ . �

Let G ⊆ Q(P) be V -generic. Note that by the <κ-closure of Q(P), κ remains
inaccessible in V [G]. Let T =

⋃
(T,α)∈G T ∩ 2≤α.

Proposition 3.3.

(1) T is a perfect κ-tree in V [G].
(2) T ≤ T for every condition (T, α) ∈ G.

Proof. First, let’s prove (2). Fix a condition (T, α) ∈ G and a node t ∈ T , with
t ∈ 2β . By density, there is (S, γ) ∈ G with γ ≥ α, β. Let (T̄ , ᾱ) ∈ G be below both
(T, α) and (S, γ). In particular, T̄ ⊆ T and ᾱ ≥ β. Next, let (R, δ) ∈ G be such
that t ∈ R ∩ 2≤δ. Let (R̄, δ̄) ∈ G be below both (T̄ , ᾱ) and (R, δ). Then R̄ ⊆ T̄ , R
and R̄∩2min{ᾱ,δ} = R∩2min{ᾱ,δ} = T̄ ∩2min{ᾱ,δ}. In particular, t ∈ R̄. Thus, since
R̄ ⊆ T̄ , t ∈ T̄ ⊆ T .

Next, let’s prove (1). Suppose that t ∈ 2γ is such that t � η ∈ T for every
η < γ. Choose some (T, α) ∈ G with α > γ, which exists by density. Then, by (2),
t � η ∈ T for every η < γ. Hence t ∈ T by closure, and since α > γ, t ∈ T . Closure
of splitting nodes is shown similarly. So it remains to show that above every node
in T , there is a splitting node in T .

Fix a node t ∈ T . There is some condition (T, α) ∈ G such that t ∈ T ∩ 2≤α.
We will show that conditions (S, β) ≤ (T, α) such that t splits in S below level β
are dense below (T, α). Choose any condition (S, β̄) ≤ (T, α), and note that t ∈ S.
Since S is a perfect κ-tree, there must be some successor level β ≥ β̄ such that
t splits in S below level β. Then the condition (S, β) works. This completes the
argument that T is a perfect κ-tree in V [G]. �

Definition 3.4. Let Q(P)<κ denote the bounded support κ-length product of the
poset Q(P). Conditions in Q(P)<κ are functions p : κ → Q(P) for which there is
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β < κ such that for all ξ ≥ β we have that f(ξ) = (2<κ, 0) is trivial. We call the
domain of a condition p ∈ Q(P)<κ the collection of all non-trivial coordinates of p.

Clearly, Q(P)<κ is <κ-closed, and hence preserves the inaccessibility of κ.
For the remainder of this section, suppose that G ⊆ Q(P)<κ is V -generic. Let

{Tξ | ξ < κ} be the κ-length sequence of generic perfect κ-trees derived from G, and

let Ṫξ for ξ < κ be the canonical Q(P)<κ-names for the trees Tξ.
First, we observe that any two distinct trees Tξ and Tη are going to have a

bounded intersection.

Proposition 3.5. For any ξ 6= η < κ, the trees Tξ and Tη have a bounded inter-
section. Hence, {Tξ | ξ < κ} is an antichain in the ⊆-order.

Proof. Fix ξ 6= η < κ. We will show that the intersection Tξ ∩ Tη has size less
than κ. Fix any condition p ∈ G. Let p(ξ) = (Tξ, αξ) and p(η) = (Tη, αη). Pick a
successor ordinal α above both αξ and αη, and strengthen p to the condition q such
that q(ξ) = (Tξ, α), q(η) = (Tη, α), and q(β) = p(β) on the rest of the coordinates.
For each node t ∈ 2α ∩ Tξ ∩ Tη choose two incompatible nodes t0 and t1 above t
such that t0 ∈ Tξ and t1 ∈ Tη. Let T̄ξ be the tree we get by replacing each (Tξ)t
with (Tξ)t0 in Tξ, which is in P by the weak union property, and let T̄η be the tree
we get by replacing each (Tη)t with (Tη)t1 in Tη. Let q̄ be the condition such that
q̄(ξ) = (T̄ξ, α), q̄(η) = (T̄η, α), and q̄(β) = q(β) on the rest of the coordinates. Since
q̄ ≤ p, we have argued that it is dense below p to have conditions where the trees
on coordinates ξ and η have intersection of size less than κ. �

Now working in V [G], we will define a κ-perfect poset P∗ extending P. The poset
P∗ is going to be generated by P and

U = {(Tξ)t | ξ < κ, t ∈ Tξ}
by closing to obtain the weak union property and the <κ-intersection property,
analogously to how the poset Pmin was generated by the trees {(2<κ)t | t ∈ 2<κ}.
Let P∗0 = P ∪ U. Suppose inductively that P∗ξ has been defined. Let P′ξ+1 be the

collection of all trees T ∈ P∗ξ slimmed down by some ~T = {T (s) | s ∈ T ∩ 2β} ⊆ P∗ξ ,
with β a successor ordinal. Let P∗ξ+1 be the collection of all trees T =

⋂
α<β Tα

for a ⊆-decreasing sequence {Tα | α < β}, with β < κ, of trees in P′ξ+1. At limit

stages, we take unions. The poset P∗ =
⋃
ξ<κ P∗ξ . Clearly P∗ is a κ-perfect poset in

V [G]. Note that if the original poset P had size κ, then so does the poset P∗.
The next proposition will be used to show that if P has the <κ-compatibility

property, then so does P∗.

Proposition 3.6. Suppose {Sξ | ξ < ρ} ⊆ P, with ρ < κ, and for some α < κ,
(Tα)t ∩ (

⋂
ξ<ρ Sξ) contains a perfect κ-tree as a subset. Then there is a node s ∈ Tα,

with s ≥ t, such that (Tα)s ⊆
⋂
ξ<ρ Sξ.

Proof. Fix a condition p ∈ Q(P)<κ, and let p(α) = (T, γ). If t /∈ T , let p̄ = p.
So suppose that t ∈ T . By strengthening p, if necessary, we can assume that γ
is above the level of t. Fix a node s ≥ t on level γ of T . If Ts ⊆

⋂
ξ<ρ Sξ, then

let U (s) = Ts. Otherwise, there is some node s̄ ≥ s such that s̄ /∈
⋂
ξ<ρ Sξ. In

this case, let U (s) = Ts̄. Let T̄ be the tree T with each Ts replaced by U (s). Let
p̄ be the condition with p̄(α) = (T̄ , γ) and p̄(β) = p(β) for every β 6= α. Clearly,
p̄ ≤ p. Thus, conditions of the form p̄ are dense in Q(P)<κ. Let p̄ ∈ G be some
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such condition. First, observe that, since t ∈ Tα, p̄(α) = (T̄ , γ) as defined above.
Since (Tα)t ∩ (

⋂
ξ<ρ Sξ) contains a perfect κ-tree, there must be some node s ∈ 2γ

such that (Tα)s ∩ (
⋂
ξ<ρ(Sξ)s) contains a perfect κ-tree. Thus, it must have been

the case that T̄s = U (s) ⊆
⋂
ξ<ρ Sξ. Hence, since p̄ ∈ G, (Tα)s ⊆ T̄s ⊆

⋂
ξ<ρ Sξ by

Proposition 3.3 (2).
�

Given a tree T ∈ P∗, let us say that a level α of T is nice if for every t ∈ T ∩ 2α,
either Tt ∈ P or Tt = (Tξ)t for some ξ < κ. Clearly, if α is a nice level of T , then
every level β > α is also nice.

Proposition 3.7. Every T ∈ P∗ has a nice level.

Proof. We will argue by induction on ξ < κ that every tree in P∗ξ has a nice level.
Clearly, every tree in P∗0 has a nice level. So suppose inductively that every tree
in P∗ξ has a nice level. Let S ∈ P′ξ+1. Then S is a tree T ∈ P∗ξ slimmed down by

some ~T = {T (s) | s ∈ 2β ∩ T} ⊆ Pξ, with β a successor ordinal. For each tree T (s),
let αs > β be a nice level and let γ > β be a nice level for T . Let α be above γ
and αs for every s ∈ T ∩ 2β . Then clearly α is a nice level for S. Next, suppose
that {Tη | η < β} ⊆ P′ξ+1, with β < κ, is a ⊆-decreasing sequence of trees. For
every η < β, let αη be a nice level for Tη. Let α > αη for every η < β, and let
T =

⋂
η<β Tη. Fix t ∈ T ∩ 2α. If cofinally many (Tη)t ∈ P, then this sequence

of tree is in V by closure, and so Tt =
⋂
η<β(Tη)t is in P by the <κ-intersection

property. Otherwise, there is η < β such that for every η < ν < β, (Tν)t = (Tρν )t
for some ρν . But then by Proposition 3.5, all ρν = ρ for some single ρ. Therefore,
Tt = (Tρ)t.

�

Proposition 3.8. Suppose that P has the <κ-compatibility property. Then P∗ has
the <κ-compatibility property.

Proof. Suppose that {Tη | η < β}, with β < κ, is some sequence of trees in P∗
such that there is a perfect κ-tree R ⊆

⋂
η<β Tη. We need to argue that there is

T ∈ P∗ with T ⊆
⋂
η<β Tη. For each η < β, let αη be a nice level for the tree

Tη, and fix α such that α > αη for every η < β. Fix a node t on level α of R.
Then Rt ⊆

⋂
η<β(Tη)t. If every (Tη)t ∈ P, then the entire sequence is in V by

closure, and so P has a perfect κ-tree T ⊆
⋂
η<β(Tη)t because we assumed that P

has the <κ-compatibility property. Otherwise,
⋂
η<β(Tη)t = (Tρ)t ∩ (

⋂
ξ<δ Sξ) for

some collection of trees Sξ ∈ P (there can only be one (Tρ)t by Proposition 3.5).
Now by Proposition 3.6, there is a node s ≥ t in Tρ such that (Tρ)s ⊆

⋂
ξ<δ Sξ.

Hence, T = (Tρ)s ⊆
⋂
η<β(Tη)t. In either case, we have found a tree T ∈ P∗ with

T ⊆
⋂
η<β Tη.

�

Proposition 3.9.

(1) The antichain {Tα | α < κ} is maximal in P∗.
(2) U is dense in P∗.
(3) Every maximal antichain of P from V remains maximal in P∗.

Proof. Fix T ∈ P∗. Choose a nice level β of T and some t ∈ T ∩ 2β . If Tt ∈ P, then
by density, there is a condition q ∈ G and ordinals α, γ such that q(α) = (Tt, γ).
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By Proposition 3.3 (2), we then have Tα ≤ Tt. If Tt /∈ P, then Tt = (Tα)s for some
s. Thus, {Tα | α < κ} is a maximal antichain in P∗ and U is dense in P∗.

Fix a maximal antichain A ∈ V of P. By the density of U, it suffices to argue
that every element of U meets A. So fix some tree (Tα)t ∈ U. Fix a condition
p ∈ Q(P)<κ, and let p(α) = (T, γ). If t 6∈ T , let p̄ = p. So suppose that t ∈ T . By
strengthening p, if necessary, we can assume that γ is above the level of t. Fix a
node s ≥ t on level γ of T . Since A is maximal in P, there is A ∈ A compatible with
Ts. Let U ∈ P such that U ⊆ Ts, A. Let T̄ be the tree we get by replacing Ts with
U in T . Let p̄ be the condition with p̄(α) = (T̄ , γ) and p̄(β) = p(β) for all β 6= α.
Clearly, p̄ ≤ p. Thus, conditions of the form p̄ are dense in Q(P)<κ. Let p̄ ∈ G be
some such condition. Since t ∈ Tα, p̄(α) = (T̄ , γ) as constructed above. Then we
have (Tα)s ⊆ T̄s ⊆ A ∈ A, verifying that (Tα)t is compatible with an element of A.

�

Property (3) of P∗ above generalizes to κ-length bounded support products P∗<κ.
Let U<κ consist of conditions in P∗<κ such that for every α in the domain of p,
p(α) ∈ U. Clearly, U<κ is dense in P∗<κ.

Proposition 3.10. Every maximal antichain of P<κ from V remains maximal in
P∗<κ.

Proof. Fix a maximal antichain A ∈ V of P<κ. By density, it suffices to argue
that every condition q ∈ U<κ meets A. So fix a condition q ∈ U<κ. Let Dq be
the domain of q and let q(α) = (Tξα)tα for every α ∈ Dq. Note that we can have
α 6= β ∈ Dq such that ξα = ξβ . By thinning out the trees q(α), for α ∈ Dq, we can
assume without loss of generality that if ξα = ξβ , then tα and tβ are incompatible
nodes.

Fix p ∈ Q(P)<κ, and let p(ξ) = (Tξ, γξ) for every ξ < κ. If for some α ∈ Dq,
tα /∈ Tξα , let p̄ = p. So suppose that for all α ∈ Dq, tα ∈ Tξα . By strengthening
p, if necessary, we can assume that there is a single γ such that γ = γξα and it is
above the level of tα for every α ∈ Dq. For every α ∈ Dq, fix a node sα ≥ tα on
level γ of Tξα , and note that by our assumption on q, if α 6= β, but ξα = ξβ , then
sα 6= sβ . Let r ∈ P<κ be the condition defined by r(α) = (Tξα)sα for every α ∈ Dq

and r(α) is trivial otherwise. Since A is maximal in P<κ, there is a condition a ∈ A
compatible with r. Fix r̄ ≤ a, r. Given η < κ, if η = ξα for some α ∈ Dq, let T̄η
be the tree we get by replacing (Tη)sβ with r̄(β) for every β with η = ξβ . Let p̄

be the condition such that p̄(η) = (T̄η, γ) for every η = ξα for some α ∈ Dq, and
p̄(η) = p(η) otherwise. Clearly, p̄ ≤ p. Thus, conditions of the form p̄ are dense in
Q(P)<κ. Let p̄ ∈ G be some such condition. Since tα ∈ Tξα for every α ∈ Dq, it
follows that p̄(η) = (T̄η, γ) for every η = ξα for some α ∈ Dq as constructed above.
Then we have for every α ∈ Dq, (Tξα)sα ⊆ (T̄ξα)sα ⊆ a(α). Thus, q and a are
compatible.

�

Finally, we will argue that generic filters for P∗ restrict to generic filters for P.
This property will be used extensively in later arguments.

Proposition 3.11. Suppose H∗ ⊆ P∗ is V [G]-generic. Then H = H∗ ∩ P is
V -generic for P.

Proof. By Proposition 3.9 (3), H meets every maximal antichain of P from V . So
it remains to check that H is a filter. Clearly, H is upward closed. So it remains
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to verify that any two conditions in H are compatible in H. Fix T1, T2 ∈ H. Since
T1, T2 ∈ H∗, there is S ∈ H∗ such that S ⊆ T1, T2. Let β be a nice level of S and
let t ∈ S ∩ 2β be such that St ∈ H∗. If St ∈ P, then we are done. Otherwise,
St = (Tα)t for some α < κ.

Fix a condition p ∈ Q(P)<κ, and let p(α) = (T, γ). If t 6∈ T , let p̄ = p. So
suppose that t ∈ T . By strengthening p, if necessary, we can assume that γ > β.
Fix a node s ≥ t on level γ of T . If Ts ⊆ T1, T2, let U (s) = Ts. Otherwise, there is
some node s̄ ≥ s such that s̄ /∈ T1 or s̄ /∈ T2. In this case, let U (s) = Ts̄. Let T̄ be
the tree T with each Ts replaced by U (s). Let p̄ be the condition with p̄(α) = (T̄ , γ)
and p̄(β) = p(β) for every β 6= α. Clearly, p̄ ≤ p. Thus, conditions of the form p̄ are
dense in Q(P)<κ. Let p̄ ∈ G be some such condition. Since t ∈ Tα, p̄(α) = (T̄ , γ)
as constructed above. Since (Tα)t ⊆ T1, T2 by assumption, it must have been the
case that (Tα)s ⊆ Ts ⊆ T1, T2. Thus, we have Ts ⊆ T1, T2 and Ts ∈ H.

�

Proposition 3.12. Suppose H∗ ⊆ P∗<κ is V [G]-generic. Then H = H∗ ∩ P is
V -generic for P<κ.

Proof. By Proposition 3.10, H meets every maximal antichain of P from V . Clearly,
H is upward closed. So it remains to verify that any two conditions in H are
compatible in H. For every α < κ, let

H∗α = {p(α) | p ∈ H∗}.

Then H∗α is V [G]-generic for P∗. Let Hα be the restriction of H∗α to P, which is
V -generic by Proposition 3.11. Fix p1, p2 ∈ H, and observe that for every α < κ,
p1(α), p2(α) ∈ Hα. For every α < κ, let pα ≤ p1(α), p2(α) with pα ∈ Hα, making
sure to choose pα to be 1lP whenever both p1(α) = p2(α) = 1lP. Let p ∈ P be the
condition with p(α) = pα (note that p ∈ V by closure). We will argue that p ∈ H∗.
It suffices to show that p is compatible with every condition q ∈ H∗. So fix q ∈ H∗.
Suppose towards a contradiction that p is not compatible with q. Then there must
be a coordinate α such that p(α) = pα is not compatible with q(α). Since pα ∈ Hα,
there is a condition p̄ ∈ H∗ such that p̄(α) = pα. But then p̄ and q would be
incompatible, which is the desired contradiction. �

4. κ-Jensen forcing at an inaccessible κ

In this section, we will construct a poset generalizing the Jensen poset J at an in-
accessible cardinal κ. We will construct the κ-Jensen poset J(κ) in the constructible
universe L (see Section 6 for how to generalize the construction beyond L). Follow-
ing the construction in [Abr84], the Jensen poset J is built up as the union of an
ω1-length chain of countable perfect posets, where unions are taken at limit stages
and maximal antichains are sealed at successor stages using a ♦-sequence. The κ-
Jensen poset J(κ) will be analogously built up as the union of a κ+-length chain of
κ-perfect posets of size κ. The construction will use a ♦κ+(Cof(κ))-sequence. The
successor stages of the construction will be completely analogous to the construction
of J from [Abr84]: based on the information provided by a ♦κ+(Cof(κ))-sequence,
we will either do nothing or grow our current poset P to P∗ as constructed in a
forcing extension by Q(P)<κ of a carefully chosen transitive model M . At limit
stages, we will take unions, but then close (if necessary) to obtain the weak union
property and the <κ-intersection property.
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For the duration of the construction, we let

~D = 〈Dα | α ∈ Cof(κ) ∩ κ+〉

be the canonical1 ♦κ+(Cof(κ))-sequence of L. At successor stages dictated by ~D
(as explained below), we will force over sufficiently nice transitive models of size κ
to obtain the next poset.

Definition 4.1. A κ-suitable model is a transitive modelM |= ZFC−+“P(κ) exists”
such that:

(1) |M | = κ,
(2) M<κ ⊆M ,
(3) M = Lα for some α.

Natural examples of κ-suitable models M arise as Mostowski collapses of elemen-
tary substructures M̄ ≺ Lκ++ with |M̄ | = κ and M̄<κ ⊆ M̄ . Note that if M is a

κ-suitable model and δ = (κ+)M , then ~D � δ = 〈Dα | α ∈ Cof(κ)∩ δ〉 is an element
of M because we chose to use the canonical sequence (note that M is correct about
Cof(κ)∩ δ since it is closed under sequences of length less than κ). Note, also, that
any transitive model M that is closed under <κ-sequences must be correct about
whether a poset P ∈M is κ-perfect, and it must also correctly construct Q(P) and
Q(P)<κ.

Next, we need the following two standard propositions, which are usually used
for lifting elementary embeddings arising from large cardinals to forcing extensions.

Proposition 4.2. Suppose that M |= ZFC− is a transitive model of size κ such
that M<κ ⊆M and P ∈M is a <κ-closed poset. Then there is an M -generic filter
for P.

The proof is a generalization of the standard diagonalization argument to show that
generic filters exist for countable models. The closure of M and P are used to get
through limit stages.

Proposition 4.3. Suppose that M |= ZFC− is a transitive (set or class) model
such that M<κ ⊆ M and P ∈ M is a poset. If G ⊆ P is M -generic, then
M [G]<κ ⊆M [G].

The proof can be found, for example, in [GJ22] (Lemma 3.7).
Let M be a κ-suitable model and suppose that P ∈ M is κ-perfect. By Propo-

sition 4.2, we can fix an M -generic filter G ⊆ Q(P)<κ. In M [G], we can construct
the poset P∗. Then, by Proposition 3.9 (3) and Proposition 3.10, every maximal
antichain A of P or P<κ from M remains maximal in P∗ or P∗<κ respectively. Since
by Proposition 4.3, M [G]<κ ⊆M [G], P∗ is a κ-perfect poset extending P. Finally,
the proof of Proposition 3.8 shows that if P has the <κ-compatibility property, then
the poset P∗ has the <κ-compatibility property not just in M [G], but fully in V .

The κ-Jensen poset J(κ) will be the union of an increasing chain 〈Pα | α < κ+〉
of κ-perfect posets constructed as follows. Let P0 = Pmin. Suppose that Pα has
been defined. We let Pα+1 = Pα unless the following happens. Suppose that
α ∈ Cof(κ) ∩ κ+ and Dα codes an extensional and well-founded binary relation

1 ~D is the sequence defined by letting Dα = D for the L-least pair (D,C) such that D ⊆ α, C

is a club in α and D is not guessed on any ξ ∈ C ∩Cof(κ) by 〈Dξ | ξ ∈ Cof(κ) ∩ α〉 if such a pair

exists, or letting Dα = α otherwise.
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E ⊆ α×α such that the collapse of E is a κ-suitable model Mα with Pα ∈Mα and
α = (κ+)Mα . In this case, we take the L-least Mα-generic filter Gα ⊆ Q(Pα)<κ

and let Pα+1 = P∗α as constructed in M [Gα]. At limit stages of cofinality κ, we
simply take unions. So suppose that λ is a limit stage of cofinality γ < κ. We will
construct the λ-stage poset Pλ in κ-many steps by closing under the <κ-intersection

property and the weak union property. Let P(0)
λ =

⋃
ξ<λ Pξ. Suppose inductively

that P(ξ)
λ has been defined. Let P′(ξ+1)

λ be the collection of all trees T ∈ P(ξ)
λ slimmed

down by some ~T = {T (s) | s ∈ T ∩ 2β} ⊆ P(ξ)
λ , with β a successor ordinal. Let

P(ξ+1)
λ be the collection of all trees T =

⋂
α<β Tα for some ⊆-decreasing sequence

{Tα | α < β} ⊆ P′(ξ+1)
λ , with β < κ. At limit stages, we take unions. Let

Pλ =
⋃
ξ<κ P

(ξ)
λ . Clearly, Pλ is a κ-perfect poset extending

⋃
ξ<λ Pξ. Thus, every

Pξ for ξ < κ+ is a κ-perfect poset by construction. Let

J(κ) = Pκ+ =
⋃
ξ<κ+

Pξ.

Thus, the following is clear.

Proposition 4.4. The poset J(κ) is κ-perfect.

Proposition 4.5. For every β < α < κ+, Mβ [Gβ ] ∈Mα.

Proof. Fix β < α < κ+. Since α = (κ+)Mα , it follows that 〈Dξ | ξ ∈ Cof(κ) ∩ α〉
is an element of Mα, and hence Mβ ∈ Mα. Also, since Gβ was chosen to be the
L-least Mβ-generic, it is definable from Mβ , and hence must be in Mα as well.
Thus, Mβ [Gβ ] ∈Mα. �

Let T (ξ)
ν , where ξ < κ+, ξ+1 is a non-trivial stage, and ν < κ, be the Mξ-generic

perfect κ-trees added in Mξ[Gξ]. Given a tree T ∈ J(κ), let us say that a level α of
T is nice if for every t ∈ T ∩ 2α, one of the following holds:

(1) There is a ⊆-decreasing sequence {(T (µξ)
ρξ )t | ξ < ν} for some ν < κ such

that Tt =
⋂
ξ<ν(T (µξ)

ρξ )t.

(2) There are µ < κ+ and ρ < κ such that Tt = (T (µ)
ρ )t.

(3) Tt = (2<κ)t.

Note that in a ⊆-decreasing sequence {(T (µξ)
ρξ )t | ξ < ν}, the indices µξ must be

weakly increasing because if T is the generic perfect κ-tree added by Q(P), then by
density, we cannot have T ⊆ T for any T ∈ P. Note also that if α is a nice level of
a T , then every ᾱ > α is also a nice level of T .

Proposition 4.6. Suppose that α < κ+ is such that α+ 1 is non-trivial successor
stage and A ∈Mα is a maximal antichain of Pα. Then for every ξ < κ, there is a

level βξ of T (α)
ξ such that for every node t on level βξ, there is At ∈ A such that

(T (α)
ξ )t ⊆ At.

The proof is an easy modification of the proof of Proposition 3.9(3).

Lemma 4.7. Every T ∈ J(κ) has a nice level.

Lemma 4.7 will be proved simultaneously with Lemma 4.8 below by induction
on ξ < κ+ to show that every tree in Pξ has a nice level.
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Proof. By Proposition 2.13, every tree in Pmin has a nice level (according to our
latest definition of “nice”). Suppose inductively that every tree in Pξ has a nice
level and ξ + 1 is a non-trivial successor stage. Let T be a tree in Pξ+1. Let α′ be

a nice level of T . Fix a node t on level α′. Then either Tt = (T (ξ)
ρ )t or Tt ∈ Pξ by

Proposition 3.7. In the second case, let αt be a nice level for Tt. Let α > α′ and
α > αt for all t on level α′ of T . Then clearly α is a nice level for T . Next, suppose
that λ is a limit stage and for every ξ < λ, every tree in Pξ has a nice level. If λ
has cofinality κ, then clearly every tree in Pλ =

⋃
ξ<λ Pξ has a nice level.

So suppose that λ has cofinality less than κ. By our inductive assumption, every

tree in P(0)
λ =

⋃
ξ<λ Pξ has a nice level. Now suppose inductively that every tree in

P(ξ)
λ has a nice level. Let S ∈ P′(ξ+1)

λ . Then S is a tree T ∈ P(ξ)
λ slimmed down by

some ~T = {T (s) | s ∈ T ∩2β} ⊆ P(ξ)
λ , with β a some successor ordinal. For each tree

T (s), let αs > β be a nice level and let γ > β be a nice level for T . Let α be above
γ and αs for every s ∈ T ∩ 2β . Then clearly α is a nice level for S. Next, suppose

that {Tη | η < β} ⊆ P′(ξ+1)
λ , with β < κ, is a ⊆-decreasing sequence of trees. Let

α′η be a nice level for Tη, and let α′ > α′η for all η < β. Suppose that µ < µ̄ < λ
and µ+ 1, µ̄+ 1 are non-trivial successor stages. By Lemma 4.8 applied below λ,

A = {T (µ)
ρ | ρ < κ} ∈Mµ[Gµ] ⊆Mµ̄

(Proposition 4.5) is a maximal antichain in Pµ̄. Thus, by Proposition 4.6, for

every ρ̄ < κ, there is a level βρ̄ of T (µ̄)
ρ̄ such that for every node t on level βρ̄,

(T (µ̄)
ρ̄ )t ⊆ (T (µ)

ρ )t for some ρ < κ. Now consider the collection of all trees T (µ)
ρ such

that for some η < β and node t on level α′ of Tη, (Tη)t =
⋂
ξ<ν(T (µξ)

ρξ )t and µ = µξ,
ρ = ρξ for some ξ < ν. Note that this collection must have size less than κ. So we
can choose a large enough level α > α′ such that if µ < µ̄, then for every node t on

level α, it is decided whether (T (µ̄)
ρ̄ )t ⊆ (T (µ)

ρ )t.
Let’s argue that α is a nice level for T . Fix t ∈ T∩2α. Note that Tt =

⋂
η<β(Tη)t.

By our choice of level α, each (Tη)t fits one of the criteria (1), (2), or (3) for a nice
level. First, suppose that there are cofinally many η such that (Tη)t satisfies (1).
By our assumption on the level α, we can take each of the decreasing sequences
from the cofinally many η and intertwine them into a single decreasing sequence,
resulting in Tt satisfying condition (1). If not, then there are boundedly many η
such that (Tη)t satisfies (1). Next, suppose that there are cofinally many η such that

(Tη)t satisfies (2). For each such η, let (Tη)t = (T (µη)
ρη )t. Note that the sequence

of the µη must be weakly increasing. If the sequence stabilizes at some η, then

Tt = (T (µη)
ρη )t, and hence satisfies condition (1). Otherwise, Tt satisfies condition

(2). Finally, if both cases (1) and (2) are bounded below η, then Tt = (2<κ)t, which
places it in (3). Thus, α is a nice level for T . �

Lemma 4.8. Every maximal antichain A ∈ Mα from Pα remains maximal in Pξ
for every ξ ≤ κ+.

Proposition 4.8 is proved simultaneously with Proposition 4.7 above by induction
on ξ < κ+.

Proof. By Proposition 3.9 (3), A remains maximal in Pα+1. So suppose inductively
that A remains maximal in Pξ for every α + 1 ≤ ξ < λ. First, suppose that
λ = η + 1 is a non-trivial successor stage. Since Mα ⊆ Mη, A ∈ Mη and we
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assumed inductively that it remains maximal in Pη. Thus, A is maximal in Pλ by
Proposition 3.9 (3). Next, suppose that λ is a limit of cofinality κ. In this case
Pλ =

⋃
ξ<λ Pξ, and so clearly A remains maximal. Finally, suppose that λ is a

limit of cofinality less than κ. Fix a tree T ∈ Pλ. By Proposition 4.7, which we can
assume holds at λ since its proof relies on the lemma holding below λ, we can let α

be a nice level of T . Fix a node t on level α of T . Clearly, if Tt = (T (µ)
ρξ )t for some

µ < λ or Tt ∈ Pmin, then Tt is compatible with some tree inA. If Tt =
⋂
ξ<ν(T (µξ)

ρξ )t,

where the µξ are bounded below λ, then Tt ∈ Pλ̄ for some λ̄ < λ by the <κ-closure
property. So by our inductive assumption, Tt is compatible with some tree in A.

So suppose that Tt =
⋂
ξ<ν(T (µξ)

ρξ )t, where the µξ are unbounded below λ. Fix
α ≤ µξ < λ. Then A remains maximal in Pµξ by our inductive assumption. By

Lemma 4.6, there is a β < κ such that for every node s on level β of T (µξ)
ρξ , there

is As ∈ A such that (T (µξ)
ρξ )s ⊆ As, and we can assume without loss of generality

that β > α. Fix a node s on level β of Tt. Then Ts ⊆ (T (µξ)
ρξ )s ⊆ As, and hence Tt

is compatible with As ∈ A. �

In particular, we get that each antichain {T (α)
ξ | ξ < κ} is maximal in J(κ).

Proposition 4.9. Every maximal antichain of P<κα from Mα remains maximal in
P<κξ for every ξ ≤ κ+.

Proof. Fix a maximal antichain A ∈Mα of P<κα . It clearly suffices to argue that A
remains maximal in P<κλ for λ of cofinality less than κ. Fix a condition p ∈ P<κλ ,
with p(ξ) = Tξ, and let its domain be contained in β < κ. Let γ be large enough
that γ is a nice level for every tree Tξ with ξ < β. For each ξ < β, choose a node
tξ on level γ of Tξ. We would like to argue that we can thin out each (Tξ)tξ to a

tree Sξ ⊆ T (α)
ρξ for some ρξ < κ. If (Tξ)tξ = (2<κ)tξ or (Tξ)tξ = (T (η)

ρ )tξ for some

η < α and ρ < κ, then (Tξ)tξ ∈ Pα, and so by density, there is some T (α)
ρξ such that

T (α)
ρξ ⊆ (Tξ)tξ , and hence we can let Sξ = T (α)

ρξ . If (Tξ)tξ = (T (α)
ρ )tξ for some ρ < κ,

then we can let Sξ = (Tξ)tξ . Finally, assume that (Tξ)tξ = (T (η)
ρ )tξ for some η > α

and ρ < κ or (Tξ)tξ =
⋂
η<ν(T (η)

ρη )tξ for some ⊆-decreasing sequence of the trees

T (η)
ρξ with ρξ < κ. In either case, there is some η > α such that (Tξ)tξ ⊆ (T (η)

ρ )tξ .

By Proposition 4.6, there is some t > tξ and ν < κ such that (T (η)
ρ )t ⊆ T (α)

ν . Thus,

(Tξ)t ⊆ T (α)
ν , and we can let Sξ = (Tξ)t. Thus, by strengthening the condition p,

if necessary, we can assume that for every ξ < β, p(ξ) ⊆ T (α)
ρξ for some ρξ < κ.

Let
X = {ρξ | ξ < β}.

Fix a condition q ∈ Q(Pα)<κ with q(η) = (Sη, γη). Enumerate all sequences

{~tν | ν < δ},
with δ < κ, such that ~tν : X →

⋃
η<β Sη and ~tν(η) is a node on level γη of

Sη. Let r0 ∈ P<κα be the condition with r0(ξ) = (Sρξ)~t0(ρξ)
for every ξ < β

(and trivial otherwise). Since A is maximal in P<κα , there is a condition a0 ∈ A
compatible with r0. Let r′0 ≤ r0, a0. For every ρξ ∈ X, let S0

ρξ
be the tree we

get by replacing (Sρξ)~t0(ρξ)
with r′(ξ) in Sρξ . Let q0 be the condition such that

for every ρξ ∈ X, q0(ρξ) = (S0
ρξ
, γρξ), and otherwise q0(η) = q(η). Suppose we
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have defined a descending sequence of conditions qν , with qν(η) = (Sνη , γη) for some
ν < µ < δ. First, for each η < κ, we let (Sµη )′ =

⋂
ν<µ S

ν
η . Next, we define q′µ by

q′µ(η) = ((Sµη )′, γη). Clearly, q′µ ≤ qν for all ν < µ. At this stage we take care of the

sequence of nodes ~tµ. Let rµ ∈ P<κα be the condition with rµ(ξ) = (Sµρξ)
′
~tµ(ρξ)

for

every β < ξ. Since A is maximal in P<κα , there is a condition aµ ∈ A compatible
with rµ. Let r′µ ≤ rµ, aµ. For every ρξ ∈ X, let Sµρξ be the tree we get by replacing

(Sµρξ)
′
~tµ(ρξ)

with r′µ(ξ) in (Sµρξ)
′. Let qµ be the condition such that for every ρξ ∈ X,

qµ(ρξ) = (Sµρξ , γρξ) and otherwise qµ(η) = q′µ(η). After δ-many steps, we end up

with the descending sequence of conditions qν , with qν(η) = (Sνη , γη), for ν < δ.

We let Sδη =
⋂
ν<δ S

ν
η . Next, we define qδ by qδ(η) = (Sδη , γη). Clearly, qδ ≤ qν for

all ν < δ. Thus, conditions qδ are dense in P<κα . So some such qδ ∈ Gα.

For every ξ < β, since p(ξ) ⊆ T (α)
ρξ , there must be some node tξ on level γρξ of

T (α)
ρξ such that p(ξ)tξ ⊆ (T (α)

ρξ )tξ . Let ~t be defined by ~t(ξ) = tξ. Since M<κ
α ⊆Mα,

it follows that ~t ∈Mα. Thus, ~t = ~tν for some ν < δ. It follows by our construction

of qδ that (T (α)
ρξ )tξ ⊆ (Sδρξ)tξ ⊆ aν(ξ). Thus, in particular, p(ξ) ⊆ aν(ξ) for all

ξ < β, and so p is compatible with aν ∈ A.
�

Proposition 4.10. Each poset Pξ, for ξ < κ+, has the <κ-compatibility property.
In particular, the poset J(κ) has the <κ-compatibility property.

Proof. By Proposition 2.14, P0 has the <κ-compatibility property. Suppose induc-
tively that for all ξ < λ, Pξ has the <κ-compatibility property. If λ = ξ + 1 for
some ξ, then Pλ has the <κ-compatibility property by Proposition 3.8. If λ is a
limit of cofinality κ, then it is obvious that Pλ has the <κ-compatibility property.
So suppose that λ is a limit of cofinality less than κ.

Fix a collection {Tξ | ξ < β} ⊆ Pλ, with β < κ, and suppose that there is a
perfect κ-tree S ⊆

⋂
ξ<β Tξ. We need to argue that there is a tree R ∈ Pλ such that

R ⊆
⋂
ξ<β Tξ. Let α′ be large enough so that it is a nice level for every Tξ with

ξ < β. Now consider the collection of all trees T (µ)
ρ such that for some ξ < β and

node t on level α′ of Tξ, (1) (Tξ)t = T (µ)
ρ or (2) (Tξ)t =

⋂
η<ν(T (µη)

ρη )t and µ = µη
and ρ = ρη for some η < ν < κ. Note that this collection must have size less than κ.
By Proposition 4.6, we can choose a large enough level α > α′ such that if µ < µ̄,

then for every node t on level α it is decided whether whether (T (µ̄)
ρ̄ )t ⊆ (T (µ)

ρ )t.
Fix a node t on level α of S. Then St ⊆

⋂
ξ<β(Tξ)t, meaning that the intersection

contains a perfect κ-tree. By our choice of level α and the fact that the intersection
contains a perfect κ-tree, we can intertwine all the trees mentioned in forms (1) or

(2) of the trees (Tξ)t into a ⊆-decreasing sequence of the form {T (µη)
ρη | η < γ} with

γ < κ. Thus, this intersection is an element of Pλ by construction. �

Theorem 4.11. The bounded support κ-length product J(κ)<κ of J(κ) has the
κ+-cc. In particular, J(κ) must have the κ+-cc.

Proof. Fix a maximal antichain A of J(κ)<κ. Choose a transitive model M ≺ Lκ++

of size κ+ with A ∈ M . We can decompose M as the union of a continuous
elementary chain of length κ+ of substructures of size κ,

X0 ≺ X1 ≺ · · · ≺ Xξ ≺ · · · ≺M,
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with A ∈ X0, such that each successor stage Xξ+1 is closed under sequences of
length less than κ, X<κ

ξ+1 ⊆ Xξ+1. It will follow that eachXα for α ∈ Cof(κ) is closed

under sequences of length less than κ, X<κ
α ⊆ Xα. By properties of ♦κ+(Cof(κ)),

there must be some α ∈ Cof(κ) such that α = κ+ ∩Xα, Pα = J(κ) ∩Xα and Sα
codes Xα. Let Mα be the transitive collapse of Xα. Then Pα is the image of J(κ)
under the Mostowski collapse and α is the image of κ+. Let Ā = A ∩ Xα be the
image of A under the collapse. So at stage α in the construction of J(κ), we chose
a forcing extension Mα[Gα] of Mα by Q(Pα)<κ and let Pα+1 = P∗α as constructed
in Mα[Gα]. Thus, Ā remains maximal in J(κ)<κ by Proposition 4.9, and so it must
have been the case that Ā = A, verifying that A has size κ. �

Proposition 4.12. Suppose H ⊆ J(κ) is L-generic. Then for any α < κ such that
Mα is defined, the restriction Hα of H to Pα is Mα-generic.

Proof. Fix an α such that Mα is defined. Since every maximal antichain of Pα from
Mα remains maximal in J(κ), it suffices to check that for every T, S ∈ Hα, there
is R ∈ Hα such that R ⊆ T, S. First, observe that the collection of all trees R in
Pα such that either R ⊆ S ∩ T or R is incompatible with either S or T is dense in
Pα. Thus, there is a maximal antichain A of Pα such that if R ∈ A, then either
R ⊆ T ∩ S or R is incompatible with either S or T . Since A remains maximal
in J(κ), H meets A. Thus, there is R ∈ Hα such that either R ⊆ S ∩ T or R is
incompatible with one of them. Now observe that if R is incompatible, say, with
S, then, by the <κ-compatibility property of Pα (Proposition 4.10), there cannot
be perfect κ-tree in the intersection of R and S. Thus, since R,S, T ∈ H, R must
be compatible with both S and T , and hence R ⊆ S, T .

�

Proposition 4.13. Suppose H ⊆ J(κ)<κ is L-generic. Then for any α < κ such
that Mα is defined, the restriction Hα of H to P<κα is Mα-generic.

Proof. Again, it suffices to argue that for any p, q ∈ Hα, there is r ∈ Hα such that
r ≤ p, q. For every β < κ, let H(β) be the restriction of H to the β-th coordinate of
the product. Then each H(β) is L-generic for J(κ). So by Proposition 4.12, each re-

striction H
(β)
α of H(β) to Pα is Mα-generic. Also, for each β < κ, p(β), q(β) ∈ H(β)

α .

Thus, for each β < κ, there is rβ ∈ H(β)
α such that rβ ≤ p(β), q(β). Let r ∈ P<κα be

defined by r(β) = rβ . Clearly, r ≤ p, q. We claim that r ∈ H. If not, then there
is some q̄ ∈ H such that r is incompatible with q̄. This means that there is β < κ
such that r(β) is incompatible with q̄(β). But this is impossible because r(β) = rβ

and q̄(β) are both in H
(β)
α . Thus, r ∈ H is as desired.

�

5. The Kanovei-Lyubetsky Theorem for J(κ)<κ

Jensen showed that the poset J adds a unique generic real over L [Jen70]. As, in
the introduction, let J<ω be the bounded support ω-length product of the poset J.
Lyubetsky and Kanovei extended the unique generics property of Jensen’s forcing
to J<ω by showing that if G ⊆ J<ω is L-generic, then the only J-generic reals in
L[G] are the (reals obtained from the) slices Gn, for n < ω, of the generic filter
G [KL17]. In this section we will show that an appropriate generalization of the
Kanovei-Lyubetsky theorem holds for J(κ)<κ: if G ⊆ J(κ)<κ is L-generic, then the
only J(κ)-generic subsets of κ in L[G] are the (subsets obtained from the) slices Gξ,
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for ξ < κ, of the generic filter G. In particular, this will imply that J(κ) adds a
unique generic subset over L.

Suppose that P is a κ-perfect poset and H is a V -generic filter for the product
P<κ. We will call hξ the subset of κ added by the ξ-th coordinate of H and let ḣξ
be the canonical name for hξ.

For the next theorem we suppose that P is a κ-perfect poset of size κ that is
an element of a κ-suitable model M . We should think of P as one of those κ-
perfect posets Pα arising at stage α, for a non-trivial successor stage α + 1, in the
construction of the poset J(κ) and of M as the model Mα from that stage.

Theorem 5.1. In M , suppose that ḣ is a P<κ-name for a subset of κ such that
for all ξ < κ, 1lP<κ  ḣ 6= ḣξ. Then in every forcing extension M [G] by Q(P)<κ,

for every generic perfect κ-tree Tξ, with ξ < κ, conditions forcing that ḣ /∈ [Tξ] are
dense in P∗<κ.

Proof. Fix a condition p ∈ P∗<κ and γ < κ. We need to argue that there is a
condition p′ ≤ p such that p′  ḣ /∈ [Tγ ]. Since U<κ is dense in P∗<κ, we can
assume, by strengthening p, if necessary, that p ∈ U<κ. Let d be the domain of p.
For every η ∈ d, let p(η) = (Tξη )tη . By strengthening p further, if necessary, we can
assume that for every α < κ and η in the domain of p, the nodes tη for ξη = α form
an antichain. Observe that even though the condition p is not in M , the sequences
{ξη | η ∈ d} and {tη | η ∈ d} are in M by closure. We will use both sequences in
the construction that takes place in M below.

Fix q ∈ Q(P)<κ, with q(α) = (Tα, ρα). By strengthening q, if necessary, we can
assume that for every α < κ, if α = ξη, then ρα is above the level of tη. If there is
α = ξη such that tη /∈ Tα, then let q̄ = q. So assume that for every α = ξη, tη ∈ Tα.
For every η ∈ d, choose some node t′η on level ρξη of Tξη .

For every η ∈ d such that ξη = γ, we let ηt′η = η. Let a0 ∈ P<κ be a condition
such that:

(1) For every η ∈ d, a0(η) = (Tξη )t′η .

(2) For every node s on level ργ of Tγ , if there is no η in the domain of p such
that ξη = γ and t′η = s, then there is ηs in the domain of a0 such that
a0(ηs) = (Tγ)s.

Let δ be above the domain of a0. By assumption 1lP<κ  ḣ 6= ḣξ for every ξ < κ.
So there is a condition a1 ∈ P<κ such that a1 ≤ a0 and

a1 P<κ ḣ /∈ [a1(0)].

More precisely there is a condition a′0 ≤ a0 which decides for some node s ∈ 2<κ

that s ∈ ḣ0 and s /∈ ḣ, and then we can choose a condition a1 ≤ a′0 such that
s /∈ a1(0).

Next, we let a2 ≤ a1 be some condition such that

a2 P<κ ḣ /∈ [a2(1)].

Continuing in this manner, we construct a descending sequence of conditions

{aξ | ξ < δ}
such that lower bounds are taken at limit stages, using <κ-closure, and at successor
stages aξ+1 P<κ ḣ /∈ [aξ+1(ξ)]. Let a be a lower bound of the aξ for ξ < δ. Clearly,
for every ξ < δ,

a P<κ ḣ /∈ [a(ξ)].
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For every η ∈ d, we let R(η) = a(η). For every node s on level ργ of Tγ , we

let R(ηs) = a(ηs). Fix α < κ, with α 6= γ. We let T̄α be the tree Tα, where for
every ξη = α, (Tα)t′η is replaced by R(η). Next, we let T̄γ be the tree Tγ , where

(Tγ)t′η is replaced by R(η) for every ξη = γ, and we additionally replace (Tγ)ηs
with R(ηs) for every node s on level ργ . Let q̄ be the condition such that for every
η ∈ d, q̄(ξη) = (T̄ξη , ρη), q̄(γ) = (T̄γ , ργ), and for the rest of the ξ < κ, q̄(ξ) = q(ξ).
Clearly, q̄ ≤ q. Thus, conditions of the form q̄ are dense in Q(P)<κ, and hence
some such q̄ ∈ G. It follows that for every η ∈ d, (Tξη )t′η ≤ a(η). Thus, p and a are

compatible. Let p′ ≤ p, a. Now we argue that a P∗<κ ḣ /∈ [Tγ ].
Let H∗ be any M [G]-generic filter for P∗<κ containing a. By Proposition 3.12,

it follows that H∗ restricts to an M -generic filter H for P<κ. Obviously, a ∈ H.
Thus, in M [H], ḣH is not a branch through any a(η) for η < δ. In particular, for

every node s on level ργ of Tγ , ḣH is not a branch through (Tγ)s, and hence ḣH is

not a branch through Tγ in M [H]. But this is absolute, and therefore ḣH is not a
branch through Tγ in M [G][H∗].

Thus, it follows that p′  ḣ /∈ [Tγ ], completing the proof.
�

Theorem 5.2. Suppose that H ⊆ J(κ)<κ is L-generic. If h ∈ L[H] is L-generic
for J(κ), then h = hξ for some ξ < κ.

Proof. Suppose towards a contradiction that h is not one of the hξ. Let ḣ be a nice

J(κ)<κ-name for h such that for all ξ < κ, 1lJ(κ)<κ ḣ 6= ḣξ.

Choose some transitive model M ≺ Lκ++ of size κ+ with ḣ ∈ M . We can
decompose M as the union of a continuous elementary chain of structures of size κ

X0 ≺ X1 ≺ · · · ≺ Xξ ≺ · · · ≺M,

with ḣ ∈ X0, such that each successor stage Xξ+1 is closed under sequences of
length less than κ, X<κ

ξ+1 ⊆ Xξ+1. By properties of ♦κ+(Cof(κ)), there is some

α ∈ Cof(κ) ∩ κ+ such that α = κ+ ∩ Xα, Pα = J(κ) ∩ Xα, and Dα codes Xα.
Let Mα be the Mostowski collapse of Xα. Then Pα is the image of J(κ) under the

collapse and α is the image of κ+. Clearly ḣ is fixed by the collapse because it
is a nice name and all antichains of J(κ)<κ have size ≤κ (by Theorem 11.8). So
at stage α in the construction of J(κ), we chose a forcing extension Mα[Gα] by
Q(Pα)<κ and let Pα+1 = P∗α as constructed in Mα. By elementarity, Mα satisfies

that 1lP<κα  ḣ 6= ḣξ for all ξ < κ. Thus, by Theorem 5.1, for every ξ < κ,

P<κα+1 has a maximal antichain Aξ ∈ Mα[Gα] consisting of conditions q such that

q P<κα+1
ḣ /∈ [T (α)

ξ ]. By Proposition 4.9, all maximal antichains Aξ, as well as the

antichain {T (α)
ξ | ξ < κ}, remain maximal in J(κ)<κ.

So let’s argue that if q ∈ Aξ, then q J(κ)<κ ḣ /∈ [T (α)
ξ ]. Let H̄ ⊆ J(κ)<κ be an

L-generic filter containing q. Let β + 1 > α + 1 be the first non-trivial successor
stage so that Mβ is defined. By Proposition 4.13, H̄ restricts to an Mβ-generic filter
H̄β for P<κβ , but in this case, we have Pβ = Pα+1. Thus, since Mα[Gα] ⊆ Mβ by

Proposition 4.5, H̄β is Mα[Gα]-generic. Since q ∈ H̄β , it follows that ḣH̄β /∈ [T (α)
ξ ]

holds in Mα[Gα][H̄β ], but this statement is absolute, and so it also holds in L[H̄].



22 SY-DAVID FRIEDMAN AND VICTORIA GITMAN

Since H must meet every maximal antichain Aξ, it holds in L[H] that ḣH = h

is not a branch through any T (α)
ξ . So, since {T (α)

ξ | ξ < κ} is a maximal antichain,

h cannot be L-generic for J(κ). �

Corollary 5.3. The poset J(κ) adds a unique generic subset of κ.

6. Jensen forcing outside the constructible universe

While ♦ is crucial to the definition of Jensen’s poset J, working in the con-
structible universe L is not. We will describe below a general construction of a
poset, which we will still refer to as J, with the properties of Jensen’s poset in any
universe V having a ♦-sequence. The more general poset J will still add a unique
real and have the ccc. The only property we lose by not working in L is that the
unique generic real may no longer be a Π1

2-singleton.

Fix a ♦-sequence ~D = 〈Dα | α < ω1〉. Let M be the collection of all countable
transitive models M |= ZFC−. Given some M ∈ M, let GM be a countable set of
subsets of M such that for every poset P ∈ M , GM has an M -generic filter for P.
Let f be a function mapping each M in M to GM . Note that f ∈ Hω2

. Suppose
that we are at stage α in the construction of the poset J and we have already
defined Pα. If Dα codes a set Xα such that the Mostowski collapse of Xα is a
model Mα |= ZFC− + “P(ω) exists” such that

(1) α = (ω1)Mα

(2) Pα ∈Mα,
(3) 〈Dξ | ξ < α〉 ∈Mα,
(4) f � (Mα ∩M) ∈Mα,

then we choose some Gα ∈ GMα
, and let Pα+1 be P∗α as constructed in Mα[Gα].

Assumptions (3) and (4) ensure that Mβ ,Mβ [Gβ ] ∈Mα for β < α.

Now it suffices to observe that given some f, ~D,PJ ∈ N ≺ Hω2
with |N | = ω1,

if we decompose N as the union of a chain of countable elementary substructures

X0 ≺ X1 · · · ≺ · · ·Xα ≺ · · · ≺ N
with f, ~D,PJ ∈ X0, then there is someXα whose collapseMα satisfies the properties

above. But this is clearly true, by applying ♦ to a subset of ω1 coding J, ~D, and
f . This will ensure that we can still argue that J has the ccc as well as a unique
generic.

The analysis carries over to the case of the forcing J(κ), which can similarly be
defined outside of L provided that the universe has a ♦κ+(Cof(κ))-sequence.

7. Finite iterations of κ-perfect posets

In this section we introduce the notion of a finite iteration of κ-perfect posets,
which is going to be a finite forcing iteration in which every initial segment of
the iteration forces that the next stage is a κ-perfect poset. We will follow the
presentation in Section 4 of [FGK19], but we will need to make significant changes
because several key constructions there relied on closure under unions, which we
lose with κ-perfect posets.

Definition 7.1. A finite iteration of κ-perfect posets is a finite iteration

Pn = Q0 ∗ Q̇1 ∗ · · · ∗ Q̇n−1

such that Q0 is a κ-perfect poset and for 1 ≤ i < n,
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1lPi  Q̇i is a κ-perfect poset.

Given conditions p and q in Pn such that p ≤ q and q ≤ p, we will always just write
p = q because the two conditions have the same forcing properties, e.g. they force
the same statements and one is in the generic filter if and only if the other one is.

Recall that we only defined the notion of a κ-perfect poset for an inaccessible
κ. Thus, to formally define finite iterations of κ-perfect posets, we need to argue
by induction on n < ω that an iteration of κ-perfect posets of length n preserves
the inaccessibility of κ. Since κ-perfect posets are <κ-closed, we can assume induc-
tively that an iteration of length n of κ-perfect posets is <κ-closed, and hence, in
particular, preserves the inaccessibility of κ. Let Q̇n be a Pn-name for a κ-perfect
poset. Since Pn  Q̇n is <κ-closed, the iteration Pn+1 is <κ-closed as well.

Indeed, given a descending sequence ~p = {pξ | ξ < β}, with β < κ, of conditions
in Pn, let’s construct explicitly a condition p ≤ pξ for all ξ < β such that if any
condition p′ ≤ pξ for all ξ < β, then p′ ≤ p. Although, such a condition p won’t
be unique because of the arbitrary choices of names in the construction, it will be
the case that any two such conditions p and q will have the property that p ≤ q
and q ≤ p. Hence, since we identify such conditions, we can call p a greatest lower
bound of ~p. We will construct p by induction on i < n. Let

p(0) =
⋂
ξ<β

pξ(0),

which is in Q0 by the <κ-intersection property. Suppose inductively that we have
defined p � i for some i < n such that p � i ≤ pξ � i for all ξ < β. Thus,
p � i  pξ(i) ≤ pη(i) for any pair ξ ≤ η < β. By the <κ-intersection property, there
is a Pi-name ṗ such that

p � i  ṗ =
⋂
ξ<η

pξ(i) ∈ Q̇i.

We define p(i) = ṗ. Clearly, the condition p has the desired properties.
Suppose that G ⊆ Pn is V -generic. For 1 ≤ i < n, let Gi be the restriction of G

to Pi. Let G(0) = G1 and for 1 ≤ i < n, let G(i) = {p(i)Gi | p ∈ G}. Let hi be the
unique subset of κ determined by G(i). It is not difficult to see that the sequence
~h = 〈h0, . . . , hn−1〉, of subsets of κ, determines G. Elements of G1 are trees with
h0 as a branch, and inductively, elements of Gi+1 are conditions p ∈ Pi+1 such that
p � i ∈ Gi and hi is a branch through p(i)Gi .

Let succ(κ) = {ξ < κ | ξ is a successor ordinal}. Next, we define the analogue
of the fusion poset Q(P) for the finite iterations Pn of κ-perfect posets.

Definition 7.2. We associate to each finite iteration Pn of κ-perfect posets the
poset Q(Pn) whose conditions are pairs (p, F ) with p ∈ Pn and F : n → succ(κ)
ordered so that (p2, F2) ≤ (p1, F1) whenever p2 ≤ p1, for every i < n, we have
F2(i) ≥ F1(i), and

p2 � i  p1(i) ∩ 2F1(i) = p2(i) ∩ 2F1(i).

We call Q(Pn) the fusion poset for Pn.

Proposition 7.3. The fusion poset Q(Pn) is <κ-closed.
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Proof. Suppose that {(pξ, Fξ) | ξ < β}, with β < κ, is a descending sequence of
conditions in Q(Pn). Let p be a greatest lower bound of {pξ | ξ < β}. Let

F (i) = (supξ<βFξ(i)) + 1.

Clearly, p(0) ∩ 2Fξ(0) = pξ(0) ∩ 2Fξ(0) and

p � i  p(i) ∩ 2Fξ(i) = pξ(i) ∩ 2Fξ(i)

for all ξ < β and i < n. Hence (p, F ) ≤ (pξ, Fξ) for all ξ < β. �

Fusion arguments with names for perfect κ-trees require that we have some
information about a fixed level α of the tree. We will now argue that there are
densely many conditions in Q(Pn) where this is the case.

Suppose p ∈ Pn and σ : n→ 2<κ. Following [FGK19], let’s define, by induction
on n, what it means for σ to lie on p. For n = 1, we shall say that σ lies on p
whenever σ(0) ∈ p(0). If σ lies on p, we shall denote by p | σ the condition p(0)σ(0).
Note that p | σ ≤ p. So suppose that we have defined when σ lies on p for p ∈ Pn,
and for a σ which lies on p, we have defined p | σ so that p | σ ≤ p. Let p ∈ Pn+1.
We define that σ lies on p if σ � n lies on p � n and (p � n) | (σ � n)  σ(n) ∈ p(n). If
σ lies on p, we shall denote by p | σ the condition p̄ such that p̄ � n = (p � n) | (σ � n)

and p̄(n) = Ṫ , where Ṫ is a Pn-name that is interpreted as p(n)σ(n) by any Pn-
generic filter containing (p � n) | (σ � n). Note that even though we are being

vague here about the choice of the names Ṫ , we can actually make these choices
canonically provided we fix well-orderings of the posets Pn ahead of time. Clearly
this gives that p | σ ≤ p. Note that if σ and σ′ lie on p are such that σ � i = σ′ � i
for some i < n, then (p | σ) � i = (p | σ′) � i.

Definition 7.4. Let F : n → succ(κ), σ : n → 2<κ, and p ∈ Pn. We shall say
that σ lies on levels F if σ(i) ∈ 2F (i) for all i < n. If σ lies on levels F and lies
on p, we shall say that σ lies on (p, F ). Given a condition (p, F ) ∈ Q(Pn), we will
let Xp

F denote the set of all σ which lie on (p, F ). We shall say that a condition
(p, F ) ∈ Q(Pn) is determined if for every σ which lies on levels F , either

(1) σ lies on p (σ ∈ Xp
F ), or

(2) σ(0) 6∈ p(0), or
(3) there is 1 ≤ i < n such that σ � i lies on p � i and

(p � i) | (σ � i)  σ(i) /∈ p(i).

Note that a set Xp
F for a condition (p, F ) ∈ Q(Pn) has size less than κ, since for

α < κ, 2α < κ and F has a finite domain.

Proposition 7.5. If (p, F ) ∈ Q(Pn) is determined, then the set

{p | σ | σ ∈ Xp
F }

is a maximal antichain below p in Pn.

Proof. We will argue by induction on n. Suppose n = 1. Fix (p, F ) ∈ Q(P1) and let
q ≤ p. Then there is t0 ∈ 2F (0) such that q(0)t0 ⊆ p(0)t0 . Thus, σ with σ(0) = t0
lies on (p, F ) and q is compatible with p | σ. So suppose inductively that the
statement holds for n. Fix a determined condition (p, F ) ∈ Q(Pn+1) and let q ≤ p.
By our inductive assumption, q � n is compatible with (p � n) | σ for some σ which
lies on (p � n, F � n). So let

r ≤ q � n, (p � n) | σ.
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Since q � n  q(n) ≤ p(n), it follows that r  q(n) ≤ p(n). Thus, there is r′ ≤ r
and some t ∈ 2F (n) such that r′  q(n)t ≤ p(n)t. Let τ : n+ 1→ 2<κ be such that
τ � n = σ and τ(n) = t. Since (p, F ) is determined, it must be the case that

(p � n) | (σ � n) = (p � n) | (τ � n)  t ∈ p(n).

It follows that τ lies on (p, F ). Let r′′ ∈ Pn+1 be such that r′′ � n = r′ and
r′′(n) = q(n)t. Then r′′ witnesses that q is compatible with p | τ . �

Proposition 7.6. Suppose (p, F ) ∈ Q(Pn) is determined and σ lies on (p � i, F � i)
for some 1 ≤ i < n. Then there is τ lying on (p, F ) such that τ � i = σ.

Proof. Let q be (p � i) | σ concatenated with the tail of p for i ≤ j < n. Clearly,
q ≤ p. By Proposition 7.5, q is compatible with p | τ for some τ which lies on
(p, F ). But then clearly τ � i = σ. �

Proposition 7.7. Suppose that (p, F ) ∈ Q(Pn) is determined and σ lies on (p � i, F � i)
for some i < n. Then

(1) p(0) is the union of p(0)τ(0) for τ that lie on (p, F ).
(2) (p � i) | σ forces that p(i) is the union of the p | τ(i) for τ that lie on (p, F )

with τ � i = σ.

In particular, (p � i) | σ decides the F (i)-th level of p(i).

Proof. First, let’s prove (1). If τ lies on (p, F ), then by definition, τ(0) ∈ p(0). So
suppose that t is a node on level F (0) of p(0). By Proposition 7.6, there must be
a τ which lies on (p, F ) with τ(0) = t. Next, let’s prove (2). If τ � i = σ, then by
definition,

(p � i) | σ = (p | τ) � i  τ(i) ∈ p(i).
Let t be a node on level F (i) such that there is no τ which lies on (p, F ) with
τ � i = σ and τ(i) = t. Let τ ′ lie on F be such that τ ′ � i = σ and τ ′(i) = t. Since
τ ′ does not lie on the determined condition (p, F ), there must be some j < n − 1
such that τ ′ � j lies on (p � j, F � j) and (p � j) | (τ ′ � j)  τ ′(j) /∈ p(j). Clearly,
j ≥ i. If j = i, then (p � i) | σ  t /∈ p(i), and so we are done. But if j > i, then σ′

lies on (p � i + 1, F � i + 1), where σ′ � i = σ and σ′(i) = t, which cannot be the
case because then, by Proposition 7.6, we would be able to extend σ′ to a τ which
lies on (p, F ). �

Proposition 7.8. Suppose that {(pξ, F ) | ξ < β}, with β < κ, is a descending
sequence of determined conditions in Q(Pn). If p is a greatest lower bound of the
sequence {pξ | ξ < β}, then (p, F ) is determined.

Proof. Since the statement clearly holds for n = 1, we can assume inductively that
it holds for some n and suppose that we have a descending sequence of conditions
{(pξ, F ) | ξ < β}, with β < κ, in Q(Pn+1). Suppose that σ lies on F . If σ � n does
not lie on (p � n, F � n), then by our inductive assumption, there is some i < n− 1
such that σ � i lies on (p � i, F � i) and (p � i) | (σ � i)  σ(i) /∈ p(i). So we can
assume that σ � n lies on (p � n, F � n). Thus, σ � n lies on every (pξ � n, F � n) for
ξ < β. Since every (pξ, F ) is determined, (pξ | σ) � n decides whether σ(n) ∈ pξ(n).
If every (pξ | σ) � n  σ(n) ∈ pξ(n), then (p � n) | (σ � n)  σ(n) ∈ p(n). But if
some (pξ | σ) � n  σ(n) /∈ pξ(n), then (p � n) | (σ � n)  σ(n) /∈ p(n). �

We will soon show that determined conditions are dense in Q(Pn). But first we
need to develop some machinery for working with them.
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Proposition 7.9. If p ≤ q are conditions in Pn such that σ lies on both p and q,
then p | σ ≤ q | σ.

Proof. Since σ lies on p, it follows that σ(0) ∈ p(0) and since σ also lies on q, it
follows that σ(0) ∈ q(0). Also, since p ≤ q, it follows that p(0) ⊆ q(0). Thus,
in particular, p(0)σ(0) ⊆ q(0)σ0 . This shows that (p | σ) � 1 ≤ (q | σ) � 1. So
suppose inductively that (p | σ) � i ≤ (q | σ) � i for some 1 ≤ i < n. Since σ
lies on p, it follows that (p | σ) � i  σ(i) ∈ p(i) and since σ lies on q, it follows
that (q | σ) � i  σ(i) ∈ q(i). So (p | σ) � i  σ(i) ∈ q(i). Also, we have
(p | σ) � i  p(i) ≤ q(i). Thus, in particular, (p | σ) � i  p(i)σ(i) ≤ q(i)σ(i). Hence,
(p | σ) � i+ 1 ≤ (q | σ) � i+ 1. �

The statement reverses for determined conditions with the same set of σ lying
on them.

Proposition 7.10. Suppose that (p, F ) and (q, F ) are determined conditions such
that Xp

F = Xq
F . If p | σ ≤ q | σ for every σ ∈ Xp

F , then (p, F ) ≤ (q, F ).

Proof. Clearly, p(0) ⊆ q(0) and p(0) ∩ 2F (0) = q(0) ∩ 2F (0). Thus,

(p � 1, F � 1) ≤ (q � 1, F � 1).

So suppose inductively that for some 1 ≤ i < n,

(p � i, F � i) ≤ (q � i, F � i).

Let G ⊆ Pi be V -generic with p � i ∈ G. By Proposition 7.5, there is σ ∈ Xp
F

such that (p | σ) � i ∈ G. So also, (q | σ) � i ∈ G. Then p(i)G is the union of the
p | σ′(i)G with σ � i = σ′ � i and σ′ ∈ Xp

F and q(i)G is the union of the q | σ′(i)G
with σ � i = σ′ � i and σ′ ∈ Xp

F . Fix σ′ with σ � i = σ′ � i and σ′ ∈ Xp
F . Then

p | σ′ ≤ q | σ′ by assumption. Thus, (p | σ) � i  p | σ′(i) ⊆ q | σ′(i). It follows
that p(i)G ⊆ q(i)G and p(i)G ∩ 2F (i) = q(i)G ∩ 2F (i). Thus,

(p � i+ 1, F � i+ 1) ≤ (q � i+ 1, F � i+ 1).

�

Next, we will introduce a kind of normal form for determined conditions.

Definition 7.11. Suppose that σ : n → 2<κ. Let’s call a condition p ∈ Pn a
σ-condition if

(1) p(0) ⊆ (2<κ)σ(0),
(2) for all 1 ≤ i < n, p � i  p(i) ⊆ (2<κ)σ(i).

Suppose that XF is a collection of σ : n→ 2<κ lying on levels F : n→ succ(κ).
An XF -assignment is a function ϕ : XF → Pn such that each ϕ(σ) is a σ-condition
and, for 1 ≤ i < n, ϕ(σ) � i = ϕ(σ′) � i whenever σ � i = σ′ � i.

To motivate these definitions, consider a determined condition (p, F ) ∈ Q(Pn).
In this case, the map ϕp defined by ϕp(σ) = p | σ for all σ ∈ Xp

F is clearly an Xp
F -

assignment. Thus, a determined condition (p, F ) gives us a natural Xp
F -assignment.

Because κ-perfect posets are not closed under unions, we will not get that every
XF -assignment can be used to build a determined condition. This can already be
seen to fail for P1, where Q0 = Pmin because of the counterexample to forming
unions from Proposition 2.6. However, given a determined condition (p, F ) and an
Xp
F -assignment ϕ such that ϕ(σ) ≤ p | σ for every σ ∈ Xp

F , we will be able to
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build a determined condition (q, F ) ≤ (p, F ) from ϕ. This will give us a way of
strengthening determined conditions.

Suppose that XF and ϕ are as in Definition 7.11. Observe that given any
σ, σ′ ∈ XF , either σ(0) = σ′(0) and so ϕ(σ)(0) = ϕ(σ′)(0), or σ(0) = s 6= t = σ′(0)
are two nodes on level F (0) such that ϕ(σ)(0) ⊆ (2<κ)s and ϕ(σ′)(0) ⊆ (2<κ)t. In
particular, if σ(0) 6= σ′(0), then the conditions ϕ(σ)(0) and ϕ(σ′)(0) are incompat-
ible. More generally, if σ 6= σ′, then either σ(0) 6= σ′(0) or there is some least i ≥ 1
such that σ � i = σ′ � i and there are nodes σ(i) = s 6= t = σ′(i) on level F (i) such
that ϕ(σ) � i  ϕ(σ)(i) ⊆ (2<κ)s and ϕ(σ) � i = ϕ(σ′) � i  ϕ(σ′)(i) ⊆ (2<κ)t.
It follows, in particular, that for any i < n, unless σ � i = σ′ � i, the conditions
ϕ(σ) � i and ϕ(σ′) � i are incompatible.

Proposition 7.12. Suppose that (p, F ) ∈ Q(Pn) is determined and that ϕ is an
Xp
F -assignment such that ϕ(σ) ≤ p | σ for every σ ∈ Xp

F . Then there is a condition
(q, F ) ∈ Q(Pn) such that

(1) (q, F ) is determined,
(2) Xq

F = Xp
F ,

(3) for every σ ∈ Xq
F , q | σ = ϕ(σ),

(4) (q, F ) ≤ (p, F ).

Proof. Let q(0) be the union of the ϕ(σ)(0) for σ ∈ Xp
F . Since q(0) is obviously the

condition p(0) slimmed down by ~T = {ϕ(σ)(0) | σ ∈ Xp
F }, we have that q(0) ∈ Q0

by the weak union property.
Let q(1) be the (canonical) P1-name for the tree which is the union of the col-

lection of trees given by the interpretation of the name

{〈ϕ(σ)(1), ϕ(σ)(0)〉 | σ ∈ Xp
F }.

Fix a V -generic filter G ⊆ P1 containing q(0). We need to argue that q(1)G ∈ (Q1)G
and q(1)G ≤ p(1)G. If ϕ(σ)(0) and ϕ(σ′)(0) are in G, then σ(0) = σ′(0) = s for
some s, and so ϕ(σ)(0) = ϕ(σ′)(0). Fix σ such that ϕ(σ)(0) ∈ G. Thus, the
interpretation q(1)G is the tree which is the union of the ϕ(σ′)(1)G for σ′(0) = σ(0).
Since ϕ(σ)(0) ≤ (p | σ) � 1, it follows that (p | σ) � 1 ∈ G. Therefore p(1)G is the
union of the p | σ′(1) for σ′(0) = σ(0) by Proposition 7.7, and ϕ(σ′)(1) ≤ p | σ′(1)
for every σ′ with σ′(0) = σ(0). Thus, q(1)G is the tree p(1)G slimmed down by
~T = {ϕ(σ′)(1) | σ′(0) = σ(0) and σ′ ∈ Xp

F }, and hence q(1)G ∈ (Q1)G by the weak
union property. Also, q(1)G ≤ p(1)G. Thus, q � 2 ≤ p � 2.

Now generally, for some 1 ≤ i < n, suppose that we have defined q � i such
that q � i ≤ p � i and for every σ ∈ Xp

F , (q � i) | (σ � i) = ϕ(σ) � i. Let q(i) be
the Pi-name for the tree which is the union of the collection of trees given by the
interpretation of the name

{(ϕ(σ)(i), ϕ(σ) � i) | σ ∈ Xp
F }.

Fix a V -generic filter G ⊆ Pi with q � i ∈ G. We need to argue that q(i)G ∈ (Qi)G
and q(i)G ≤ p(i)G. Since for σ, σ′ ∈ Xp

F , ϕ(σ) � i and ϕ(σ′) � i are incompatible
whenever σ � i 6= σ′ � i, if ϕ(σ) � i and ϕ(σ′) � i are both in G, then σ′ � i = σ �
i = τ for some τ . By Proposition 7.5 and our inductive assumption, we can fix
σ such that ϕ(σ) � i ∈ G. Thus, the interpretation q(i)G is the tree which is the
union of the ϕ(σ′)(i)G for σ′ � i = σ � i. Since ϕ(σ) � i ≤ (p | σ) � i, it follows that
(p | σ) � i ∈ G. Therefore p(i)G is the union of the p | σ′(i) for σ′ � i = σ � i by
Proposition 7.7, and ϕ(σ′)(i) ≤ p | σ′(i) for every σ′ with σ′ � i = σ � i. Thus, q(i)G
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is the tree p(i)G slimmed down by ~T = {ϕ(σ′)(i) | σ′ � i = σ � i and σ′ ∈ Xp
F }, and

hence q(i)G ∈ (Qi)G by the weak union property. Also, q(i)G ≤ p(i)G. Thus, we
get q � i+ 1 ≤ p � i+ 1. Let q be the condition resulting from this construction.

First, we argue that every σ ∈ Xp
F lies on (q, F ) and simultaneously show (3). So

fix some σ ∈ Xp
F . By construction σ(0) ∈ q(0) and q(0)σ(0) = ϕ(σ)(0). So assume

inductively that for some 1 ≤ i < n,

(1) σ � i lies on q � i,
(2) (q | σ) � i = ϕ(σ) � i.

Suppose that G ⊆ Pi is a V -generic filter containing (q | σ) � i = ϕ(σ) � i. By
definition of q, we have

(q(i)G)σ(i) = ϕ(σ)(i)G.

So σ � i+ 1 lies on q � i+ 1 and we have

(q | σ) � i+ 1 = ϕ(σ) � i+ 1.

Now suppose that τ : n → 2<κ lies on (q, F ). By definition of q, it follows that
τ(0) = σ(0) for some σ ∈ Xp

F . So suppose inductively that for some 1 ≤ i < n,
there is σ ∈ Xp

F such that τ � i = σ � i. Since τ lies on q, it follows that
(q | σ) � i  τ(i) ∈ q(i). But then there is some σ′ such that σ � i = σ′ � i and
τ(i) = σ′(i). So in the last step, we will obtain σ ∈ Xp

F such that σ = τ . This
completes the proof of (2).

Next, let’s argue that (q, F ) is determined. Fix σ : n → 2<κ lying on levels F
such that σ /∈ Xq

F = Xp
F . Let i < n− 1 be largest such that σ � i lies on p � i and

(p � i) | (σ � i)  σ(i) /∈ p(i).
Then σ � i lies on q � i and (q � i) | (σ � i) forces that q(i) is the union of the
ϕ(σ′)(i) with σ � i = σ′ � i. It follows that

(q � i) | (σ � i)  σ(i) /∈ q(i),
because otherwise i would not be the largest with the above property.

Finally, since Xp
F = Xq

F and for every σ ∈ Xp
F , q | σ = ϕ(σ) ≤ p | σ, it follows,

by Proposition 7.10, that (q, F ) ≤ (p, F ). �

We shall call the condition q constructed in Proposition 7.12 the amalgamation
of ϕ. Thus, we get the promised normal form for determined conditions.

Corollary 7.13. Suppose that (p, F ) is determined and q is the amalgamation of
the Xp

F -assignment ϕp. Then q = p.

Proof. By Proposition 7.12, q ≤ p, Xp
F = Xq

F , and q | σ = p | σ for every σ ∈ Xp
F .

Thus, by Proposition 7.10, p ≤ q. �

Proposition 7.14. Suppose that (p, F ) is a determined condition and q ≤ p | σ
for some σ ∈ Xp

F . Then there is a determined condition (p′, F ) ≤ (p, F ) such that
p′ | σ = q.

Proof. We will define an Xp
F -assignment ϕ, such that ϕ(σ) = q and ϕ(τ) ≤ p | τ for

every τ ∈ Xp
F , whose amalgamation will be p′. Fix τ ∈ Xp

F . Let i < n be largest
such that τ � i = σ � i. Let ϕ(τ) be q � i concatenated with the tail of p | τ for
i ≤ j < n. Clearly ϕ is an Xp

F -assignment and ϕ(τ) ≤ p | τ for every τ ∈ Xp
F . Let

p′ be the amalgamation of ϕ. By Proposition 7.12, (p′, F ) ≤ (p, F ). By definition,
ϕ(σ) = q and, by Proposition 7.12, q = p′ | σ. �
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Proposition 7.15. Suppose that (p, F ) ∈ Q(Pn) is determined. Suppose further
that ψ(σ, q) is a property of a condition q ∈ Pn and σ : n → 2<κ such that for
every σ ∈ Xp

F , the set of all q such that ψ(σ, q) holds is dense open below p | σ.
Then there is an Xp

F -assignment ϕ such that for every σ ∈ Xp
F , ϕ(σ) ≤ p | σ and

ψ(σ, ϕ(σ)).

Proof. Using the inaccessibility of κ, the set Xp
F has size less than κ. So we can

enumerate Xp
F = {σξ | ξ < β} for some β < κ. Let q0 ≤ p | σ0 be such that ψ(σ0, q0)

holds. Suppose inductively that for some γ < β, we have constructed qξ ≤ p | σξ
for ξ < γ such that ψ(σξ, qξ) holds and for all ξ1 < ξ2 < γ if σξ1 � i = σξ2 � i for
some 1 ≤ i < n, then qξ2 � i ≤ qξ1 � i . Let’s argue that we can construct qγ to
maintain this inductive hypothesis. Let i = 1 and let

Y1 = {ξ < γ | σξ(0) = σγ(0)}.

If Y1 = ∅, let q′γ(0) = p(0)σγ(0). Otherwise, by our inductive assumption, the
conditions qξ(0) for ξ ∈ Y1 form a ⊆-descending sequence below p(0)σγ(0). Let
q′γ(0) =

⋂
ξ∈Y1

qξ(0), which is an element of Q0 by the <κ-intersection property.

Suppose inductively that for some i < n, we have constructed q′γ � i such that

q′γ � i ≤ (p | σγ) � i,

and for all ξ < γ if σξ � j = σγ � j for some 1 ≤ j ≤ i, then q′γ � j ≤ qξ � j. Let

Yi = {ξ < γ | σξ � i+ 1 = σγ � i+ 1}.

If Yi = ∅, let q′γ(i) = p | σγ(i). Since q′γ � i ≤ (p | σγ) � i, we have

q′γ � i+ 1 ≤ (p | σγ) � i+ 1.

Otherwise, Yi 6= ∅. Observe that in this case, the condition q′γ � i forces that the
qξ(i) for ξ ∈ Yi form a ⊆-descending sequence below p(i)σγ(i). Thus, we can let
q′γ(i) be a Pi-name that is forced by q′γ � i to be the intersection of the qξ(i) for
ξ ∈ Yi. Finally, let qγ be any condition below q′γ such that ψ(σγ , qγ) holds. Thus,
we have constructed a sequence of conditions {qξ | ξ < β} such that

(1) qξ ≤ p | σξ,
(2) ψ(σξ, qξ) holds, and
(3) for every ξ1 < ξ2 < β, if there is i < n such that σξ1 � i = σξ2 � i, then

qξ2 � i ≤ qξ1 � i.

Now fix any σ ∈ Xp
F . We will define the corresponding condition ϕ(σ). Let ϕ(σ)(0)

be the intersection of the ⊆-descending (below p(0)σ(0)) sequence of conditions
qξ(0) for ξ < β such that σ(0) = σξ(0). Suppose we have defined ϕ(σ) � i for some
i < n such that ϕ(σ) � i ≤ qξ � i for every ξ < β whenever σξ � i = σ � i. Let
ϕ(σ)(i) be a Pi-name for the intersection of the ⊆-descending sequence qξ(i) for
ξ < β such that σξ � i + 1 = σ � i + 1. Note that, for σ, τ ∈ Xp

F , if σ � i = τ � i,
then ϕ(σ) � i = ϕ(τ) � i. Clearly, the collection of the ϕ(σ) is an Xp

F -assignment,
for every γ < β, ϕ(σγ) ≤ qγ ≤ p | σγ , and so by open denseness, ψ(σγ , ϕ(σγ))
holds. �

The corollary below follows by Proposition 7.12.

Corollary 7.16. Suppose that (p, F ) ∈ Q(Pn) is determined and ψ(σ, q) is a prop-
erty of a condition q ∈ Pn and σ : n → 2<κ such that for every σ ∈ Xp

F , the set
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of all q such that ψ(σ, q) holds is dense open below p | σ. Then there is a deter-
mined condition (q, F ) ≤ (p, F ) such that Xq

F = Xp
F and ψ(σ, q | σ) holds for every

σ ∈ Xp
F .

Proposition 7.17. If (p, F ) ∈ Q(Pn), then there is (q, F ) ≤ (p, F ) such that (q, F )
is determined. In particular, determined conditions (q, F ) are dense in Q(Pn).

Proof. We will argue by induction on n. The case n = 1 is obvious. So suppose the
statement is true for Q(Pn) for some n. Let (p, F ) ∈ Q(Pn+1). By our inductive
assumption, there is a determined condition (q′, F � n) ≤ (p � n, F � n). Fix a

σ ∈ Xq′

F �n. Enumerate the level F (n) of 2<κ as {tξ | ξ < β} with β < κ. Build

a ≤-descending sequence of conditions rξ ≤ q′ | σ for ξ < β such that rξ decides
whether tξ ∈ p(n). Fix r below this sequence. Then r ≤ q′ | σ and r decides
whether t ∈ p(n) for every node t on level F (n). Let ψ(σ, r) be the property that
r ≤ q′ | σ and r decides t ∈ p(n) for every node t on level F (n). We just showed
that conditions r satisfying ψ(σ, r) are open dense below q′ | σ for every σ. Thus, by
Corollary 7.16, there is a determined condition (q′′, F � n) ≤ (q′, F � n) such that

Xq′′

F �n = Xq′

F �n and ψ(σ, q′′ | σ) holds for every σ ∈ Xq′

F �n. Let q be q′′ concatenated

with p(n). We claim that (q, F ) is determined. Suppose that σ does not lie on
(q, F ). If σ � n does not lie on F � n, then we are done because (q � n, F � n) is
determined. So suppose that σ � n lies on F � n. Then q | (σ � n) decides t ∈ p(n)
for every t on level F (n) by construction. Thus, in particular, q | (σ � n) decides
σ(n) ∈ p(n), and hence q | (σ � n)  σ(n) 6∈ q(n). �

8. Growing finite iterations of κ-perfect posets

In the construction of the poset J(κ), at nontrivial successor stages α + 1, we
used the κ-many perfect κ-trees obtained from a partially generic filter for Q(Pα)<κ

to grow the κ-perfect poset Pα to Pα+1. What we would like to do now is to find
an appropriate generalization of this construction for growing a finite iteration Pn
of κ-perfect posets using partially generic filters for (a version of) the associated
fusion poset Q(Pn). We will start by showing how to grow a finite iteration of
κ-perfect posets in a fully generic forcing extension of V .

Given a finite iteration Pn = Q0 ∗ Q̇1 ∗ · · · ∗ Q̇n−1 of κ-perfect posets, we would
like to be able, in a well-chosen forcing extension V [G], to extend it to a finite

iteration P∗n = Q∗0 ∗ Q̇∗1 ∗ · · · ∗ Q̇∗n−1 of κ-perfect posets with the following properties:

(1) Q0 ⊆ Q∗0,

(2) For all 1 ≤ i < n, 1lP∗i forces over V [G] that Q̇i is a κ-perfect poset and Q̇∗i
extends it.

(3) Pn ⊆ P∗n.
(4) Every maximal antichain A ∈ V of Pn remains maximal in P∗n.
(5) Every V [G]-generic filter H∗ ⊆ P∗n restricts to an V -generic filter H for Pn.

The next theorem (generalizing a construction from [FGK19], which itself general-
ized [Abr84]) holds the main idea for constructing P∗n. The set-up for the theorem
is left intentionally vague with the details forthcoming in the next section.

Suppose that Pn = Q0∗Q̇1∗· · ·∗Q̇n−1 is a finite iteration of κ-perfect posets. We
assume that we are working in a generic extension V [G] of V by a yet unexplained
forcing notion. We carry out the construction of P∗n in n-steps. In the 0-th step, we

extend Q0, and at each step 1 ≤ i < n, we construct a P∗i -name Q̇∗i for a κ-perfect
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poset extending Q̇i. We extend Q0 to Q∗0, as before, using a carefully chosen V -
generic filter Ḡ1 ⊆ Q(Q0)<κ = Q(P1)<κ from V [G]. By Proposition 3.11, every
V [G]-generic filter for Q∗0 (which is, in particular, V [Ḡ0]-generic) restricts to a V -
generic filter for Q0, verifying condition (5). So suppose inductively that we already
extended Pi to P∗i satisfying requirements (1)-(5). In V [G], we carefully choose a
V -generic filter Ḡi+1 ⊆ Q(Pi+1). Let H∗ ⊆ P∗i be V [G]-generic. By condition (5),

H∗ restrict to a V -generic filter H for Pi. Thus, Qi = (Q̇i)H = (Q̇i)H∗ is a κ-perfect
poset in V [H] ⊆ V [H∗]. Let

K = {(p(i)H , F (i)) ∈ Q(Qi) | (p, F ) ∈ Ḡi+1}.
Provided that the poset P∗i contains a kind of master condition for Ḡi+1, we will
be able to conclude that K is V [H]-generic for Q(Qi). Let τ(Ḡi+1) be a P∗i -name

for a subset of Q(Q̇i) such that in any forcing extension V [G][H∗] by P∗i , τ(Ḡi+1)
gets interpreted as K.

Theorem 8.1. Suppose that p̄ ∈ P∗i is such that for every (p, F ) ∈ Ḡi+1, p̄ ≤ p � i.
Then

p̄  τ(Ḡi+1) is a V [Ḣ]-generic filter for Q(Q̇i),
where Ḣ is the canonical name for the restriction of the generic filter to Pi.

Proof. Suppose H∗ ⊆ P∗i is V [G]-generic with p̄ ∈ H∗. Let H be the restriction of

H∗ to Pi. Let Qi = (Q̇i)H and

K = τ(Ḡi+1)H = {(p(i)H , F (i)) ∈ Q(Qi) | (p, F ) ∈ Ḡi+1}.
Note that by our assumption on the condition p̄, it follows that for every (p, F ) ∈ Ḡi+1,
p � i ∈ H.

First, we argue that K is a filter on Q(Qi). Fix (p, F ) ∈ Ḡi+1, and suppose that
(p(i)H , F (i)) ≤ (T, α) ∈ Q(Qi). It follows that α ≤ F (i) and p(i)H ∩ 2α = T ∩ 2α.

Fix a Pi-name Ṫ for T such that

1lPi  p(i) ⊆ Ṫ and p(i) ∩ 2α = Ṫ ∩ 2α

over V . Let
p′ = p � i ∪ {(i, Ṫ )} and F ′ = F ∪ {(i, α)}.

Clearly, (p, F ) ≤ (p′, F ′), which means that (p′, F ′) ∈ Ḡi+1 because it is a filter. It
follows that p′(i)H = T , and so (T, α) ∈ K.

Next, we fix (p, F ) and (p′, F ′) both in Ḡi+1 and argue that (p(i)H , F (i)) and
(p′(i)H , F

′(i)) are compatible in K. Since Ḡi+1 is a filter, there is (q, J) ∈ Ḡi+1

below both (p, F ) and (p′, F ′). It follows that

J(i) ≥ F (i), F ′(i), q � i Pi q(i) ⊆ p(i), p′(i),

q � i Pi q(i) ∩ 2F (i) = p(i) ∩ 2F (i) and q(i) ∩ 2F
′(i) = p′(i) ∩ 2F

′(i),

and (q(i)H , J(i)) ∈ K. Since, by our observation above, q � i ∈ H, we have

q(i)H ⊆ p(i)H , p′(i)H ,
and

q(i)H ∩ F (i)2 = p(i)H ∩ 2F (i) and q(i)H ∩ F
′(i)2 = p′(i)H ∩ 2F

′(i).

So (q(i)H , J(i)) ≤ (p(i)H , F (i)), (p′(i)H , F
′(i)).

Finally, we have to see that K is V [H]-generic. So suppose D ∈ V [H] is dense

open in Q(Qi). Let Ḋ ∈ V be a Pi-name for D such that
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1lPi Pi Ḋ is dense open in Q(Q̇i).

In V , define

E = {(p, F ) ∈ Q(Pi+1) | p � i  (p(i), F (i)) ∈ Ḋ}.
We claim that E is dense open in Q(Pi+1). It is easy to see that E is open, so let’s
argue that it is dense. Fix some (q, J) ∈ Q(Pi+1). By Proposition 7.17, we can

assume, by moving to a stronger condition, that (q, J) is determined. Since Ḋ is

forced to be dense in Q(Q̇i), there must be some pair of Pi-names (Ṫ , α̇) such that

Ṫ is a Pi-name for an element of Q̇i, α̇ is a Pi-name for an ordinal, and

q � i  (Ṫ , α̇) ∈ Ḋ and (Ṫ , α̇) ≤ (q(i), J(i)).

The set of conditions which decide the value of α̇ is dense open below q � i in Pi.
So, by Corollary 7.16, there a determined condition (p′, F ′) ≤ (q � i, J � i) in Q(Pi)
such that for every σ ∈ Xp′

F ′ , p
′ | σ decides that α̇ = α(σ). Let α < κ be a successor

ordinal above all the α(σ). Then

p′  (Ṫ , α) ≤ (Ṫ , α̇) ≤ (q(i), J(i)) and (Ṫ , α) ∈ Ḋ.

Let p = p′ ∪ {(i, Ṫ )} and F = F ′ ∪ {(i, α)}. Clearly (p, F ) ∈ E. Let’s argue that
(p, F ) ≤ (q, J). By construction p ≤ q and each α(σ) ≥ J(i), so α ≥ J(i). Finally,

p′ = p � i  (Ṫ , α) ≤ (q(i), J(i)), and so p � i  Ṫ ∩ 2J(i) = q(i) ∩ 2J(i).
Fix some (p, F ) ∈ E ∩ Ḡi+1, and recall that p � i ∈ H. Thus,

(p(i)H , F (i)) ∈ D ∩K,
completing the argument that K is a V [H]-generic filter for Q(Qi). �

Next, we are going to obtain a stronger version of Theorem 8.1 that tells us how
to get a V [H]-generic filter for Q(Qi)<κ, which is really what we need to extend Qi
to Q∗i in V [G][H∗]. For this, we will need to enlarge our fusion poset Q(Pi+1).

Definition 8.2. Let Q̄i(Pi+1) be the following modification of Q(Pi+1). Conditions
in Q̄(Pi+1) are pairs (p, F ) such that (p � i, F � i) ∈ Q(Pi), p(i) is some<κ-length se-

quence {Ṫξ | ξ < β} with p � i  Ṫξ ∈ Q̇i for all ξ < β, and F (i) = f : β → succ(κ).
The ordering is (p′, F ′) ≤ (p, F ) whenever

(1) (p′ � i, F ′ � i) ≤ (p � i, F � i), and
for ξ < β,

(2) F ′(i)(ξ) ≥ F (i)(ξ),
(3) p′ � i  p′(i)(ξ) ∩ 2F (i)(ξ) = p(i)(ξ) ∩ 2F (i)(ξ).

An argument as in the proof of Proposition 7.3 verifies that Q̄(Pi+1) is <κ-closed.
Let us now use the same set-up as that preceding Theorem 8.1, but use instead a

carefully chosen V -generic filter Ḡi+1 ⊆ Q̄(Pi+1) from V [G]. Let K be the collection
of all

{((Ṫξ)H , f(ξ)) | ξ < β}
such that (p, F ) ∈ Ḡi+1 with p(i) = {Ṫξ | ξ < β} and F (i) = f . Let τ(Ḡi+1) be a

P∗i -name for a subset of Q(Q̇i)<κ such that in any forcing extension V [H∗] by P∗i
τ(Ḡi+1) gets interpreted as K.

Theorem 8.3. Suppose p̄ ∈ P∗i is such that for every (p, F ) ∈ Ḡi+1, p̄ ≤ p � i.
Then

p̄  τ(Ḡi+1) is an V [Ḣ]-generic filter for Q(Q̇i)<κ,
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where Ḣ is the canonical name for the restriction of the generic filter to Pi.

The proof is essentially the same as of Theorem 8.1.
Using Theorem 8.3, we can let Q̇∗i be the canonical P∗i -name for the extension of

Q̇i formed in V [Ḣ][τ(Ḡi+1)], where Ḣ is the restriction of the generic filter to Pi.
In the next section, we will show how to obtain the required V -generic filter G so
that the inductive assumptions hold for P∗i .

9. Tree iterations of κ-perfect posets

In this section, we will introduce the notion of a tree iteration of κ-perfect posets
along some tree T .

Definition 9.1. An ω-iteration of κ-perfect posets is a sequence

~P = 〈Pn | n < ω〉,

where P0 = {∅} is a trivial poset and each Pn, for n ≥ 1, is a finite iteration of
κ-perfect posets with the coherence requirement that for 0 < m < n, Pn � m = Pm.

The initial poset P0 is included in the sequence to make the subsequent defini-
tions more uniform. For this reason, we will also make the ad hoc definition that
Q(P0) = {∅}. Note that an ω-iteration of κ-perfect posets is not a forcing iteration
or even a poset, it is simply a coherent sequence of finite iterations.

A tree iteration is a non-linear forcing iteration along some tree. Given a
tree of height ω, the tree iteration of κ-perfect posets will use an ω-iteration
~P = 〈Pn | n < ω〉 of κ-perfect posets with conditions assigned to nodes of the tree
on level n coming from the poset Pn. Conditions will be assigned to the nodes
coherently so that if a node s on level n > m extends a node t on level m, then the
condition p on node s will be such that p � m is on node t. Given a tree T and a
node s ∈ T , we will denote by lev(s) the level of s in T .

Definition 9.2. Let ~P = 〈Pn | n < ω〉 be an ω-iteration of κ-perfect posets and let
T be a tree of height ω. A T -iteration of κ-perfect posets is the following partial

order P(~P ,T ). Conditions in P(~P ,T ) are functions fX whose domain is a subtree
X of T of size less than κ such that:

(1) For every node s on level n of X, fX(s) ∈ Pn.
(2) Whenever s ≤ t are two nodes in X, then fX(t) � lev(s) = fX(s).

The ordering is defined to be fY ≤ fX whenever Y extends X and for every node
s ∈ X, fY (s) ≤ fX(s).

Note that since T has height ω and the trees X are only required to have size less
than κ, they can potentially have height ω. So the trees X can be tall, but not
wide.

The analogue of the fusion posets Q(P) and Q(Pn) for P(~P ,T ) will be the fusion

poset Q(~P ,T ).

Definition 9.3. Conditions in the fusion poset Q(~P ,T ) are functions fX whose
domain is a subtree X of T of size less than κ such that:

(1) For every node s on level n of X, fX(s) ∈ Q(Pn).
(2) Whenever s ≤ t are two nodes inX, with fX(s) = (ps, Fs) and fX(t) = (pt, Ft),

then pt � lev(s) = ps and Ft � lev(s) = Fs.
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The ordering is defined to be fY ≤ fX whenever Y extends X and for every node
s ∈ X, fY (s) ≤ fX(s).

Proposition 9.4. The posets P(~P,T ) and Q(~P,T ) are <κ-closed.

Proof. We will give the argument for P(~P,T ) because the argument for Q(~P,T )

is analogous. Suppose that {f (ξ)
Xξ
| ξ < β}, with β < κ, is a descending sequence

of conditions in P(~P ,T ). Let X =
⋃
ξ<β Xξ, and observe that X is a tree of size

less than κ. We will build a condition fX below all the f
(ξ)
Xξ

for ξ < β. We start by

building level 1 of fX . Fix a node s on level 1 of X. Since the conditions f
(ξ)
Xξ

(s)

with s ∈ Xξ form a descending sequence in P1, we can let

fX(s) =
⋂
s∈Xξ

f
(ξ)
Xξ

(s).

Next, let’s build level 2 of fX . Fix a node s on level 2 of X. First, observe that

since fX(s)(0) ≤ f
(ξ)
Xξ

(s)(0) whenever s ∈ Xξ, fX(s)(0) forces that the conditions

f
(ξ)
Xξ

(s)(1) with s ∈ Xξ form a descending sequence. Thus, we can let fX(s)(1) be

a P1-name for the intersection of the f
(ξ)
Xξ

(s)(1) with s ∈ Xξ. Continuing in this

manner, we can build the entire condition fX in ω-many steps. �

We will call the lower bound constructed as in the proof of Proposition 9.4 is a
greatest lower bound of the sequence. Note that, as was the case with the iterations
Pn, a greatest lower bound is not unique, but any two greatest lower bounds fX and
f ′X have the property that fX ≤ f ′X and f ′X ≤ fX , so for the purposes of forcing
we can basically assume uniqueness.

We shall say that a condition fY ≤ fX trivially extends a condition fX if

(1) for s ∈ X, fY (s) = fX(s),
(2) for s ∈ Y \X, if i ≥ 0 is largest such that s � i ∈ X, then fY (s) is fX(s � i)

concatenated with a trivial tail.

Essentially, a trivial extension of a condition extends the domain without adding
any extra information about what is happening on the larger domain. We make an

analogous definition for Q(~P,T ).

Proposition 9.5. Suppose G ⊆ P(~P,T ) is V -generic and fX ∈ G. If fY trivially

extends fX , then fY ∈ G. An analogous statement holds for Q(~P,T ).

Proof. Let fY trivially extend fX . It suffices to show that fY is compatible with
every condition in G. So fix gZ ∈ G. Let hW ≤ fX , gZ . Let W̄ = W ∪ Y and
let hW̄ be the trivial extension of hW to W̄ . Clearly, hW̄ ≤ fY , gZ . The proof for

Q(~P,T ) is analogous. �

Proposition 9.6. Suppose fX ∈ P(~P ,T ), fX(s) = p, and q ≤ p. Then there is a

condition gX ≤ fX in P(~P ,T ) with gX(s) = q. An analogous statement holds for

Q(~P ,T ).

Proof. Define gX as follows. Fix a node t ∈ X. If t ≤ s, then let gX(t) = q � lev(t).
If s ≤ t, then let gX(t) be q concatenated with the tail of fX(t). Otherwise, let t′

be the highest node that is compatible with both t and s. Let gX(t) be q � lev(t′)

concatenated with the tail of fX(t). The proof for Q(~P,T ) is analogous. �
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Proposition 9.7. Suppose G ⊆ P(~P,T ) is V -generic. Then for every node s on
level n of T , Gs = {fX(s) | fX ∈ G} is V -generic for Pn. An analogous statement

holds for Q(~P,T ).

Proof. Fix a node s on level n of T . Suppose that p ∈ Gs and p ≤ q. Let fX ∈ G
be such that fX(s) = p. Define a condition gX as follows. First, gX(s) = q. If
t ≤ s, then gX(t) = q � lev(s). If t ≥ s, then gX(t) is q concatenated with a
trivial tail. Otherwise, let t′ be the highest node that is compatible with both t
and s, and set gX(t) to be q � lev(t′) concatenated with a trivial tail. Clearly,
gX ≥ fX . Thus, gX ∈ G, and hence q ∈ Gs. Next, suppose that p, q ∈ Gs. Let
fX ∈ G with fX(s) = p and gY ∈ G with gY (s) = q. Then there is hZ ∈ G such
that hZ ≤ fX , gY . It follows that hZ(s) ∈ Gs and hZ(s) ≤ p, q. Finally, fix a
maximal antichain A of Pn. Let Xs be the stem in T ending in s. Consider the
collection of conditions faXs , for a ∈ A, defined by faXs(s) = a. It suffices to see

that the conditions faXs form a maximal antichain in P(~P,T ). So fix any condition

fX ∈ P(~P,T ). If X ∩Xs = {∅}, then clearly fX is compatible with any condition
faXs . So suppose that ∅ 6= t ∈ X ∩ Xs, and t is on the highest level with this
property. Extend fX(t) by adding a trivial tail, if necessary, to a get a condition
p ∈ Pn. Since A is maximal in Pn, some a ∈ A is compatible with p. Let q ≤ p, a.
By Proposition 9.6, there is a condition gX ≤ fX such that gX(t) = q � lev(t). Let
X ′ be X together with nodes from t to s (if any) and let gX′ extend the condition
gX such that gX′(s) = q. Clearly, gX′ ≤ gX and gX′ ≤ faXs as well. �

Let us call a condition fX ∈ Q(~P ,T ) determined if for every s ∈ X, fX(s) is
determined.

Proposition 9.8. The set of all determined conditions is dense in Q(~P ,T ).

Proof. Fix fX ∈ Q(~P ,T ), and for every node s ∈ X, let fX(s) = (ps, Fs). We
will construct a determined condition gX ≤ fX by taking a greatest lower bound

of a descending sequence of conditions g
(n)
X for 2 ≤ n < ω such that g

(n)
X ≤ fX has

determined conditions on all nodes on levels ≤n.
Enumerate the nodes on level 2 of X as {sξ | ξ < β2} for some β2 < κ.

Let (p0
s0 , Fs0) ≤ (ps0 , Fs0) be any determined condition, which exists by Propo-

sition 7.17. If s0 � 1 6= s1 � 1, then we let (p1
s1 , Fs1) ≤ (ps1 , Fs1) be any deter-

mined condition. Otherwise, s0 � 1 = s1 � 1 (and hence ps0 � 1 = ps1 � 1). Let
p′s1 = (p0

s0 , ps1(1)) ≤ ps1 , and let (p1
s1 , Fs1) ≤ (p′s1 , Fs1) be any determined con-

dition. Now more generally, suppose inductively that for some η < β2, we have
chosen, for every ξ < η, determined conditions (pξsξ , Fsξ) ≤ (psξ , Fsξ) such that if

for ξ1 < ξ2 < η, sξ1 � 1 = sξ2 � 1, then pξ2sξ2
� 1 ≤ pξ1sξ1

� 1. First, we define a

condition qsη ≤ psη � 1 as follows. If there is no ξ < η such that sξ � 1 = sη � 1,
then qsη = psη � 1. Otherwise, let qsη be below the descending sequence of condi-

tions pξsξ � 1 for ξ < η such that sξ � 1 = sη � 1. Let p′sη = (qsη , psη (1)), and let

(pηsη , Fη) ≤ (p′sη , Fsη ) be any determined condition. Next, let s = sη be any node
on level 2 of X. We will define the corresponding condition p∗s ≤ ps as follows.
Let p∗s(0) be the intersection of all conditions pξsξ(0) with sξ � 1 = s � 1 and let

p∗s(1) = pηsη (1). Observe that by Proposition 7.8, the condition (p∗s, Fs) is deter-

mined. Let g
(2)
X be the condition, where we start with fX and for every node s on
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level 2 of X, we replace (ps, Fs) with (p∗s, Fs), and change the conditions on the
other levels in the obvious ways to maintain coherence.

Suppose inductively that we have defined a descending sequence of conditions

g
(j)
X for 2 ≤ j ≤ n such that all conditions on level j of g

(j)
X are determined, and for

every node s ∈ X, we still have g
(j)
X (s)(1) = Fs. For a node s ∈ X and j ≤ n, let

g
(j)
X (s) = (p(j,s), Fs).

Enumerate the nodes on level n+ 1 of X as {sξ | ξ < βn+1} for some βn+1 < κ.
Let (p0

(n,s0), Fs0) ≤ (p(n,s0), Fs0) be any determined condition. Suppose inductively

that for some η < βn+1, we have chosen, for every ξ < η, determined conditions

(pξ(n,sξ), Fsξ) ≤ (p(n,sξ), Fsξ) such that if for ξ1 < ξ2 < η, there is 1 ≤ k ≤ n

such that sξ1 � k = sξ2 � k, then we have pξ2(n,sξ2 ) � k ≤ pξ1(n,sξ1 ) � k. First we

define a condition qsη ≤ p(n,sη) � n as follows. If there is no ξ < η such that
sξ � 1 = sη � 1, then qsη = p(n,sη) � n. Otherwise, let qsη (0) be the intersection of

all pξ(n,sξ)(0), for ξ < η, with sη � 1 = sξ � 1. Suppose inductively that we have

defined qsη � m for some m < n such that if for some ξ < η, there is k ≤ m such

that sξ � k = sη � k, then qsη � k ≤ pξ(n,sξ) � k. If there is no ξ < η such that

sξ � m + 1 = sη � m + 1, then we let qsη be qsη � m concatenated with the tail

of p(n,sη) � n. Otherwise, let qη(m) be a name for the intersection of all pξ(n,sξ)(m)

with sξ � m+1 = sη � m+1. Let p′(n,sη) be qsη concatenated with p(n,sη)(n), and let

(pη(n,sη), Fsη ) ≤ (p′(n,sη), Fsη ) be any determined condition. Next, let s = sη be any

node on level n+ 1 of X. We will define the corresponding condition p∗(n,s) ≤ p(n,s)

as follows. Let p∗(n,s)(0) be the intersection of the pξ(n,sξ)(0) over all ξ < βn+1 with

sξ � 1 = s � 1. Suppose inductively that we have defined p∗(n,sη) � m for some

m < n such that if for some ξ < βn+1, there is k ≤ m such that sξ � k = s � k,

then p∗(n,s) � k ≤ pξ(n,sξ) � k. Then we can let p∗(n,s)(m) be the name for the

intersection of all pξ(n,sξ)(m), for ξ < βn+1, with sξ � m + 1 = s � m + 1. Finally,

let p∗(n,s)(n) = pη(n,sη)(n). By Proposition 7.8, the condition (p∗s, Fs) is determined.

Let g
(n+1)
X be the condition, where we start with g

(n)
X and for every node s on level

n of X, we replace (p(n,s), Fs) with (p∗(n,s), Fs), and change the conditions on the

other levels to maintain coherence.
Now, let gX be a greatest lower bound of the descending sequence

{g(n)
X | n < ω}.

By Proposition 7.8, for every node s ∈ X, gX(s) is determined. �

We will apply the construction of the above proof repeatedly in the next section

whenever we have a condition fX in a poset P(~P ,T ) (or Q(~P ,T )) and we would
like to strengthen it by strengthening all the conditions fX(s) to satisfy some dense
property of the posets Pn (or Q(Pn)). We will carry out the construction by building

a descending sequence of conditions g
(n)
X , where all nodes on level n of X have the

required dense property. The condition g
(n)
X will be built by strengthening the nodes

on level n coherently to maintain the tree structure.
We will initially consider tree iterations along the tree κ<ω, and then later extend

our results to tree iterations along the tree (κ+)<ω.
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It is easy to see that the poset Q(Q0)<κ completely embeds into Q(~P , κ<ω) via
the map sending a condition to the corresponding tree of height ≤ 2.

Proposition 9.9. The poset Q(Q0)<κ completely embeds into Q(~P , κ<ω) via the
following map ϕ:

(1) ϕ(1lQ(Q0)<κ) = fX , where X consists of the root node s and fX(s) = ∅.
For p 6= 1lQ(Q0)<κ ,

(2) ϕ(p) = fX , where X consists of the root node together with nodes 〈ξ〉 for
p(ξ) 6= 1lQ0

, such that fX(〈ξ〉) = p(ξ).

More generally, for each node s on level n of κ<ω, Q̄(Pn+1) completely embeds

into Q(~P , κ<ω) via the map sending a condition to the corresponding tree of height
≤ n+ 2 whose stem stretches up to s.

Proposition 9.10. Fix a node s on level n of κ<ω. The poset Q̄(Pn+1) completely

embeds into Q(~P , κ<ω) via the following map ϕs:

(1) ϕs(1lQ̄(Pn+1)) = fX , where X is the branch ending in s, such that fX(s) =
1lQ(Pn).
For (p, F ) 6= 1lQ̄(Pn+1),

(2) ϕs((p, F )) = fX , where X consists of the branch ending in s together with
nodes 〈s_ξ〉 for non-trivial (p(n)(ξ), F (n)(ξ)), such that fX(s) = (p � n, F � n)
and

fX(s_ξ) = (p � n_p(n)(ξ), F � n_F (n)(ξ)).

Suppose G ⊆ Q(~P , κ<ω) is V -generic and fix some node s on level n of κ<ω. We
will use the notation Gs for the V -generic filter for Q̄(Pn+1) added by G via the
embedding ϕs and we will use the notation G∅ for the V -generic filter for Q(Q0)<κ

added by G via the embedding ϕ.

10. Growing finite iterations of κ-perfect posets: part II

Suppose that ~P = 〈Pn | n < ω〉 is an ω-iteration of κ-perfect posets. Let

G ⊆ Q(~P , κ<ω) be V -generic. For the remainder of the section we will work in
V [G].

We will argue that we can grow each iteration Pn to an iteration P∗n of κ-perfect
posets satisfying requirements (1)-(5) from Section 8:

(1) Q0 ⊆ Q∗0,

(2) For all 1 ≤ i < n, 1lP∗i forces that Q̇i is a κ-perfect poset and Q̇∗i extends it.
(3) Pn ⊆ P∗n.
(4) Every maximal antichain A ∈ V of Pn remains maximal in P∗n.
(5) Every V [G]-generic filter H∗ ⊆ P∗n restricts to a V -generic filter H for Pn.

It is straightforward to extend Q0 to Q∗0. By Proposition 9.9, G adds a V -generic
filter G∅ for Q(Q0)<κ. Let T 0

ξ for ξ < κ be the generic perfect κ-trees added by G∅
and construct Q∗0 as in Section 3. Thus, Q∗0 is a κ-perfect poset in V [G∅]. Since
V <κ ⊆ V in V [G], it follows that V [G∅]

<κ ⊆ V [G∅] in V [G] by Proposition 4.3.
Thus, Q∗0 is a κ-perfect poset in V [G]. Recall that {T 0

ξ | ξ < κ} is a maximal
antichain in Q∗0 and every maximal antichain A ∈ V of Q0 remains maximal in
Q∗0. Since a V [G]-generic filter H∗ for Q∗0 is, in particular, V [G∅]-generic for Q∗0,
by Proposition 3.11, H∗ restricts to a V -generic filter for Q0.



38 SY-DAVID FRIEDMAN AND VICTORIA GITMAN

Now let’s show how to extend Q̇1 to a P∗1-name Q̇∗1 for a κ-perfect poset. By
Proposition 9.10, for each node s on level 1 of the tree κ<ω, G adds a V -generic
filter Gs for Q̄(P2). Observe that each T 0

ξ ≤ p � 1 for all p with (p, F ) ∈ G〈ξ〉.

Thus, by Theorem 8.3, whenever H∗ ⊆ P∗1 is a V [G]-generic filter containing T 0
ξ ,

then the interpretation τ(G〈ξ〉)H is a V [H]-generic filter for Q((Q̇1)H)<κ, where H
is the restriction of H∗ to P1. Let τ be a mixed P∗1-name that is interpreted as
τ(G〈ξ〉)H , whenever T 0

ξ ∈ H∗. Since the conditions T 0
ξ form a maximal antichain

in P∗1,

1lP∗1  τ is an V [Ḣ]-generic filter for Q(Q̇1)<κ,

where Ḣ is the canonical name for the restriction of the generic filter to P1. So let
Q̇∗1 be a P∗1-name for the κ-perfect poset constructed from Q̇1 and τ as in Section 3.

This argument gives that Q̇∗1 is forced to be a κ-perfect poset in V [Ḣ][τ ], and we
again use a closure argument together with Proposition 3.11 to conclude that it is
forced to be a κ-perfect poset in any P∗1-extension of V [G].

For each η < κ, we can choose a P∗1-name Ṫ 1
η for the perfect κ-tree on coordinate

η of τ . The pairs (T 0
ξ , Ṫ 1

η ) for ξ, η < κ form a maximal antichain in P∗2 because the

collection of T 0
ξ is a maximal antichain and each T 0

ξ forces that the trees Ṫ 1
η , for

η < κ, form a maximal antichain in Q̇∗1. Also, clearly for every (p, F ) ∈ G〈ξ,η〉, we

have (T 0
ξ , Ṫ 1

η ) ≤ p � 2. This will allow us to apply Theorem 8.3 to grow Q̇2 to Q̇∗2.
Finally, let’s argue that P2 is actually a subset of P∗2. Suppose p is a condition in
P2. Then p(0) ∈ P1, and hence p(0) ∈ P∗1 as well. Also, clearly p(1) is a P∗1-name.

So we need to argue that p(0) P∗1 p(1) ∈ Q̇∗1. Fix a V [G]-generic filter H∗ ⊆ P∗1
with p(0) ∈ H∗, and consider the extension V [H], where H is the restriction of H∗

to P1. Since p(0) P1
p(1) ∈ Q̇1, in V [H], we have p(1)H ∈ (Q̇1)H ⊆ (Q̇∗1)H∗ . It

remains to show that conditions (4) and (5) hold. We will provide an inductive
proof of this later in Theorem 10.1.

To get some intuition for the construction, let’s fix a V [G]-generic filter H∗ ⊆ P∗1
and see what a condition T 1

η = (Ṫ 1
η )H∗ looks like. Since {T 0

ξ | ξ < κ} is a maximal

antichain of P∗1, there is a unique ξ such that T 0
ξ ∈ H∗. Let

K = {(p(1)H , F (1)) | fX ∈ G and fX(〈ξ, η〉) = (p, F )}.
Then T 1

η is the union of T ∩ 2α for (T, α) ∈ K.
For now to finish the construction, we assume that properties (1)-(5) hold for

P∗n. We will additionally assume that:

(1) For each node s on level n of κ<ω there is a condition

(T 0
s(0), Ṫ

1
s(1), . . . , Ṫ

n−1
s(n−1)) ∈ P∗n

which is below all p � n with (p, F ) ∈ Gs.
(2) The collection of all such conditions (T 0

s(0), Ṫ
1
s(1), . . . , Ṫ

n−1
s(n−1)) is a maximal

antichain in P∗n.

With this set-up, we extend Q̇n to Q̇∗n identically to the case n = 1 above, using
Theorem 8.3. It is also easy to see inductively that Pn is a subset of P∗n.

To give the promised argument for conditions (4) and (5), we first need to define
the analogue of U ⊆ P∗ from Section 2 for P∗n. For n = 1, let U1 = U. For n > 1,
let Un be the collection of all conditions p = (q0, . . . , q̇n−1) such that

(1) there are ξ0 < κ and t0 ∈ 2<κ such that p0 = (T 0
ξ0

)t0 ,
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(2) for all 1 ≤ i < n, there are ξi < κ and ti ∈ 2<κ such that p � i  q̇i = (Ṫ iξi)ti .
We will abuse notation by writing conditions in Un as

p = ((T 0
ξ0)t0 , . . . , (Ṫ n−1

ξn−1
)tn−1

).

Given σ : n → 2<κ and τ : n → 2<κ, we will say that σ extends τ if for every
0 ≤ i < n, lev(σ(i)) ≥ lev(τ(i)) and σ(i) � lev(i) = τ(i). Suppose that X ⊆ κ<ω

is a tree. We will say that a collection S = {σs | s ∈ X} of σs : n → 2<κ for s on
level n of X is coherent if whenever s ≤ t are nodes in X, then σs � lev(s) = σt.
Given coherent collections S = {σs | s ∈ X}, T = {τs | s ∈ X}, we will say that S
extends T if for every s ∈ X, σs extends τs.

Theorem 10.1.

(1) Un is dense in P∗n.
(2) Every maximal antichain of Pn from V remains maximal in P∗n.
(3) Every V [G]-generic filter H∗ ⊆ P∗n restricts to a V -generic filter H for Pn.

Proof. We can suppose inductively that (1), (2), and (3) hold for some n because
we already showed that these conditions hold for n = 1.

First, we prove (1). Fix p ∈ P∗n+1. By construction, there is q ≤ p � n such that
for some ξn < κ and tn ∈ 2<κ,

q  (Ṫ nξn)tn ⊆ p(n).

By the inductive assumption, there is some condition ((T 0
ξ0

)t0 , . . . , (Ṫ n−1
ξn−1

)tn−1
) ≤ q.

Thus,
((T 0

ξ0)t0 , . . . , (Ṫ n−1
ξn−1

)tn−1
, (Ṫ nξn)tn) ≤ p.

Next, let’s prove (2). Let A ∈ V be a maximal antichain of Pn+1. By (1), it

suffices to show that every element ((T 0
ξ0

)t0 , . . . , (Ṫ nξn)tn) ∈ Un+1 is compatible with

A. Let s = 〈ξ0, ξ1, . . . , ξn〉 and let σ = 〈t0, t1, . . . , tn〉.
Let fX ∈ Q(~P , κ<ω). By strengthening fX , if necessary, we can assume that

s ∈ X. Let fX(s) = (p, F ). By strengthening fX , if necessary, we can assume that
for all 0 ≤ i < n + 1, F (i) ≥ lev(ti). Finally, by strengthening fX , if necessary,
we can assume that fX is determined. If (p, F ) does not have a σ̄ lying on it that
extends σ, then we let f̄X = fX . So suppose that there is some such σ̄. Since A
is maximal in Pn+1, there is a ∈ A compatible with p | σ̄. So we can choose some
r ≤ p | σ̄, a. By Proposition 7.14, there is a condition (p̄, F̄ ) ≤ (p, F ) such that
p̄ | σ̄ = r ≤ a. By Proposition 9.6 (2), there is a condition f̄X ≤ fX such that

f̄X(s) = (p̄, F̄ ). Since conditions f̄X are dense in Q(~P , κ<ω), some such condition

f̄X ∈ G. Since σ lies on (T 0
ξ0
, . . . , Ṫ nξn) and (p, F ) is determined, it follows that there

must be some σ̄ lying on (p, F ) extending σ. Thus, we are in the second case, and

so f̄X(s) | σ̄ ≤ a for some a ∈ A. Thus, ((T 0
ξ0

)σ̄(0), . . . , (Ṫ nξn)σ̄(n)) ≤ a.

Finally, let’s prove (3). Suppose that H∗ ⊆ P∗n+1 is V [G]-generic. We have that
V [G][H∗] = V [G][K∗][k∗], where

(1) K∗ = {p � n | p ∈ H∗} is V [G]-generic for P∗n,

(2) k∗ = {p(n)K∗ | p ∈ H∗} is V [G][K∗]-generic for Q∗n = (Q̇∗n)K∗ .

By the inductive assumption, K∗ restricts to a V -generic filter K for Pn. Let
Qn = (Q̇n)K . Then Q∗n is constructed in V [K][Ḡ], where Ḡ is the V [K]-generic
filter for Q(Qn)<κ constructed as above in V [G][K∗]. Thus, k∗ restricts to a V [K]-
generic filter k for Qn.
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Let H be the restriction of H∗ to Pn+1. Since every maximal antichain of Pn+1

from V remains maximal in P∗n+1, it remains to check that H is a filter. Clearly,
H is upward closed. So suppose that p, q ∈ H. Then p � n, q � n ∈ K and
p(n)K , q(n)K ∈ k. Thus, there is a condition u ∈ k such that u ≤ p(n)K , q(n)K .
Let u̇ be a Pn-name such that u̇K = u, and let r ≤ p � n, q � n be a condition in
K forcing that u̇ ≤ p(n), q(n). Let r = r∗ � n with r∗ ∈ H∗. Also, since u ∈ k,
there must be a condition a ∈ H∗ such that a(n)K∗ = u. Thus, there is a condition
b ∈ K∗ forcing that u̇ = a(n). Let b = b∗ � n with b∗ ∈ H∗. Let c ≤ r∗, a, b∗ be
in H∗. Let’s argue that c ≤ r_u̇. We have c � n ≤ r by construction. We have
c � n ≤ b, which means that c � n  u̇ = a(n). Also, we have c ≤ a, which means
c � n  c(n) ≤ a(n). Thus, c � n  c(n) ≤ u̇. Thus, r_u̇ ∈ H∗, and also, by
construction, r_u̇ ≤ p, q. �

Let
~P ∗ = 〈P∗n | n < ω〉

be the ω-iteration made up of the extended iterations P∗n. Let ~U be the subset

of P(~P ∗, κ<ω) consisting of conditions fX such that for all s ∈ X on level n,
fX(s) ∈ Un.

Proposition 10.2. ~U is dense in P(~P ∗, κ<ω).

Proof. Let fX ∈ P(~P ∗, κ<ω). For every node s on level 1 of X, let

(T 0
ξs0

)ts0,1 ≤ fX(s).

Let g
(1)
X ≤ fX be the condition we get by replacing fX(s) with (T 0

ξs0
)ts0,1 for every

node s level 1 of X, and changing the conditions on the upper levels to maintain
coherence.

Next, we enumerate the nodes on level 2 of X as {sη | η < β} for some β < κ.
We can clearly choose a condition

((T 0

ξ
s0�1
0

)t00 , (Ṫ
1
ξ
s0
1

)t01) ≤ g(1)
X (s0)

with t00 ≥ ts0�10,1 . Suppose inductively that for some η < ν < β, we have chosen
conditions

((T 0

ξ
sη�1

0

)tη0 , (Ṫ
1
ξ
sη
1

)tη1 ) ≤ g(1)
X (sη)

such that for η1 < η2 < ν, if sη1
� 1 = sη2

� 1, then tη2

0 ≥ t
η1

0 . Let

((T 0
ξsν�1
0

)tν0 , (Ṫ
1
ξsν1

)tν1 ) ≤ g(1)
X (sν)

be such that tν0 ≥ t
sν�1
0,1 is above all tη0 with sη � 1 = sν � 1 (if any exist).

For every node s on level 1 of X, let ts0,2 be above all tη0 with s = sη � 1, and

note that ts0,2 ≥ ts0,1. For every node s = sη on level 2 of X, let ts1,2 = tη1 . Let

g
(2)
X ≤ g

(1)
X be the condition we get by replacing g1

X(s) with ((T 0
ξs�1
0

)ts�1
0,2
, (Ṫ 1

ξs1
)ts1,2)

for every node s on level 2 of X, and changing the conditions on the other levels to
maintain coherence.

We proceed as in the proof of Proposition 9.8 to construct a descending sequence

of conditions g
(n)
X for 1 ≤ n < ω such that for every node s on level n of g

(n)
X ,

g
(n)
X (s) ∈ Un. When doing this argument for higher levels, we make use of the fact
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that Un is dense in Pn to obtain the desired conditions. For every node s on level
n of X and i < n, let tsi be above all tsi,m for n ≤ m < ω, and let

gX(s) = ((T 0
ξs0

)ts0 , . . . , (Ṫ
n−1
ξsn−1

)tsn−1
).

Clearly, gX ∈ ~U is below fX .
�

Lemma 10.3. Every maximal antichain of P(~P , κ<ω) from V remains maximal in

P(~P ∗, κ<ω).

Proof. Let A be a maximal antichain of P(~P , κ<ω) from V . By Proposition 10.2,

it suffices to show that every element of ~U is compatible with A. Fix f∗X ∈ ~U, and
for a node s on level n of X, let

f∗X(s) = ((T 0
ξs0

)ts0 , . . . , (Ṫ
n−1
ξsn−1

)tsn−1
).

For every node s ∈ X of length n < ω, let

σs = 〈ts0, . . . , tsn−1〉
and let

s̄ = 〈ξs0, . . . , ξsn−1〉.
Observe that if s � i = t � i for some 1 ≤ i < n, then s̄ � i = t̄ � i and σs � i = σt � i.
First, we are going to thin out the condition f∗X to a condition gX having the
property that if i is such that s � i = t � i and s(i) 6= t(i), then either s̄(i) 6= t̄(i) or
σs(i) and σt(i) are incompatible nodes. The condition gX is constructed essentially
as in the proof of Proposition 10.2 by working with the levels of X successively.

Fix some ξ = ξr0 for a node r on level 1 of X. Let αξ be a large enough level of
T 0
ξ such that for every node s on level 1 of X with ξs0 = ξ, there is a node ts0,1 on

level αξ above ts0 so that if s1 6= s2, then ts10,1 6= ts20,1. Repeat this for every ξ = ξs0

for some node s on level 1 of X. Let g
(1)
X ≤ f∗X be the condition we get by replacing

f∗X(s) with (Tξs0 )ts0,1 for every node s on level 1 of X, and changing the conditions

on the other levels to maintain coherence.
Next, we define the condition g

(2)
X ≤ g

(1)
X by modifying conditions on nodes on

level 2 of X. Let {s̄η | η < ρ}, with ρ < κ, be an enumeration of all sequences s̄ for
s a node on level 2 of X. Consider s̄0 = 〈ξs00 , ξ

s0
1 〉. Let

α0 = ξs00 , t0 = ts00,1, and β0 = ξs01 .

Let G ⊆ P1 be a V -generic filter with (T 0
α0

)t0 ∈ G and let T 1
β0

= (Ṫ 1
β0

)G. In V [G],

choose a large enough level γ0 of T 1
β0

such that for every node s on level 2 of X

with s̄ = 〈α0, β0〉 and ts0,1 = t0, there a node ts1,2 ≥ ts1 on level γ0 so that if s1 6= s2,

then ts11,2 6= ts21,2. Let t∗0 ≥ t0 be a node such that (T 0
α0

)t∗0 forces the above statement

about level γ0. More generally, given s̄η, we let αη = ξ
sη
0 , tη = t

sη
0,1, and βη = ξ

sη
1 .

Suppose inductively that for some ν < ρ, we have chosen for every η < ν a level γη
and a node t∗η ≥ tη such that (T 0

αη )t∗η forces that on level γη, for every node s with

s̄ = 〈αη, βη〉 there is a node ts1,2 ≥ ts1 so that if s1 6= s2, then ts11,2 6= ts21,2. We will
assume that the choices so far satisfy that if η1 < η2 < ν are such that αη1 = αη2

and tη1 = tη2 , then t∗η2
≥ t∗η1

. We choose a node t∗ν ≥ tν above all t∗η with η < ν
such that αη = αν and tη = tν (if any exist) and a level γν as above. Now let s be
any node on level 1 of X. Let ts0,2 be above all t∗η with ξs0 = αη and tη = ts0,1. Let
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g
(2)
X ≤ g(1)

X be the condition we get by replacing g
(1)
X (s) with ((T 0

ξs0
)ts�1

0,2
, (Ṫ 1

ξs1
)ts1,2) for

every node s on level 2 of X, and changing the other nodes to maintain coherence.

We proceed in this fashion to construct a descending sequence of conditions g
(n)
X

for 1 ≤ n < ω such that all nodes on level n of X have the required disjointness
property. When doing this argument for higher levels, we make use of the fact that
Un is dense in Pn to obtain the desired conditions. For every node s on level n of
X and i < n, let ts∗i be above all tsi,m for n ≤ m < ω, and let

gX(s) = ((T 0
ξs0

)ts∗0 , . . . , (Ṫ
n−1
ξsn−1

)ts∗n−1
).

Clearly, the condition gX has the required disjointness property. Thus, by thinning
out f∗X , we can assume without loss of generality that f∗X already has the required
disjointness property, which we will from now refer to as the incompatibility require-
ment.

Observe that even though the condition f∗X is not an element of V , the following
are all in V by closure.

(1) X,
(2) {σs | s ∈ X},
(3) {s̄ | s ∈ X}.

Fix gY ∈ Q(~P , κ<ω) and let gY (s) = (ps, Fs). By strengthening gY , if necessary,
we can assume that s̄ ∈ Y for every s ∈ X, gY is determined, and for every s ∈ X
on level n, for every 0 ≤ i < n, Fs̄(i) ≥ lev(σs(i)). If there is no coherent collection
{σ̄s | s ∈ X} extending {σs | s ∈ X} such that for every s ∈ X, σ̄s lies on
gY (s̄), then we let ḡY = gY . So suppose that there is such a coherent collection
{σ̄s | s ∈ X}. Define a condition fX by fX(s) = ps̄ | σ̄s, and observe that it is

a valid condition in P(~P , κ<ω) since (1) for s, t ∈ X, whenever s � i = t � i, then
s̄ � i = t̄ � i, and (2) {σ̄s | s ∈ X} is a coherent collection. Since A is maximal in

P(~P , κ<ω), there is a condition aX′ ∈ A compatible with fX . Let bB be a condition
such that bB ≤ fX , aX′ .

Let X̄ = {s̄ | s ∈ X}, and observe that it is a tree. Thus, gX̄ , the restriction

of gY to X̄, is a valid condition in P(~P , κ<ω). Fix a node s̄ ∈ X̄ of length n. We
are going to define an Xps̄

Fs̄
-assignment ϕs̄ with ϕs̄(σ) ≤ ps̄ | σ for every σ ∈ Xps̄

Fs̄
.

Fix σ ∈ Xps̄
Fs̄

. Let i be largest such that there is some node t ∈ X with t̄ = s̄ � i′,
for some i ≤ i′ ≤ n, such that σ � i = σ̄t � i. Fix one such node t, and define
ϕs̄(σ) = bB(t) � i concatenated with the tail of ps̄ � σ after i. We need to argue that
this definition does not depend on our choice of the node t. Suppose that there are
nodes t1, t2 ∈ X as above such that σ̄t1 � i = σ̄t2 � i. Then, by the incompatibility
requirement, t1 � i = t2 � i, which means that bB(t1) � i = bB(t2) � i. This verifies
that ϕs̄ is well-defined. Next, let’s check that ϕs̄ is an Xps̄

Fs̄
-assignment. Suppose

for some σ, τ ∈ Xps̄
Fs̄

that σ � j = τ � j for some j > 0. If there is no i > 0 such
that σ � i = σ̄t � i for some t̄ = s̄ � i′ with i′ ≥ i, then ϕs̄(σ) = ps̄ | σ and
ϕs̄(τ) = ps̄ | τ . Thus, ϕs̄(σ) � j = ϕs̄(τ) � j. So fix the largest i > 0 such that
for some node t ∈ X, with t̄ = s̄ � i′ and i′ ≥ i, σ � i = σ̄t � i, and fix some such
node t. Thus, ϕs̄(σ) = bB(t) � i concatenated with the tail of ps̄ | σ. If i < j, then
ϕs̄(τ) = bB(t) � i concatenated with the tail of ps̄ | τ , and so ϕs̄(σ) � j = ϕs̄(τ) � j.
So assume that i ≥ j. Let k ≥ j be largest such that there is r ∈ X with r̄ = s̄ � i′′

and τ � k = σ̄r � k, and fix some such r. Then σ̄r � j = σ � j = σ̄t � j. It follows,
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by the incompatibility requirement, that t � j = r � j. Thus bB(t) � j = bB(r) � j,
from which it follows that ϕs̄(σ) � j = ϕs̄(τ) � j. Repeat this for every node s̄ ∈ X̄.

Let ḡX̄ be defined by ḡX̄(s̄) = (p′s̄, Fs̄), where p′s̄ is the amalgamation of the

Xps̄
Fs̄

-assignment ϕs̄. Let’s argue that ḡX̄ is a valid condition in P(~P , κ<ω). It follows
directly from the definition of the assignments ϕs̄ that ϕs̄�i(σ � i) = ϕs̄(σ) � i for
every node s̄ ∈ X̄ of length n and i < n. Thus, by Proposition 7.10, it follows that
p′s̄ � i = p′s̄�i. Clearly, ḡX̄ ≤ gX̄ . So finally, we extend ḡX̄ to the tree Y to obtain
the condition ḡY so that ḡY ≤ gY .

Since conditions ḡY are dense in P(~P , κ<ω), some such condition ḡY ∈ G. Since

σs lies on ((T 0
ξ )ts0 , . . . , (Ṫ

n−1
ξsn−1

)tsn−1
) for every s ∈ X, it follows using that gY is

determined, that there must have been a coherent system {σ̄s | s ∈ X} extending
{σs | s ∈ X} such that σ̄s lies on gY (s̄). It follows that ḡY (s̄) | σ̄t ≤ aX′(t) for
every t̄ = s̄. Thus, for every s ∈ X, f∗X(s) ≤ aX′(s). Let bX′ be the condition such
that bX′ � X = f∗X and for a node s ∈ X ′ \ X, bX′(s) = f∗X(s � i) concatenated
with the tail of aX′(s) after i, where i is the largest such that s � i ∈ X. Clearly,
bX′ ≤ f∗X , aX′ .

�

Proposition 10.4. Every V [G]-generic filter H∗ for P(~P ∗, κ<ω) restricts to a V -

generic filter H for P(~P , κ<ω).

Proof. By Lemma 10.3, H meets every maximal antichain of P(~P , κ<ω) from V .
Thus, it suffices to argue that H is a filter. Clearly, H is upward closed. So suppose
that fX , gY ∈ H. Let Z = X ∪Y . Then by Proposition 9.5, we can trivially extend
fX and gY to domain Z, and the resulting conditions will be in H. Thus, for
simplicity, we can assume to begin with that we have conditions fX , gX ∈ H,
namely that the two conditions have the same domain. Let Xn be the restriction
of X to the first n levels.

For every node s on level n of κ<ω, letH∗s consist of conditions kY (s) for kY ∈ H∗.
Then H∗s is a V [G]-generic filter for P∗n by Proposition 9.7. Let Hs be the restriction
of H∗s to Pn, which is V -generic by Theorem 10.1 (3). For every node s ∈ X1, let
ps ∈ Hs be below fX(s), gX(s). Define fX1 by fX1(s) = ps. Let’s argue that
fX1
∈ H∗. It suffices to argue that it is compatible with every condition in H∗. So

fix hY ∈ H∗, and suppose that hY is not compatible with fX1
. First, suppose that

hY (s) is compatible with fX1
(s) for every node s ∈ X1. For every node s ∈ X1,

let rs ≤ hY (s), fX1(s). Let Z = X1 ∪ Y , and let h̄Z be the following condition. If
s ∈ Z, but s(0) /∈ X1, then h̄Z(s) = hY (s). So suppose that s(0) ∈ X1. Then h̄Z(s)
is rs(0) concatenated with the tail of hY (s). Clearly, h̄Z ≤ hY , fX1

. Thus, there
must be some node s ∈ X1 such that hY (s) is not compatible with fX1(s), but this
is impossible since there must be a condition h′Z ∈ H∗ with h′Z(s) = fX1(s). Thus,

fX1 ∈ H∗. By Proposition 9.5, the condition f
(1)
X trivially extending fX1 is in H∗.

Next, we enumerate X2 = {sξ | ξ < β} with β < κ. We start by considering s0.
Let p′s0 be any condition in Hs0 below fX(s0), gX(s0), fX1

(s0). Suppose inductively
that we have chosen conditions p′sξ ∈ Hsξ for ξ < η < β so that for all ξ1 < ξ2 < η

if sξ1 � 1 = sξ2 � 1, then p′sξ1
� 1 ≤ p′sξ2

� 1. Let p′′sη be any condition Hsη below

fX(sη), gX(sη), fX1
(sη). In particular, we have p′′sη (0) ∈ Hsη�1. Recall that since

P1 is <κ-closed, each V -generic filter Hs, for s ∈ X1, is also <κ-closed. Thus, we
can choose a condition qη ∈ Hsη�1 below p′′sη (0) and below all p′sξ � 1 with ξ < η
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and sξ � 1 = sη � 1. Let p′sη = (qη, p
′′
sη (1)), and observe that p′sη ∈ Hsη because it is

compatible with every condition in it. Fix a node s ∈ X2. Let q be any condition in
Hs�1 below all qξ with sξ � 1 = s � 1. Let ps = (q, p′s(1)), and observe that ps ∈ Hs

because it is compatible with all conditions in it. Let fX2
be the condition with

fX2
(s) = ps for every s ∈ X2. By the same argument as above, we have fX2

∈ H∗.
Let f

(2)
X ∈ H∗ trivially extend fX2 . Clearly, f

(2)
X ≤ f (1)

X .
Proceeding in this fashion, we construct a descending sequence of conditions

f
(n)
X ∈ H∗. Let f̄X be a greatest lower bound of the f

(n)
X . Since P(~P ∗, κ<ω) is

<κ-closed, the generic H∗ is also <κ-closed. Thus, there some condition f ′Y ∈ H∗

below the descending sequence of the f
(n)
X . But then f ′Y ≤ f̄X , and hence f̄X ∈ H∗.

Thus, f̄X ∈ H, and clearly f̄X ≤ fX , gX . �

11. An ω-iteration of J(κ)

In this section, we will construct in L an ω-iteration ~P J(κ) = 〈J(κ)n | n < ω〉
of κ-perfect forcing notions such that the finite iterations J(κ)n will have unique
generics and the κ+-cc. The construction will take κ+-many steps and will use a

♦κ+(Cof(κ))-sequence. Let ~D = {Dα | α ∈ Cof(κ)} be the canonical ♦κ+(Cof(κ))-
sequence from Section 6. As in the construction of the poset J(κ), at successor

stages, as dictated by ~D, we will force over κ-suitable models to grow the ω-iteration
we have constructed so far while sealing maximal antichains.

We begin by arguing that whether a poset Pn is a finite iteration of κ-perfect
posets is absolute for κ-suitable models.

Proposition 11.1. Suppose that Pn = Q0 ∗ Q̇1 ∗ · · · ∗ Q̇n−1 is an n-length forcing
iteration and M is a κ-suitable model with Pn ∈ M . Then Pn is a finite iteration
of κ-perfect posets if and only if M satisfies that Pn is a finite iteration of κ-perfect
posets.

Proof. Suppose that Pn is a finite iteration of κ-perfect posets. Clearly, Q0 is a κ-
perfect poset in M . So let’s assume that Pi for some 1 ≤ i < n is a finite iteration
of κ-perfect posets in M . Let’s suppose towards a contradiction that Pi+1 is not a
finite iteration of κ-perfect posets in M . Then it must be the case that, in M , some
condition p ∈ Pi forces that Qi is not a κ-perfect poset. Let H ⊆ Pi be V -generic
with p ∈ H. Then Qi = (Q̇i)H is a κ-perfect poset in V , but then Qi is a also a
κ-perfect poset in M [H], which contradicts our assumption that p forced this not
to be the case. Thus, Pn is a finite iteration of κ-perfect posets in M .

In the other direction, suppose that, in M , Pn is a finite iteration of κ-perfect
posets. By the closure of M , Q0 is a κ-perfect poset in V . So let’s assume that Pi
for some 1 ≤ i < n is a finite iteration of κ-perfect posets in V . Let H ⊆ Pi be
V -generic. Then Qi = (Q̇i)H is a κ-perfect poset in M [H]. Since Pi is <κ-closed,
we have M<κ ⊆M in V [H], and hence, since H ∈ V [H], M [H]<κ ⊆M [H] in V [H]
by Proposition 4.3. It follows that Qi is a κ-perfect poset in V [H]. Thus, Pn is a
finite iteration of κ-perfect posets in V . �

Now we are ready to construct the ω-iteration ~P J(κ). Let ~P0 = 〈P(0)
n | n < ω〉 be

the ω-iteration of κ-perfect posets where Q(0)
0 = Pmin and each Q̇(0)

n = P̌min. Note

that the poset PV [G]
min of a forcing extension by a <κ-closed forcing is the same as
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the poset PVmin of the ground model. Suppose that the ω-iteration

~Pα = 〈P(α)
n | n < ω〉

of κ-perfect posets has been defined with

P(α)
n = Q(α)

0 ∗ Q̇(α)
1 ∗ · · · ∗ Q̇(α)

n−1.

We let ~Pα = ~Pα+1, unless the following happens. Suppose that α ∈ Cof(κ) and
Dα codes a well-founded binary relation E ⊆ α × α such that the collapse of E

is a κ-suitable model Mα with ~Pα ∈ Mα and α = ωMα
1 . In this case, we take the

L-least Mα-generic filter Gα ⊆ Q(~Pα, κ
<ω) and let ~Pα+1 = ~P ∗α as constructed in

Mα[Gα]. Suppose that λ is a limit stage and we need to obtain the ω-iteration
~Pλ. We let (Q(λ)

0 )′ be the union of the Q(ξ)
0 for ξ < λ. If λ has cofinality κ, we let

Q(λ)
0 = (Q(λ)

0 )′, and otherwise, we let Q(λ)
0 be the the closure of (Q(λ)

0 )′ under the
<κ-intersection property and the weak union property. Suppose that we have now

defined P(λ)
n . We let (Q̇(λ)

n )′ be a P(λ)
n -name for the poset that is the union of the

Q̇(ξ)
n for ξ < λ. If λ has cofinality κ, we let Q̇(λ)

n = (Q̇(λ)
n )′, and otherwise, we let

Q̇(λ)
n be the P(λ)

n -name for the closure of (Q̇(λ)
n )′ under the <κ-intersection property

and the weak union property. In order for this limit definition to make sense, we

need to verify that each Q̇(ξ)
n is a P(λ)

n -name for a κ-perfect poset. This will follow
from the following more general lemma. First, however, we need the following
standard proposition about maximal antichains in a two-step forcing iteration.

Proposition 11.2. Suppose that P ∗ Q̇ is a two-step iteration. Then the following
are equivalent for A ⊆ P ∗ Q̇.

(1) A is a maximal antichain of P ∗ Q̇.
(2) For every V -generic filter G ⊆ P, the set Ā = {q̇G | (p, q̇) ∈ A and p ∈ G}

is a maximal antichain of Q̇G.

Proof. Suppose first that (1) holds and let G ⊆ P be V -generic. First, let’s argue
that Ā is an antichain. Fix q, r ∈ Ā. Fix p1, p2 ∈ G and names q̇, ṙ such that
(p1, q̇), (p2, ṙ) ∈ A and q = q̇G, r = ṙG. Suppose towards a contradiction that q

and r are compatible. Then there is p̄ ∈ G, with p̄ ≤ p1, p2, forcing that ċ ∈ Q̇ and
ċ ≤ q̇, ṙ. But then (p̄, ċ) ≤ (p1, q̇), (p2, ṙ), which contradicts that A is an antichain.

Thus, Ā is an antichain. Next, fix any condition r ∈ Q̇G and let ṙG = r. Let
p ∈ G be a condition such that p  ṙ ∈ Q̇. Fix any condition p̄ ≤ p, and note
that (p̄, ṙ) ∈ P ∗ Q̇. Since A is maximal, (p̄, ṙ) is compatible with some (a, ḃ) ∈ A.

Thus, there is a condition (d, ċ) ∈ P ∗ Q̇ such that (d, ċ) ≤ (p̄, ṙ), (a, ḃ). It follows

that conditions d for which there is a name ċ and a condition (a, ḃ) ∈ A such that

(d, ċ) ≤ (a, ḃ), (p̄, ṙ) are dense below p. Thus, some such condition d ∈ G. But

then the associated a belongs to G as well, which means that ḃG ∈ Ā. Finally,
d  ċ ≤ ṙ, ḃ. Thus, ċG ≤ ḃG, r.

Next, suppose that (2) holds. First, let’s argue that A is an antichain. Let

(a, ḃ), (c, ḋ) ∈ A, and suppose towards a contradiction that there is a condition

(p, q̇) ≤ (a, ḃ), (c, ḋ). Let G ⊆ P be a V -generic filter with p ∈ G. Then a, c ∈ G,

and hence b = ḃG and d = ḋG are in Ā. Also, we have p  q̇ ≤ ḃ, ḋ, which means
that q̇G ≤ b, d, but this is impossible by our assumption that Ā is an antichain.
Thus, A must be an antichain. It remains to argue that A is maximal. Fix a
condition (p, q̇) ∈ P ∗ Q̇ and fix a V -generic filter G ⊆ P with p ∈ G. Let q = q̇G.
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Since Ā is maximal in Q̇G, there must be some b ∈ Ā such that q is compatible
with b. Let (a, ḃ) ∈ A such that a ∈ G and ḃG = b. There has to be a name ċ and

r ∈ G, below p and a, forcing that ċ ≤ q̇, ḃ. But then (r, ċ) ≤ (p, q̇), (a, ḃ), verifying
that these conditions are compatible. �

Given a non-trivial successor stage ξ + 1 in the construction of the ω-iteration
~P J(κ), we will denote by ξ∗ + 1 the next immediate non-trivial successor stage.
Because we are trying to construct the ω-iterations inside κ-suitable models, we

are going to need to argue inductively that the iterations P(η)
n for 1 ≤ n < ω and

η < κ+ can fit into such models, meaning that as sets they have transitive closure
of size at most κ.

Lemma 11.3. For every ξ ≤ η < κ+ and 1 ≤ n < ω,

(1) Q̇(ξ)
n is a P(η)

n -name for a κ-perfect poset.

(2) P(η)
n forces that Q̇(ξ)

n ⊆ Q̇(η)
n .

(3) P(ξ)
n ⊆ P(η)

n .

(4) The transitive closure of P(η)
n has size κ.

(5) Every maximal antichain A ∈Mξ of P(ξ)
n remains maximal in P(η)

n ,

(6) Every L-generic filter H for P(η)
n restricts to an Mξ-generic filter Hξ for

P(ξ)
n .

Proof. The sequence of posets Q(η)
0 for η < κ+ is constructed by using, at non-trivial

successor stages ξ + 1, the models Mξ[Ḡξ], where Ḡξ is the Mξ-generic filter for

Q(Q(ξ)
0 )<κ obtained from the first level of Gξ (as explained in Section 10), precisely

as in the definition of the poset J(κ). Thus, all the properties derived in Section 6
hold for this sequence. Clearly, we have properties (3) and (4). Property (5) holds
by Proposition 4.8, and the proof of Proposition 4.12 shows that property (6) holds.

Next, let’s consider the posets P(η)
2 for η < κ+. By construction, Q̇(0)

1 = P̌min.

Given a non-trivial successor stage ξ = ξ̄+1, the P(ξ)
1 -name Q̇(ξ)

1 is constructed in the

model Mξ̄[Gξ̄] so that whenever K is Mξ̄[Gξ̄]-generic for P(ξ)
1 , then Q(ξ)

1 = (Q̇(ξ)
1 )K

is a κ-perfect poset in Mξ̄[Kξ̄][Ḡξ̄], where Kξ̄ is the restriction of K to P(ξ̄)
1 and

Ḡξ̄ is the Mξ̄[Kξ̄]-generic filter for Q(Q(ξ̄)
1 )<κ obtained from Gξ̄ (as explained in

Section 10). Let’s suppose inductively that properties (1)-(6) hold for P(ξ)
2 for all

pairs ξ ≤ ρ < η in L. We need to verify that they continue to hold for all pairs ξ ≤ η.
First, let’s suppose that η = η̄+ 1 is a non-trivial successor stage. We immediately
get (1)-(6) for ξ = η̄ by the results in Section 10. Next, fix a non-trivial successor

stage ξ = ξ̄ + 1 < η̄. Fix an L-generic filter K ⊆ P(η)
1 . Let Q(η̄)

1 = (Q̇(η̄)
1 )K and

let Q(ξ)
1 = (Q̇(ξ)

1 )K . By what we already showed, Kξ̄, the restriction of K to P(ξ̄)
1 ,

is Mξ̄-generic, and Kξ̄∗ , the restriction of K to P(ξ̄∗)
1 = P(ξ)

1 , is Mξ̄∗ -generic. In

particular, Kξ̄∗ is Mξ̄[Gξ̄]-generic for P(ξ)
1 . By what we wrote above, it follows that

Q(ξ)
1 is a κ-perfect poset in Mξ̄[Kξ̄][Ḡξ̄], and hence by closure considerations also in

L[K]. This proves (1). By the inductive assumption P(η̄)
1 forces that Q̇(ξ)

1 ⊆ Q̇(η̄)
1 ,

and, by what we already showed, Kη̄, the restriction of K to P(η̄)
1 , is Mη̄-generic.

Since the inductive assumption can apply equally well to the model Mη̄, we get

that Q(ξ)
1 ⊆ Q(η̄)

1 in Mη̄[Kη̄] ⊆ L[K]. This proves (2), and (3) follows easily. Next,
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we fix a maximal antichain A ∈ Mξ of P(ξ)
2 . By our inductive assumption applied

to Mη̄, A remains maximal in P(η̄)
2 , but then by what we already showed above A

remains maximal in P(η)
2 . Finally, suppose that H ⊆ P(η)

2 is L-generic. By above,

H restricts to a P(η̄)
2 -generic filter for Mη̄, and so to obtain the statement for ξ, we

just use the inductive assumption applied to Mη̄.

Next, suppose that η < κ+ is a limit. Let K ⊆ P(η)
1 be L-generic and, for

ξ < η, let Kξ be the restriction of K to P(ξ)
1 , which we showed above is Mξ-generic.

By considering a large enough Mρ together with Kρ and applying our inductive

assumptions inside Mρ, we get that the sequence Q(ξ)
1 = (Q̇(ξ)

1 )K for ξ < η is
constructed analogously to the poset J(κ) using the models Mξ[Kξ][Ḡξ]. Thus,

we can conclude that (1)-(3) hold, and Q(η)
1 = (Q̇(η)

1 )K is either the union of the

sequence of the Q(ξ)
1 or the closure of the sequence under the weak union property

and the <κ-intersection property depending on the cofinality of η. Since each Q̇(ξ)
1

is constructed in a transitive model of size κ, it follows that the union of the Mξ,

for ξ < η, has all the names needed for the union of the Q̇(ξ)
1 . If η has cofinality less

than κ, then from these we can explicitly construct the κ-many names of elements

yielded by the closure operations at stages of cofinality less than κ. Thus, P(η)
2 has

transitive closure of size κ, verifying (3). Next, suppose that A ∈Mξ is a maximal

antichain of P(ξ)
2 for some non-trivial stage ξ + 1 < η. We need to argue that A

remains maximal in P(η)
2 = P(η)

1 ∗ Q̇(η)
1 . By Proposition 11.2, it suffices to argue

that

Ā = {q̇K | (p, q̇) ∈ A and p ∈ K}
is a maximal antichain of Q(η)

1 . Since A is maximal in P(ξ)
2 = P(ξ)

1 ∗ Q̇
(ξ)
1 , it follows,

by Proposition 11.2, that Ā ∈ Mξ[Hξ][Ḡξ] is maximal in Q(ξ)
1 = (Q̇(ξ)

1 )K . Since

we already argued above that Q(η)
1 is constructed analogously to the poset J(κ),

we can apply the results of Section 6 to conclude that Ā remains maximal in Q(η)
1 .

Finally, we argue that, for every non-trivial successor stage ξ + 1 < η, every L-

generic filter H for P(η)
2 restricts to an Mξ-generic filter for P(ξ)

2 . Fix an L-generic

filter H = H ′ ∗ h for P(η)
2 . By what we already showed, for every ν < η, H ′

restricts to an Mν-generic filter H ′ν for P(ν)
1 . Also, the sequence of the posets

Q(ν)
1 = (Q̇(ν)

1 )H for ν < η is constructed in L[H ′] analogously to the J(κ) sequence
using the models Mν [Hν ][Ḡν ]. Since h is clearly Mξ[Hξ][Ḡξ]-generic, it follows,

by Proposition 4.8, that h restricts to an Mξ[Hξ]-generic filter for Q(ξ)
1 . Now we

just repeat the argument from the proof of Theorem 10.1 (3) to argue that the

restriction of H to P(ξ)
2 is Mξ-generic.

The more general argument for n > 2 proceeds identically by induction. �

For n < ω, let J(κ)n = P(κ+)
n be the n-length iteration defined as follows. Let

Q(κ+)
0 =

⋃
ξ<κ+ Q(ξ)

0 . Suppose that we have now defined P(κ+)
n . Let Q̇(κ+)

n be a

P(κ+)
n -name for the poset that is the union of the Q̇(ξ)

n for ξ < κ+. The proof of
Lemma 11.3 gives that the definition makes sense and gives the following corollary.

Corollary 11.4. For every ξ < κ+ and 1 ≤ n < ω,

(1) Q̇(ξ)
n is a P(κ+)

n -name for a κ-perfect poset.
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(2) P(ξ)
n ⊆ P(κ+)

n .

(3) Every maximal antichain A ∈Mξ of P(ξ)
n remains maximal in P(κ+)

n ,

(4) Every L-generic filter H for P(κ+)
n restricts to an Mξ-generic filter for P(ξ)

n .

Let ξ+ 1 be a non-trivial successor stage in the construction and n < ω. We will
denote by (T 0,ξ

ρ0
, . . . , Ṫ n−1,ξ

ρn−1
) the sequences of generic κ-trees arising at that stage.

Proposition 11.5. Suppose that λ ≤ κ+ is a limit ordinal and ξ + 1 < λ is a

non-trivial successor stage. If p ∈ P(λ)
n , then there is q ≤ p and a unique sequence

(ρ0, . . . , ρn−1) such that q ≤ (T 0,ξ
ρ0

, . . . , Ṫ n−1,ξ
ρn−1

).

Proof. The assertion is true for n = 1 by the proof of Proposition 4.8 and the
fact that two different generic κ-trees have a bounded intersection. So suppose

that the assertion is true for some n < ω, and fix a condition (p, q̇) ∈ P(λ)
n+1 with

p ∈ P(λ)
n . By our inductive assumption, there is a condition p1 ≤ p and a unique

sequence (ρ0, . . . , ρn−1) such that p1 ≤ (T 0,ξ
ρ0

, . . . , Ṫ n−1,ξ
ρn−1

). Consider the condition

(p1, q̇). Let H be an L-generic filter for P(λ)
n containing p1. In L[H], the poset

Q(λ)
n = (Q̇(λ)

n )H is constructed analogously to the poset J(κ). This means that,

by the proof of Proposition 4.8, the condition q = q̇H ≤ T n,ξρ = (Ṫ n,ξρ )H for some

ρ < κ. Thus, there is a condition p2 ≤ p1 forcing that q̇ ≤ Ṫ n,ηρ . It follows that

(p2, q̇) ≤ (T 0,η
ρ0

, . . . , Ṫ n−1,η
ρn−1

, Ṫ n,ηρn ), where ρn = ρ, and p2 ≤ p. By the inductive

assumption, the initial sequence (ρ0, . . . , ρn−1) is unique and using that any two
generic κ-trees have a bounded intersection, we get that ρn must be unique as
well. �

Lemma 11.6. Suppose that λ ≤ κ+ is a limit ordinal and ξ+1 < λ is a non-trivial

successor stage. Then every maximal antichain A ∈ Mξ of P(~Pξ, κ
<ω) remains

maximal in P(~Pλ, κ
<ω).

Proof. Fix a maximal antichain A ∈ Mξ of P(~Pξ, κ
<ω). Let fX ∈ P(~Pλ, κ

<ω) with
fX(s) = (p0,s, . . . , ṗn−1,s). Let Xn be the restriction of X to the first n-levels. Let

gX1
be defined by gX1

(s) = p1
0,s ≤ p0,s such that p1

0,s ≤ T
0,ξ
ρs0

for some ρs0. Using

our standard construction (e.g. as in the proof of Proposition 10.4) to define tree
conditions coherently, we let gX2 be defined by

gX2
(s) = (p2

0,s, ṗ
2
1,s) ≤ (p1

0,s�1, ṗ1,s)

such that

(p2
0,s, ṗ

2
1,s) ≤ (T 0,ξ

ρs0
, Ṫ 1,ξ
ρs1

)

for some (ρs0, ρ
s
1). By uniqueness given in Proposition 11.5, it must be the case

that ρs�10 = ρs0. Continuing in this manner, we define a descending sequence of
conditions gXn below fX such that

gXn(s) ≤ (T 0,ξ
ρs0

, . . . Ṫ n−1,ξ
ρsn−1

),

and for all 0 ≤ i < n, m < len(s), ρsi = ρs�mi . Define hX by

hX(s) = (T 0,ξ
ρs0

, . . . Ṫ n−1,ξ
ρsn−1

),
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and note that by the above coherence property, we have that hX is a valid condition

in P(~Pξ+1, κ
<ω). Let gX be a lower bound of the gXn for n < ω. Then gX ≤ fX

and gX ≤ hX . For s ∈ X, let

gX(s) = (q0,s, . . . , q̇n−1,s).

For every s ∈ X, let s̄ = 〈ρs0, . . . , ρsn−1〉.
Next, we are going to use our usual level-by-level construction (e.g. from the

proof of Proposition 10.2) to obtain a condition g′X ≤ gX satisfying for every s ∈ X
on level n:

(1) g′X(s) = ((q0,s)ts0 , . . . , (q̇n−1,s)tsn−1
),

(2) if s, r are nodes on level n + 1 are such that s̄ � n = r̄ � n, then tsn and trn
are incompatible nodes.

For every s ∈ X on level n, let

σs = 〈ts0, . . . , tsn−1〉.
Let h′X ≤ hX be the condition defined by

h′X(s) = ((T 0,ξ
ρs0

)ts0 , . . . (Ṫ
n−1,ξ
ρsn−1

)tsn−1
),

and note that h′X satisfies the incompatibility requirement from the proof of Lemma 10.3.
Thus, by the proof of that Lemma, there is a coherent collection {σ̄s | s ∈ X} ex-
tending {σs | s ∈ X}, with σ̄s = 〈t̄s0, . . . , t̄sn−1〉, and a condition condition aX′ ∈ A,
with X ⊆ X ′, such that for every s ∈ X,

((T 0,ξ
ρs0

)t̄s0 , . . . (Ṫ
n−1,ξ
ρsn−1

)t̄sn−1
) ≤ aX′(s).

It follows that for every s ∈ X,

((q0,s)t̄s0 , . . . , (q̇n−1,s)t̄sn−1
) ≤ aX′(s).

It follows that aX′ is compatible with fX .
�

Lemma 11.7. Suppose that λ ≤ κ+ is a limit ordinal and ξ + 1 < λ is a non-

trivial successor stage. Then every L-generic filter H ⊆ P(~Pλ, κ
<ω) restricts to an

Mξ-generic filter H ⊆ P(~Pξ, κ
<ω).

Proof. By Lemma 11.6, H meets every maximal antichain of P(~Pξ, κ
<ω) from Mξ.

So it suffices to show that any two conditions in H are compatible in H. For
every node s on level n of κ<ω, let Hs consist of conditions fX(s) for fX ∈ H.

Then Hs is an L-generic filter for P(λ)
n by an argument analogous to the proof of

Proposition 9.7. Now we proceed exactly as in the proof of Proposition 10.4. �

It will be useful for future arguments to assume that conditions in J(κ)n are
coded by subsets of κ.

Theorem 11.8. The tree iteration P(~P J(κ), κ<ω) has the κ+-cc. In particular, all
the iterations J(κ)n have the κ+-cc.

Proof. Fix a maximal antichain A of P(~P J(κ), κ<ω). Choose a transitive model
M ≺ Lκ++ of size κ+ with A ∈ M . We can decompose M as the union of a
continuous elementary chain of length κ+ of substructures of size κ,

X0 ≺ X1 ≺ · · · ≺ Xξ ≺ · · · ≺M,
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with A ∈ X0, such that each successor stage Xξ+1 is closed under sequences of
length less than κ, X<κ

ξ+1 ⊆ Xξ+1. It will follow that eachXα for α ∈ Cof(κ) is closed

under sequences of length less than κ, X<κ
α ⊆ Xα. By properties of ♦κ+(Cof(κ)),

there must be some α ∈ Cof(κ) such that α = κ+ ∩ Xα, P(α)
n = PJ(κ)

n ∩ Xα for
all n < ω and Dα codes Xα. Let Mα be the transitive collapse of Xα. Then

for all n < ω, P(α)
n is the image of PJ(κ)

n under the Mostowski collapse and α is
the image of κ+. Let Ā = A ∩ Xα be the image of A under the collapse. So at

stage α in the construction of ~P J(κ) we chose a forcing extension Mα[Gα] of Mα

by Q(~Pα, κ
<ω) and let ~Pα+1 = ~P ∗α be constructed in Mα[Gα]. Thus, Ā remains

maximal in P(~P J(κ), κ<ω) by Lemma 11.6, and so it must have been the case that
Ā = A, verifying that A has size κ. �

12. The Kanovei-Lyubetsky Theorem for tree iterations of J(κ)

In this section, we extend the “unique generics” property of the poset J(κ) and
its bounded support products of length κ to finite iterations and tree iterations.

We will show that if G ⊆ P(~P J(κ), κ<ω) is L-generic, then the only finite sequences
〈A0, . . . , An〉 ∈ L[G] of subsets of κ that are L-generic for J(κ)n are the sequences
added on the nodes of the tree κ<ω by G.

Suppose that ~P = 〈Pn | n < ω〉 is an ω-iteration of κ-perfect posets and H is

a generic filter for P(~P , κ<ω). Given a node s on level n of κ<ω, let As be the

n-length sequence of generic subsets of κ added by H on node s and let Ȧs be the

canonical P(~P , κ<ω)-name for As.

For the next lemma, suppose that ~P = 〈Pn | n < ω〉 is an ω-iteration of κ-perfect

posets that is an element of a κ-suitable model M . We should think of ~P as one

of the ω-iterations ~Pα arising at stage α, for a non-trivial successor stage α+ 1, in

the construction of the ω-iteration ~P J(κ) and we should think of M as the model
Mα from that stage.

Lemma 12.1. In M , suppose that Ȧ is a P(~P , κ<ω)-name for an m-length sequence
of subsets of κ such that for all nodes s on level m of κ<ω,

1l P(~P ,κ<ω) Ȧs 6= Ȧ.

Then in a forcing extension M [G] by Q(~P , κ<ω), for every node s on level m of
κ<ω, the set of conditions forcing the statement

Φ(s) :=“If Ȧ is M [G]-generic for P∗m, then (T 0
s(0), Ṫ

1
s(1), . . . , Ṫ

m−1
s(m−1)) is not in the

filter determined by Ȧ.”

is dense in P(~P ∗, κ<ω).

Proof. Fix a condition f∗X ∈ P(~P ∗, κ<ω) and a node d on level m of κ<ω. By
strengthening f∗X , if necessary, we can assume:

(1) f∗X ∈ ~U,
(2) f∗X satisfies the incompatibility requirement from the proof of Lemma 10.3.

We need to find a condition hX′ ≤ f∗X such that hX′  Φ(d). For a node s on level
n of X, let

f∗X(s) = ((T 0
ξs0

)ts0 , . . . , (Ṫ
n−1
ξsn−1

)tsn−1
),

s̄ = 〈ξs0, . . . , ξsn−1〉 and σs = 〈ts0 . . . , tsn−1〉.
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Observe that by closure, X, {s̄ | s ∈ X}, and {σs | s ∈ X} are all in V .

Fix gY ∈ Q(~P , κ<ω), and let gY (s) = (ps, Fs). By strengthening gY , if necessary,
we can assume that

(1) s̄ ∈ Y for every s ∈ X,
(2) d ∈ Y ,
(3) gY is determined,
(4) for every s ∈ X on level n, for every 0 ≤ i < n, Fs̄(i) ≥ lev(σs(i)).

If there is no coherent collection {σ̄s | s ∈ X} extending {σs | s ∈ X} such that for
every s ∈ X, σ̄s lies on gY (s̄), then we let ḡY = gY . So suppose that there is such
a coherent collection {σ̄s | s ∈ X}.

Let us assume (this need not be the case, but will turn out to be the case by
density) that for every node s on level n of X,

((T 0
ξs0

)σ̄s(0), . . . , (Ṫ n−1
ξsn−1

)σ̄s(n−1))

is a condition in P∗n. Let f ′X be defined by

f ′X(s) = ((T 0
ξs0

)σ̄s(0), . . . , (Ṫ n−1
ξsn−1

)σ̄s(n−1)),

which is a valid condition because {σ̄s | s ∈ X} is coherent. Now we are going to
strengthen f ′X further to a condition f ′X′ so that for every σ which lies on (pd, Fd),
there is a node s ∈ X ′ such that

f ′X′(s) = ((T 0
d(0))σ(0), . . . , (Ṫ m−1

d(m−1))σ(m−1)),

while maintaining the incompatibility requirement. Enumerate all σ which lie on
(pd, Fd) as {σξ | ξ < β} for some β < κ. We start with σ0. First, suppose that there
is no s ∈ X such that s̄(0) = d(0). In this case, we add a new node r0 of length
m to our tree X along with the nodes r0 � i for 1 ≤ i < m such that r0(0) /∈ X.
Suppose next that d(0) = s̄(0) for some s ∈ X. Thus, either σ0(0) = σs̄(0) or σ0(0)
is incompatible with σs̄(0). If σ0(0) is incompatible with σs̄(0), we do exactly what
we did in the previous case, adding a new node r0 of length m to our tree X along
with the nodes r0 � i for 1 ≤ i < m such that r0(0) /∈ X. Finally, if σ0(0) = σs̄(0),
we don’t modify level 1 of X, and move on to consider d(1). Again, first suppose
that there is no t̄ extending s̄ with t̄(1) = s̄(1). In this case, we add a node r0

of length m to our tree X along with the nodes r0 � i for 2 ≤ i < m such that
r0(0) = s̄(0) and r0 � 2 /∈ X. The rest of the cases are identical as well. Let f ′X0

be
the condition where X0 is X together with the node r0 and its predecessors that
we added such that

f ′X0
(r0) = ((T 0

d(0))σ(0), . . . , (Ṫ m−1
d(m−1))σ(m−1)).

Note that the new condition f ′X0
still satisfies the incompatibility requirement. Sup-

pose we have constructed conditions f ′Xξ for ξ < η < β. First, we let X ′η =
⋃
ξ<ηXξ

and let f ′′X′η be the union of the f ′Xξ for ξ < η. Then we extend f ′′X′η to f ′Xη as in

the first step. Let X ′ =
⋃
ξ<β Xξ and let f ′X′ be the union of the f ′Xξ for ξ < β. It

should be clear from the construction that f ′X′ is as desired.

Define a condition fX′ ∈ P(~P , κ<ω) by fX′(s) = ps̄ | σ̄s for s ∈ X and
fX′(rξ) = pd | σξ for ξ < β.

Next, we are going to strengthen fX′ to a condition aZ in P(~P , κ<ω) such that

for every node s on level m of X, aZ forces over P(~P , κ<ω) the statement:
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“There is i < m− 1 such that Ȧ � i is M -generic for Pi and Ȧ(i) /∈ [(aZ(s)(i))Ȧ�i].”

Fix a node s on level m of X and consider an forcing extension M [H] by P(~P , κ<ω)
with fX′ ∈ H. By assumption, we have

A = ȦH 6= (Ȧs)H = As.

So there is i < m − 1 such that A � i = As � i and A(i) 6= As(i). So we can

strengthen fX′ to a condition aZ0 forcing that there is i < m − 1 such that Ȧ � i
is M -generic and Ȧ(i) /∈ [(aZ0

(s)(i))Ȧ�i]. By repeating this for all the <κ-many
nodes on level m and taking a lower bound of the conditions, we obtain the required
condition aZ .

Let ḡY ≤ gY , with ḡY (s) = (p′s, Fs), be the determined condition constructed as
in the proof of Lemma 10.3 such that:

(1) for every node s ∈ X, p′s̄ | σ̄s ≤ aZ(s),
(2) for every σ which lies on (pd, Fd), if s ∈ X ′ on level m is such that

f ′X′(s) = ((T 0
d(0))σ(0), . . . , (Ṫ n−1

d(n−1))σ(n−1)),

then p′d | σ ≤ aZ(s).

Since conditions ḡY are dense in Q(~P , κ<ω), some such condition ḡY ∈ G. Since

σs lies on ((T 0
ξ )ts0 , . . . , (Ṫ

n−1
ξsn−1

)tsn−1
) for every s ∈ X, it follows using that gY is

determined, that there must have been a coherent system {σ̄s | s ∈ X} extending
{σs | s ∈ X} such that σ̄s lies on gY (s̄). If x ∈ S, then

f ′X′(s) ≤ ḡY (s̄) | σ̄s ≤ aZ(s)

and if s ∈ X ′ \X on level m, then (for some σ)

f ′X′(s) = ((T 0
d(0))σ(0), . . . , (Ṫ m−1

d(m−1))σ(m−1)) ≤ ḡY (d) | σ ≤ aZ(s).

Thus, f ′X′ is compatible with aZ , and we can let āZ̄ be some condition below both
of them. The condition āZ̄ will be as required provided that we can verify that aZ
forces the statement Φ(d) over P(~P ∗, κ<ω) because since āZ̄ ≤ aZ , it will force the
statement as well.

Suppose H∗ ⊆ P(~P ∗, κ<ω) is an M [G]-generic filter containing āZ̄ . Now let’s
suppose towards a contradiction that

p = (T 0
d(0), Ṫ

1
d(1), . . . , Ṫ

n−1
d(n−1))

is in the filter determined by A = ȦH∗ . Thus, there is some σ which lies on p such
that for for all i < m, A(i) is a branch through (p | σ(i))A�i. By construction, we
have that p | σ ≤ aZ(s) for some s on level m of κ<ω. Let H be the restriction

of H∗ to an M -generic filter for P(~P , κ<ω), and note that aZ ∈ H. Thus, there is
some i < m− 1 such that A(i) is not a branch through (aZ(s)(i))A�i, which is the
desired contradiction. �

Theorem 12.2. Suppose H ⊆ P(~P J(κ), κ<ω) is L-generic. If an m-length sequence
A ∈ L[H] of subsets of κ is L-generic for J(κ)m, then A = As for some node s on
level m of κ<ω.

Proof. Let’s suppose that A is not one of the As for s on level m of κ<ω. Let Ȧ be

a nice P(~P J(κ), κ<ω)-name for A such that for all nodes s on level m of κ<ω,

1l P(~P J(κ),κ<ω) Ȧ 6= Ȧs.
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Choose some transitive M ≺ Lκ++ of size κ+ with Ȧ ∈ M . We can decompose
M as the union of a continuous elementary chain of substructures of size κ

X0 ≺ X1 ≺ · · · ≺ Xα ≺ · · · ≺M

with Ȧ ∈ X0. By the properties of ♦κ+(Cof(κ)), there is some α such that

α = κ+ ∩Xα, P(α)
n = PJ(κ)

n ∩ Xα for all n < ω, and Dα codes Xα. Let Mα be

the transitive collapse of Xα. Then, for every n < ω, P(α)
n is the image of PJ(κ)

n

under the collapse, and α is the image of κ+. The name Ȧ is fixed by the collapse

by our assumption that we can always code conditions in P(~PJ(κ), κ<ω) by subsets

of κ and because all antichains of P(~PJ(κ), κ<ω) have size κ. So at stage α in the

construction of ~P J(κ), we chose a forcing extension Mα[G] of Mα by Q(~Pα, κ
<ω)

and let ~Pα+1 = ~P ∗α be constructed in Mα[G].
By elementarity, Mα satisfies that

1l P(~Pα,κ<ω) Ȧ 6= Ȧs

for all s on level m of κ<ω. Thus, by Lemma 12.1, for every s on level m of κ<ω,

P(~Pα+1, κ
<ω) has a maximal antichain As consisting of conditions fX forcing the

statement:

Φ(s) :=“If Ȧ is Mα[G]-generic for P(α+1)
m , then (T 0,α

s(0), . . . , Ṫ
m−1,α
s(m−1)) is not in the

filter determined by Ȧ.”

It follows by Lemma 11.6 that every antichain As as well as the antichain

A = {(T 0,α
s(0), . . . , Ṫ

m−1,α
s(m−1)) | s ∈ κ

m}

remain maximal in P(~P J(κ), κ<ω). So, fixing some s ∈ κm, let’s argue that if

fX ∈ As, then fX forces in P(~P J(κ), κ<ω) that if Ȧ is L-generic for PJ(κ)
m , then

(T 0,α
s(0), Ṫ

1
s(1), . . . , Ṫ

m−1,α
s(m−1)) is not in the filter determined by Ȧ.

Let H̄ ⊆ P(~P J(κ), κ<ω) be an L-generic filter containing fX . Let α∗ + 1 be the
next non-trivial successor stage after α + 1. Then H̄ restricts to an Mα∗ -generic

filter H̄α∗ for P(~Pα∗ , κ
<ω) by Lemma 11.7. Since ~Pα+1 = ~Pα∗ , it follows that

H̄α∗ is Mα∗ -generic for P(~Pα+1, κ
<ω). Finally, since Mα[Gα] ⊆ Mα∗ , it follows

that H̄α∗ is Mα[Gα]-generic for P(~Pα+1, κ
<ω). Let A = ȦH̄ and suppose that it

is L-generic for PJ(κ)
m . Since fX ∈ H̄α∗ , it follows that Mα[Gα][H̄α∗ ] satisfies that

(T 0,α
s(0), Ṫ

1,α
s(1), . . . , Ṫ

m−1,α
s(m−1)) is not in the filter determined by A by Lemma 12.1. But

then this is true in L[H̄] as well.

Since H must meet every As, it holds in L[H] that if A is L-generic for PJ(κ)
m ,

then it does not meet the maximal antichain A, and so A, in fact, cannot be L-
generic. �

Corollary 12.3. For every n < ω, the iteration J(κ)n adds a unique generic
sequence of length n of subsets of κ.

13. Iterating P J(κ) along the tree (κ+)<ω

We will now argue that the tree iteration P(~P J(κ), (κ+)<ω), where we iterate
along the κ+-sized tree (κ+)<ω, shares all the key properties of the tree iteration
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P(~P J(κ), κ<ω), namely it has the κ+-cc and Theorem 12.2, concerning the unique-
ness of generic filters for J(κ)n, continues to holds.

The following proposition is easy to verify.

Proposition 13.1. Suppose that T is a tree of height ω, fY , gZ are conditions in

the poset P(~P J(κ),T ), and Y ∩ Z = X. If fY � X is compatible with gZ � X, then
fY is compatible with gZ .

Theorem 13.2. The poset P(~P J(κ), (κ+)<ω) has the κ+-cc.

Proof. Let’s suppose to the contrary that there is an antichain A in P(~PκJ , (κ+)<ω)
of size κ+. By a ∆-system argument, there must be some subtree X ⊆ (κ+)<ω and
a subset A′ ⊆ A of size κ+ such that for any fY and gZ in A′, Y ∩ Z = X. Given
fY ∈ A′, let fX be the restriction of fY to X. By Proposition 13.1, if fY 6= gZ are
in A′, then fX and gX are incompatible conditions. Thus, the collection of all such

fX is an antichain of size κ+ in P(~P J(κ), (κ+)<ω). But then since X has size less

than κ, there must be a corresponding antichain of size κ+ in P(~P J(κ), κ<ω), which
is impossible by Theorem 11.8. �

The following proposition is not difficult to verify.

Proposition 13.3. Suppose that T is a subtree of (κ+)<ω and H ⊆ P(~P J(κ), (κ+)<ω)

is L-generic. Then the restriction HT of H to P(~P J(κ),T ) is also L-generic.

Suppose that H is L-generic for P(~P J(κ), (κ+)<ω). Given a node s on level n
of (κ+)<ω, let As be the n-length sequence of generic subsets of κ added by H on

node s and let Ȧs be the canonical P(~P J(κ), (κ+)<ω)-name for As.

Theorem 13.4. Suppose H ⊆ P(~P J(κ), (κ+)<ω) is L-generic. If an n-length se-
quence A ∈ L[H] of subsets of κ is L-generic for J(κ)n, then A = As for some node
s on level n of (κ+)<ω.

Proof. Suppose that A is an n-length sequence of subsets of κ in L[H] that is L-

generic for PJ(κ)
n . Let Ȧ be a nice P(~P J(κ), (κ+)<ω)-name for A. Since

P(~P J(κ), (κ+)<ω) has the κ+-cc by Theorem 13.2, it follows that conditions in the

name Ȧ use only κ-many nodes of (κ+)<ω. Thus, Ȧ is a P(~P J(κ),T )-name, where
T is a subtree of (κ+)<ω of size κ. We can assume without loss of generality that

T is isomorphic to κ<ω, and so P(~P J(κ),T ) is isomorphic to P(~P J(κ), κ<ω). Let

HT be the restriction of H to P(~P J(κ),T ), which is L-generic by Proposition 13.3.
Thus, A ∈ L[HT ], from which it follows, by Theorem 12.2, that A = As for some
s ∈ T . �

14. A symmetric model of ZF + ACκ + ¬DC

We will construct a symmetric submodel of a forcing extension L[G] by

P(~P J(κ), (κ+)<ω) in which ZF + ACκ holds, but the axiom of dependent choices
DC fails. The subsets of Vκ of this model will yield a model of Kelley-Morse
second-order set theory in which KM + CC holds, but DC fails. Let’s start with
a brief discussion of the method of constructing symmetric submodels of a forcing
extension, which goes all the way back to Cohen’s pioneering work on forcing (see,
for instance, [Jec03]).
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Suppose that P is a forcing notion. Recall that if π is an automorphism of P,
then we can apply π recursively to conditions in a P-name σ to obtain the P-name
π(σ). It is not difficult to see, by induction on complexity of formulas, that for
every formula ϕ and condition p ∈ P,

p  ϕ(σ) if and only if π(p)  ϕ(π(σ)).

Fix some group G of automorphisms of P. Recall that a filter F on subgroups of
a group G is normal if whenever g ∈ G and K ∈ F , then gKg−1 ∈ F . Let’s fix
a normal filter F on the subgroups of G. The subgroup of G fixing a particular
P-name σ, consisting of automorphisms π such that π(σ) = σ, is called sym(σ). If
sym(σ) is in F , then we say that σ is a symmetric P-name. We recursively define
that a P-name is hereditarily symmetric when it is symmetric and all names inside
it are hereditarily symmetric. Let HS be the collection of all hereditarily symmetric
P-names. Let G ⊆ P be V -generic. The symmetric model

N = {σG | σ ∈ HS} ⊆ V [G]

associated to the group of autmorphisms G and the normal filter F consists of the
interpretations of all hereditarily symmetric P-names. It is a standard result that
N |= ZF (see, for instance, [Jec03]).

We work over L, although, following the analysis of Section 6, we can work over
any model V with an inaccessible cardinal κ in which ♦κ+(Cof(κ)) holds. Let

P = P(~P J(κ), (κ+)<ω). Let Aut((κ+)<ω) be the automorphism group of the tree
(κ+)<ω. Every automorphism π ∈ Aut((κ+)<ω) induces an automorphism π∗ of P
defined by π∗(fX) = fπ"X with fπ"X(t) = fX(π−1(t)). Let

G = {π∗ | π ∈ Aut((κ+)<ω)}.
Next, we need to select an appropriate filter on the subgroups of G.

Definition 14.1. A subtree T of the tree (κ+)<ω is useful if it

(1) has size κ,
(2) has no infinite branches.

Given a useful tree T , let GT be the subgroup of G consisting of all automorphisms
π∗ such that π point-wise fixes T . Let F be the filter on the subgroups of G
generated by all such subgroups GT with T a useful tree. To see that F is normal,
observe that if T is a useful tree and GT ⊆ K ∈ F , then π " T is useful and
Gπ"T ⊆ π∗Kπ∗−1.

Now, let G ⊆ P be L-generic and let

N = {σG | σ ∈ HS} ⊆ L[G]

be the symmetric model associated to G and F .
In L[G], consider the tree T , isomorphic to (κ+)<ω, whose nodes are the generic

sequences of subsets of κ for the posets J(κ)n added by G. Given a node t ∈ (κ+)<ω,
let σt be the canonical P-name for the generic, for J(κ)n, sequence of subsets of

κ added on node t by G. Let Ṫ = {(op(σs, σt), 1lP) | s ≤ t in (κ+)<ω}, where
op(σs, σt) is the canonical P-name for the ordered pair of (the interpretations of)

σs and σt. Clearly, ṪG = T (when we view T as the ordering of the tree). Fix any

π∗ ∈ G, and observe that π∗(Ṫ ) = {(op(σπ(s), σπ(t)), 1lP) | s ≤ t in (κ+)<ω} = Ṫ .

Also, any automorphism π∗ with π(s) = s fixes σs. This shows that Ṫ ∈ HS, and
hence T is in the symmetric model N .
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Suppose that T is any subtree of (κ+)<ω in L. If fX is a condition in P, we will
denote by fX∩T , the restriction of fX to nodes in T , i.e. fX∩T has domain X ∩ T
and fX∩T (t) = fX(t). We let

GT = {fX ∈ G | X ⊆ T},

and recall that, by Proposition 13.3, GT ⊆ P(~P J(κ), T ) is L-generic. Note that if T
is useful, then the canonical name for GT is fixed by all elements of the subgroup
GT , and therefore GT ∈ N . Thus, each L[GT ] ⊆ N .

If σ is a P-name and GT ⊆ sym(σ) for a useful tree T , we will say that T witnesses
that σ is symmetric.

Proposition 14.2. Suppose that σ is a symmetric P-name, as witnessed by a useful
tree T , and fX  ϕ(σ, ǎ). Then fX∩T  ϕ(σ, ǎ).

Proof. Suppose it is not the case that fX∩T  ϕ(σ, ǎ). Then there is a condition
gY ≤ fX∩T which forces ¬ϕ(σ, ǎ). Let π ∈ Aut((κ+)<ω) be an automorphism
which switches those nodes in Y \ T with some nodes outside both T and X.
Clearly, π∗ ∈ GT , and so π∗(σ) = σ. It follows that π∗(gY )  ¬ϕ(σ, ǎ). But,
by construction, π∗(gY ) is compatible with fX , which is the desired contradiction.
Thus, we have shown that fX∩T  ϕ(σ, ǎ). �

Proposition 14.3. Suppose that σ is a symmetric P-name, as witnessed by a useful
tree T , and A = σG is a set of ordinals. Then A ∈ L[GT ].

Proof. Let fX be some condition in G forcing that σ is a set of ordinals. Define a
name

σ∗ = {(ξ, gY ∩T ) | gY ≤ fX , gY  ξ ∈ σ}.
We will argue that fX  σ = σ∗. Let H ⊆ P be some L-generic filter containing
fX . Suppose ξ ∈ σH . Then there is gY ∈ H such that gY ≤ fX and gY  ξ ∈ σ,
from which it follows that (ξ, gY ∩T ) ∈ σ∗ and gY ∩T ∈ H. So we have ξ ∈ σ∗H . Next,
suppose that ξ ∈ σ∗H . Then there is a condition gY  ξ ∈ σ such that (ξ, gY ∩T ) ∈ σ∗
and gY ∩T ∈ H. But by Proposition 14.2, it follows that gY ∩T  ξ ∈ σ, and so
ξ ∈ σH . �

Lemma 14.4. DC fails in N .

Proof. We will argue that T does not have an infinite branch in N , and hence DC
fails. Suppose to the contrary that N has an infinite branch b through T . Via
coding, we can view b as a subset of κ. Fix a symmetric name ḃ for b, as witnessed
by a useful tree T . By Proposition 14.3, we can assume that the name ḃ mentions
only conditions with domains contained in T . Recall that for a node s ∈ (κ+)<ω,
As is the L-generic sequence of subsets of κ for J(κ)len(s) added by G on node s and

Ȧs is the canonical P-name for As. Let b̄ be the branch through the tree (κ+)<ω

which corresponds to b via the obvious isomorphism. Since T doesn’t have infinite
branches by assumption, b̄ cannot be a branch through T . Thus, there is some
natural number n such that b̄ � n ⊆ T and b̄(n) = s is outside T .

Fix a condition

fX  ḃ(n) = Ȧs,

with fX ∈ G, and assume without loss of generality that s ∈ X. Let

s = 〈s0, . . . , sn−1, sn〉.
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Fix any condition f ′X′ ≤ fX . Let

t = 〈s0, . . . , sn−1, tn〉

be a node in (κ+)<ω such that t /∈ (X ′∪T ), which must exist since X ′∪T has size κ.
Let π be an automorphism of (κ+)<ω which maps ((κ+)<ω)s onto ((κ+)<ω)t, while
fixing everything outside these subtrees. In particular, π fixes T . Let Y = X ′∪π"X ′
and let gY be the condition defined as follows. If r ∈ X ′, then gY (r) = f ′X′(r).
Otherwise, r = π(r̄) for r̄ ∈ X ′, and in this case, gY (r) = f ′X′(r̄). In other words,
conditions on nodes in X ′ ∩ ((κ+)<ω)s are copied over to ((κ+)<ω)t. Thus, such
conditions gY are dense below fX , and so some such gY ∈ G. Let H = π "G, which
is also L-generic for P. Observe that ḃH = b since the name ḃ only mentioned
conditions with domain in T , and π fixes T . Observe also that fX ∈ H since it is
above π∗(gY ). So it must be the case that b(n) = (Ȧs)H . But this is impossible

because (Ȧs)H = At and (Ȧs)G = As and, by genericity, As 6= At. �

The proof of the next lemma relies mainly on the fact that P has the κ+-cc
and uses very little else about what the conditions in P look like. So to make the
notation nicer, we will switch away from the previous convention and call conditions
in P standard names like p and q.

Lemma 14.5. ACκ holds in N .

Proof. Suppose that F ∈ N is a family of size κ of non-empty sets. Let Ḟ be
a hereditarily symmetric name for F with the useful tree S witnessing that Ḟ is
symmetric, and let q ∈ G force that Ḟ is a family of size κ of non-empty sets. We
would like to build a name Ċ ∈ HS such that q forces that Ċ is a choice function
for Ḟ . By Proposition 14.2, we can assume that dom(q) ⊆ S. We will adopt the

following strategy. First, we will build a mixed name Ċ0 ∈ HS (over an antichain

below q) and a useful tree T0 extending S, witnessing that Ċ0 is symmetric, such

that q  Ċ0 ∈ Ḟ (0). Next, we will build a mixed name Ċ1 ∈ HS and a useful

tree T1 extending T0, witnessing that Ċ1 is symmetric, such that q  Ċ1 ∈ Ḟ (1).

Proceeding in this fashion, we will build names Ċξ ∈ HS, for ξ < κ, and an

increasing sequence of useful trees Tξ such that q  Ċξ ∈ Ḟ (ξ). Provided we can
ensure in the course of the construction that T =

⋃
ξ∈ω Tξ does not have an infinite

branch, we will be able to build from the names Ċξ a hereditarily symmetric name

Ċ, witnessed by T to be symmetric, that is forced by q to be a choice function for
Ḟ .

Let D0 be the dense set below q of conditions p such that for some name ċp ∈ HS,

p  ċp ∈ Ḟ (0). We will thin out D0 to a maximal antichain over which we can mix

the names ċp to get the desired name Ċ0 ∈ HS. Choose some condition p
(0)
0 ∈ D0

and a name ċ
(0)
0 ∈ HS, witnessed by a useful tree S

(0)
0 to be symmetric, such that

p
(0)
0  ċ

(0)
0 ∈ Ḟ (0).

First, observe that by unioning up S and S
(0)
0 , we can assume without loss of gener-

ality that S ⊆ S
(0)
0 . Since dom(q) ⊆ S, p

(0)
0 � S(0)

0 ≤ q. Thus, by Proposition 14.2,

we can assume without loss of generality that dom(p
(0)
0 ) ⊆ S

(0)
0 . Next, we choose

some condition p1 ∈ D0, incompatible to p
(0)
0 , and a name ċ1 ∈ HS, witnessed by

a useful tree S1 to be symmetric, such that p1  ċ1 ∈ Ḟ (0). By Proposition 14.2,
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we can assume that dom(p1) ⊆ S1 ∪ S(0)
0 . Note that we cannot restrict the domain

of p1 to just S1 because then we might lose that p1 is incompatible with p
(0)
0 . At

this point, it is not a good idea to union up S
(0)
0 and S1 because if we keep doing

this, we might end up with an infinite branch in the final tree. Instead, we will use
a different name that is witnessed to be symmetric by an isomorphic copy of S1

whose intersection with S
(0)
0 is contained in S. Let π be an automorphism which

moves nodes in (S1 ∩ S(0)
0 ) \ S outside of S

(0)
0 so that π fixes S and π " S1 = S

(0)
1 ,

where S
(0)
0 ∩ S(0)

1 is contained in S. Since π fixes S, we have π∗ ∈ GS . So we have

π∗(p1)  π∗(ċ1) ∈ Ḟ (0).

Also, π∗(p1) ≤ q since dom(q) ⊆ S. Let

p′1 = p1 � S(0)
0 and p

(0)
1 = π∗(p1) ∪ p′1.

Thus, we have:

(1) p
(0)
1 ∈ D0 since π∗(p1), p′1 ≤ q and p

(0)
1 ≤ π∗(p1)  π∗(ċ1) ∈ Ḟ (0).

(2) p
(0)
1 is not compatible with p

(0)
0 since dom(p

(0)
0 ) ⊆ S

(0)
0 by assumption and

so the incompatibility of p1 and p
(0)
0 must have occurred because of nodes

in S
(0)
0 .

(3) dom(p
(0)
1 ) ⊆ S

(0)
0 ∪ S(0)

1 since dom(p′1) ⊆ S
(0)
0 and dom(p1) ⊆ S1 ∪ S(0)

0 ,

which implies that dom(π∗(p1)) ⊆ S(0)
1 ∪ S(0)

0 .

Let ċ
(0)
1 = π∗(ċ1). Thus, we have

p
(0)
1  ċ

(0)
1 ∈ Ḟ (0).

Continuing in this manner, we keep building a sequence of incompatible conditions

p
(0)
ξ ∈ D0 such that

p
(0)
ξ  ċ

(0)
ξ ∈ Ḟ (0),

S
(0)
ξ ∩

⋃
η<ξ S

(0)
η ⊆ S, and dom(p

(0)
ξ ) ⊆

⋃
η≤ξ S

(0)
η . This process must terminate

after some β0-many steps, with β0 < κ+ because the poset P has the κ+-cc. Let

A0 = {p(0)
ξ | ξ < β0}

be the resulting maximal antichain contained in D0. Let T0 =
⋃
ξ<β0

S
(0)
ξ , and

observe that by the disjointness of the S
(0)
ξ modulo S, we have that T0 cannot have

an infinite branch. Since T0 clearly has size κ, it is useful.

Let’s argue that the tree T0, because it contains
⋃
ξ<α dom(p

(0)
ξ ), witnesses that

the mixed name Ċ0 of the names ċ
(0)
ξ for ξ < β0 over the antichain A0 is symmetric.

Recall that

Ċ0 =
⋃
ξ<β0

{(τ, r) | r ≤ p(0)
ξ , r  τ ∈ ċ(0)

ξ , τ ∈ dom(ċ
(0)
ξ )}.

Fix an automorphism π point-wise fixing T0. It suffices to argue that whenever

(τ, r) ∈ Ċ0, then (π∗(τ), π∗(r)) ∈ Ċ0. So suppose (τ, r) ∈ Ċ0 and fix p
(0)
ξ ,

with ξ < β0, witnessing this. Since r ≤ p
(0)
ξ , it follows that π∗(r) ≤ p

(0)
ξ ; since

r  τ ∈ ċ(0)
ξ , it follows that π∗(r)  π∗(τ) ∈ ċ(0)

ξ ; and finally, since ċ
(0)
ξ is symmetric
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and τ ∈ dom(ċ
(0)
ξ ), it follows that π∗(τ) ∈ dom(ċ

(0)
ξ ). Now observe that, since each

ċ
(0)
ξ ∈ HS, we have Ċ0 ∈ HS.

Next, we let D1 be the dense set below q of conditions p such that for some
name ċp ∈ HS, p  ċp ∈ Ḟ (1). We repeat the process for D1, building a maximal
antichain

A1 = {p(1)
ξ | ξ < β1},

with β1 < κ+, contained in D1 and trees S
(1)
ξ , for ξ < β1, such that

p
(1)
ξ  ċ

(1)
ξ ∈ Ḟ (1).

At the same time, we ensure that for any ξ < β1, S
(1)
ξ ∩ (

⋃
η<ξ S

(1)
η ∪ T0) ⊆ S. Let

T1 =
⋃
ξ<β1

S
(1)
ξ , and observe that T0∪T1 is useful. Let Ċ1 be a mixed name of the

names ċ
(1)
ξ over the antichain A1, and observe that Ċ1 ∈ HS as witnessed by T1.

We continue this process for every ξ < κ and let T =
⋃
ξ<κ Tξ, which is clearly

useful and witnesses that the canonical name for the sequence of the Ċξ, for ξ < κ,
is symmetric. �

15. A model of KM + CC in which DCω fails

Let G ⊆ P(~P J(κ), (κ+)<ω) be L-generic, and let N be the symmetric submodel
of L[G] constructed in Section 14. Let V = (Lκ,∈, V Nκ+1). We will argue that
V |= KM + CC + ¬DCω.

Theorem 15.1. The model V = (Lκ,∈, V Nκ+1) |= KM + CC and DCω fails in V
for a Π1

1-assertion.

Proof. Since L ⊆ N ⊆ L[G], it follows that V Nκ = V
L[G]
κ . Since the forcing

P(~P J(κ), (κ+)<ω) is <κ-closed, Lκ = V
L[G]
κ . Thus, V Nκ = Lκ |= ZFC. The class re-

placement axiom holds in V since for every A ∈ V L[G]
κ+1 ⊇ V Nκ+1 and α < κ, we have

A ∩ Lα ∈ V L[G]
κ = Lκ. The global well-order axiom holds in V since Lκ+1 ⊆ V Nκ+1

has a well-ordering of Lκ . Finally, comprehension holds for all second-order as-
sertions since V Nκ+1 = PN (Lκ) and N |= ZF. Thus, V |= KM. The choice scheme

CC holds in V because V Nκ+1 = PN (Lκ) and ACκ holds in N . The generic tree

T ∈ V Nκ+1 witnesses that DCω fails in V . So it remains to show that the tree T is
Π1

1-definable over V .
By Theorem 13.4, the elements of T are precisely the n-length sequences of

subsets of κ that are L-generic for J(κ)n for some n < ω. Since the relation on T is
sequence end-extension, it suffices to show that the property of being an n-length
sequence of subsets of κ that is L-generic for J(κ)n is Π1

1 over V .
By Corollary 11.4 (4), any L-generic n-length sequence of subsets of κ for J(κ)n

is also Mξ-generic for P(ξ)
n . Since P(~P J(κ), (κ+)<ω) has the κ+-cc by Theorem 13.2,

the converse holds as well: if an n-length sequence of subsets of κ is Mξ-generic

for P(ξ)
n for all non-trivial stages ξ + 1, then it is fully L-generic for J(κ)n. Next,

observe that whether an n-length sequence A of subsets of κ is Mξ-generic for P(ξ)
n

can be verified in any Lα[A] |= ZFC− with α > ξ. Putting it all together we get
that an n-length sequence A of subsets of κ is L-generic for J(κ)n if and only if
for every Lα[A] |= ZFC−, with α < κ+, Lα[A] satisfies that A is Mξ-generic for
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P(ξ)
n for every non-trivial stage ξ + 1. Thus, an n-length sequence A of subsets of
κ is L-generic for J(κ)n if and only if V satisfies that for every class X, Y , Z,
if X is a well-order and Y codes LX [A] and Z is a truth predicate for LX [A] and

LX [A] |= ZFC− (according to Z), then A is Mξ-generic for P(ξ)
n for every non-trivial

successor stage ξ + 1 in LX [A]. Since the if. . .then statement is clearly first-order,
the assertion is Π1

1. �

16. Open Questions

Our result showing that KM + CC does not prove DCω assumed the existence
of an inaccessible cardinal. But consistency-wise KM + CC is weaker than an
inaccessible cardinal.

Question 16.1. Can we construct a model of KM+CC in which DCω fails starting
with the assumption that there is a model of KM + CC?

Another natural family of questions involve whether we can further separate the
principles DCα from each other.

Question 16.2. Is it consistent that there is a model of KM + CC + DCω in which
DCω1

fails?

Question 16.3. Is it consistent that there is a model of KM + CC in which DCα
holds for every regular cardinal α, but DCOrd fails?

We conjecture that both of the above questions will be resolved positively if the
construction in this article can be generalized to trees κ<λ for cardinals ω < λ ≤ κ.
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