Indestructible remarkable cardinals

Victoria Gitman

vgitman@nylogic.org
http://boolesrings.org/victoriagitman

5th European Set Theory Conference
August 28, 2015
This is joint work with Yong Cheng (Wuhan University).
The origin of remarkable cardinals

Definition: A cardinal κ is **remarkable** if in every $\text{Coll}(\omega, < \kappa)$-extension $V[G]$, for every regular $\lambda > \kappa$, there is an embedding $j : H_{\lambda} \rightarrow H_{\lambda}$, for some V-regular $\bar{\lambda} < \kappa$, with $\text{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Theorem: (Schindler, ’00) The following are equiconsistent.
- The theory of $L(\mathbb{R})$ cannot be changed by proper forcing.
- There exists a **remarkable cardinal**.
A generic version of supercompactness

Theorem: (Magidor, '71) A cardinal κ is supercompact if and only if for every regular $\lambda > \kappa$, there is an embedding $j : H_{\bar{\lambda}} \rightarrow H_{\lambda}$, for some regular $\bar{\lambda} < \kappa$, with $\text{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Absoluteness lemma for countable embeddings: (Folklore) If M is countable and there is an embedding $j : M \rightarrow N$, then every transitive model $W \models \text{ZFC}^-$ such that $M, N \in W$ and M is countable in W has an embedding $j^* : M \rightarrow N$. If $\text{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$, we can arrange the same to be true for j^*. We can also arrange for j and j^* to agree on finitely many values.

Proof:

- Construct the tree T of finite partial embeddings from M to N.
- T has a branch if and only if there is an embedding from M to N.
- The tree T is in W.
- The tree T is ill-founded in V and hence also in W. □
A generic version of supercompactness (continued)

Observation: A cardinal κ is remarkable if and only if for every regular $\lambda > \kappa$, there is a set-forcing extension $V[H]$ in which there is an embedding $j : H_\lambda \to H_\lambda$, for some V-regular $\bar{\lambda} \prec \kappa$, with $\text{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Proof: Suppose $j : H_\lambda \to H_\lambda$ exists in $V[H]$.

- Let $G \subseteq \text{Coll}(\omega, <\kappa)$ be $V[H]$-generic.
- H_λ is countable in $V[G] \subseteq V[H][G]$.
- $j^* : H_\lambda \to H_\lambda$ exists in $V[G]$ (by the absoluteness lemma).
- Every $\text{Coll}(\omega, <\kappa)$-extension has some $j : H_\lambda \to H_\lambda$ (since $\text{Coll}(\omega, <\kappa)$ is weakly homogeneous). \square
Other characterizations of remarkable cardinals

Definition: In a \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \), an embedding \(j : H_\lambda \rightarrow H_\lambda \) is \((\bar{\mu}, \bar{\lambda}, \mu, \lambda)\)-remarkable if

- \(\bar{\lambda}, \lambda \) are \(V \)-regular,
- \(\text{cp}(j) = \bar{\mu} \) and \(j(\bar{\mu}) = \mu \).

Note: A cardinal \(\kappa \) is remarkable if in every \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \), for every regular \(\lambda > \kappa \), there is a \((\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)\)-remarkable embedding.

Lemma: If \(\kappa \) is remarkable, then in every \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \), for every regular \(\lambda > \kappa \) and \(a \in H_\lambda \), there is a \((\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)\)-remarkable \(j : H_\lambda \rightarrow H_\lambda \) with \(a \in \text{ran}(j) \). In particular, there are such \(j \) with \(\text{cp}(j) \) arbitrarily high in \(\kappa \).

Lemma: In a \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \), if \(j : H_\lambda \rightarrow H_\lambda \) is \((\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)\)-remarkable, then it lifts to

\[
j : H_\lambda[G_{\bar{\kappa}}] \rightarrow H_\lambda[G]
\]

(where \(G_{\bar{\kappa}} \) is the restriction of \(G \) to \(\text{Coll}(\omega, < \bar{\kappa}) \)).
Other characterizations of remarkable cardinals (continued)

Theorem: (Schindler, ’00) A cardinal κ is remarkable if and only if for every regular $\lambda > \kappa$, there are countable transitive models M and N with embeddings

- $\pi : M \rightarrow H_\lambda$ with $\pi(\kappa) = \kappa$,
- $\sigma : M \rightarrow N$ such that
 - $\text{cp}(\sigma) = \kappa$,
 - ORD^M is regular in N and $M = H_{\text{ORD}^M}^N$,
 - $\sigma(\kappa) > \text{ORD}^M$.

\[\begin{array}{c}
\kappa \\
\sigma(\kappa) \\
\bar{\kappa} \\
\kappa \\
\end{array} \]
Remarkable cardinals in the hierarchy

Theorem: (Schindler, '00) Strong cardinals are remarkable.

Proof: Suppose κ is strong.

- Fix a regular $\lambda > \kappa$ and $j : V \to M^*$ with $\text{cp}(j) = \kappa$, $j(\kappa) > \lambda$, and $H_\lambda \subseteq M^*$.
- $j : H_\lambda \to H_{j(\lambda)}^{M^*}$ and $H_\lambda \subseteq H_{j(\lambda)}^{M^*}$.
- Take countable $\langle X, Y, h, \in \rangle < \langle H_{j(\lambda)}^{M^*}, H_\lambda, j, \in \rangle$.
- Let $\rho : X \to N$ be the collapse map. Then $\rho \upharpoonright Y : Y \to M$ is the collapse of Y.
- Define $\pi : \rho^{-1} : M \to H_\lambda$ and $\sigma = \rho \circ h \circ \rho^{-1} : M \to N$. □

Observation: Measurable cardinals are not necessarily remarkable.

Proof: Remarkable cardinals are totally indescribable and a measurable cardinal is Σ^2_1-describable. □

Theorem: Remarkable cardinals are downward absolute to L.

Proof: In a $\text{Coll}(\omega, <\kappa)$-extension $V[G]$, suppose $j : H_\lambda \to H_\lambda$ is $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$-remarkable.

- $j : L_\lambda \to L_\lambda$ in $V[G]$.
- $j^* : L_\lambda \to L_\lambda$ exists in $L[G]$ since L_λ is countable in $L[G]$ (by the absoluteness lemma). □
Remarkable cardinals in the hierarchy (continued)

Definition: A weak κ-model (for a cardinal κ) is a transitive $M \models \text{ZFC}^-$ of size κ and height above κ.

Suppose M is a weak κ-model.

Observation: TFAE.

- There exists $j : M \rightarrow N$ with $\text{cp}(j) = \kappa$.
- There exists an M-ultrafilter U with a well-founded ultrapower.
 - U is an M-ultrafilter if $\langle M, \in, U \rangle \models U$ is a normal ultrafilter.
 - $U = \{ A \in M \mid \kappa \in j(A) \}$.

Example: A cardinal κ is weakly compact if and only if $2^{<\kappa} = \kappa$ and every $A \subseteq \kappa$ is contained in a weak κ-model M for which there exists an M-ultrafilter on κ with a well-founded ultrapower.

Definition: An M-ultrafilter U is weakly amenable if for every $X \in M$ with $|X|^M \leq \kappa$, $X \cap U \in M$.

- U is partially internal to M.
- It is needed to iterate the ultrapower construction.
Remarkable cardinals in the hierarchy (continued)

Definition: (G., ’07) A cardinal \(\kappa \) is \(\alpha \)-iterable \((1 \leq \alpha \leq \omega_1)\) if every \(A \subseteq \kappa \) is contained in a weak \(\kappa \)-model \(M \) for which there exists a weakly amenable \(M \)-ultrafilter on \(\kappa \) with \(\alpha \)-many well-founded iterated ultrapowers.

Theorem: (G., ’07) A 1-iterable cardinal is a stationary limit of completely ineffable cardinals.

Theorem: (G., Welch, ’08) An \(\omega \)-Erdős cardinal implies for every \(n \in \omega \), the consistency of a proper class of \(n \)-iterable cardinals.

Theorem: (G., Welch, ’08)
- A remarkable cardinal is 1-iterable and a stationary limit of 1-iterable cardinals.
- If \(\kappa \) is 2-iterable, then there is a proper class of remarkable cardinals in \(V_\kappa \).
Laver-like functions

Suppose κ is a large cardinal characterized by the existence of some type of elementary embeddings j.

A Laver-like function $\ell : \kappa \to V_\kappa$ is a guessing function with the property that for every set a, there is some j of the type characterizing the cardinal such that $j(\ell)(\kappa) = a$.

- (supercompact) For every $a \in H_\theta$, there is a θ-supercompactness embedding $j : V \to M$ with $\text{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (strong) For every $a \in V_\theta$, there is a θ-strongness embedding $j : V \to M$ with $\text{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (extendible) For every $\alpha > \kappa$ and $a \in V_\alpha$, there is $j : V_\alpha \to V_\beta$ with $\text{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (strongly unfoldable) For every $a \in V_\theta$, for every $A \subseteq \kappa$, there is a θ-strong unfoldability embedding $j : M \to N$ ($V_\theta \subseteq N$) with $A \in M$ and $j(\ell)(\kappa) = a$.

Additional assumptions:

- $\text{dom}(\ell)$ is contained in the inaccessible cardinals,
- $\ell " \xi \subseteq V_\xi$.
Laver-like functions (continued)

The existence of Laver-like functions can be forced for most large cardinals, but few have them outright.

Theorem:
- (Laver, '78) Every supercompact cardinal has a Laver function.
- (Gitik, Shelah, '89) Every strong cardinal has a strong Laver function.
- (Corazza, '00) Every extendible cardinal has an extendible Laver function.
- (Džamonja, Hamkins, '06) Not every strongly unfoldable cardinal has a strongly unfoldable Laver function.

Laver-like functions play an important role in indestructibility arguments.
Remarkable Laver functions

Definition: (Cheng, G., '14) A function $\ell: \kappa \to V_\kappa$ is a remarkable Laver function if for every regular $\lambda > \kappa$ and $a \in H_\lambda$, every $\text{Coll}(\omega, < \kappa)$-forcing extension $V[G]$ has a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$-remarkable $j: H_{\bar{\lambda}} \to H_\lambda$ such that

- $\ell \upharpoonright \bar{\kappa} + 1 \in H_{\bar{\lambda}}$,
- $\bar{\kappa} \in \text{dom}(\ell)$,
- $j(\ell(\bar{\kappa})) = j(\ell \upharpoonright \bar{\kappa} + 1)(\kappa) = a$.

Additional assumptions:

- $j(\ell \upharpoonright \bar{\kappa}) = \ell$,
- $\text{dom}(\ell)$ is contained in the inaccessibles,
- $\ell'' \xi \subseteq V_\xi$.
Remarkable Laver functions (continued)

Suppose κ is remarkable and $V[G]$ is a $\text{Coll}(\omega, <\kappa)$-extension.

Definition: In $V[G]$, suppose $\ell : \xi \to V_\kappa$ ($\xi \leq \kappa$). Say that x is λ-anticipated by ℓ (for λ regular) if
- $x \in H_\lambda$,
- there is a $(\bar{\xi}, \bar{\lambda}, \xi, \lambda)$-remarkable lift $h : H_\bar{\lambda}[G_{\bar{\xi}}] \to H_\lambda[G_\xi]$ with $h(\ell \upharpoonright \bar{\xi} + 1)(\xi) = x$.

Lemma: In $V[G]$, if $\ell : \xi \to V_\kappa$ ($\xi < \kappa$) and there is λ for which some x is not λ-anticipated by ℓ, then the least such $\lambda < \kappa$.

Definition: Fix a well-ordering W of V_κ of order-type κ. In $V[G]$, define $\ell : \kappa \to V_\kappa$ inductively as follows. Suppose $\ell \upharpoonright \xi$ has been defined.
- Suppose there is λ such that some x is not λ-anticipated by $\ell \upharpoonright \xi$.
 - Let λ' be least such.
 - Let a be W-least set that is not λ'-anticipated by $\ell \upharpoonright \xi$.

Set $\ell(\xi) = a$.
- Otherwise, $\ell(\xi)$ is undefined.

Victoria Gitman

Indestructible remarkable cardinals
Remarkable Laver functions exist

Lemma: The definition of \(\ell \) is independent of the \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \) and \(\ell \in V \).

Proof: \(\text{Coll}(\omega, < \kappa) \) is weakly homogeneous. \(\square \)

Theorem (Cheng, G., ’14) If \(\kappa \) is remarkable, then there is a remarkable Laver function (with all additional properties).

Proof: In a \(\text{Coll}(\omega, < \kappa) \)-extension \(V[G] \), suppose \(\lambda \) is least such that some \(a \) is not \(\lambda \)-anticipated by \(\ell \).

- Fix \(H_\tau[G] \) that is large enough to see this.
- Fix a \((\bar{\kappa}, \bar{\tau}, \kappa, \tau)\)-remarkable lift \(j : H_\bar{\tau}[G_{\bar{\kappa}}] \to H_\tau[G] \) and \(j(\bar{\lambda}) = \lambda \).
- \(j(\ell \upharpoonright \bar{\kappa}) = \ell \) (follows from \(W \in \text{ran}(j) \)).
- By elementarity, \(H_\bar{\tau}[G_{\bar{\kappa}}] \) satisfies that \(\bar{\lambda} \) is least such that some \(x \) is not \(\bar{\lambda} \)-anticipated by \(\ell \upharpoonright \bar{\kappa} \) and it is correct by absoluteness lemma.
- It follows that \(\ell \upharpoonright \bar{\kappa} + 1 \in H_\bar{\tau}[G_{\bar{\kappa}}] \) and \(\ell(\bar{\kappa}) \) is not \(\bar{\lambda} \)-anticipated by \(\ell \upharpoonright \bar{\kappa} \).
- By elementarity, \(j(\ell \upharpoonright \bar{\kappa} + 1)(\kappa) = y \) is not \(\lambda \)-anticipated by \(\ell \).
- But \(y \) is anticipated by \(j' = j \upharpoonright H_\bar{\lambda}[G_{\bar{\kappa}}] \) and \(j' \in H_\tau[G] \). \(\rightarrow \leftarrow \square \)
Remarkable Laver functions in indestructibility arguments

Lemma: Suppose κ is remarkable and ℓ is a remarkable Laver function. In a $\text{Coll}(\omega, <\kappa)$-extension $V[G]$, for every regular $\lambda > \kappa$ and $a \in H_\lambda$, there is a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$-remarkable $j : H_{\bar{\lambda}} \rightarrow H_\lambda$ such that

- $(\bar{\kappa}, \bar{\lambda}] \cap \text{dom}(\ell) = \emptyset$,
- $\ell(\bar{\kappa}) = \langle \bar{a}, \bar{x} \rangle$, where $j(\bar{a}) = a$.

Proof: Let $j(\ell)(\kappa) = \langle a, \lambda + 1 \rangle$ and $j(\bar{a}) = a$.

- $\ell(\bar{\kappa}) \notin V_{\bar{\lambda}}$.
- $\ell" \xi \subseteq V_\xi$. \Box
Demonstrating indestructibility of remarkable cardinals

Suppose κ is remarkable and $V[G]$ is an extension by a forcing notion \mathbb{P}.

Indestructibility strategy:

Fix $\pi : M \rightarrow H_\lambda$ ($\pi(\bar{\kappa}) = \kappa$) and $\sigma : M \rightarrow N$ such that

- $\text{cp}(\sigma) = \bar{\kappa}$,
- ORD^M is regular in N and $M = H^N_{\text{ORD}^M}$,
- $\sigma(\bar{\kappa}) > \text{ORD}^M$.

Lift

- $\pi : M[\bar{G}] \rightarrow H_\lambda[G]$,
- $\sigma : M[\bar{G}] \rightarrow N[H]$,
- preserve that ORD^M is regular in $N[H]$ and $M[\bar{G}] = H^N_{\text{ORD}^M}[H]$.

Theorem: (Lifting Criterion) Suppose $j : M \rightarrow N$ is an embedding of ZFC^- models having generic extensions $M[G]$ and $N[H]$ by forcing notions \mathbb{P} and $j(\mathbb{P})$ respectively. The embedding j lifts to $j : M[G] \rightarrow N[H]$ if and only if $j'' G \subseteq H$.

Victoria Gitman
Choosing a good pair π and σ

Suppose κ is remarkable and $\lambda > \kappa$ is regular.

Fix $\delta > \lambda$ and $\rho : M' \to H_\delta$ with M' countable, $\rho(\kappa') = \kappa$, $\rho(\lambda') = \lambda$, $\rho(\ell') = \ell$.

- Fix an M'-generic $g \subseteq \text{Coll}(\omega, < \kappa')^{M'}$.
- In $M'[g]$, choose a $(\bar{\kappa}, \bar{\lambda}, \kappa', \lambda')$-remarkable $j : H^{M'}_{\bar{\lambda}} \to H^{M'}_{\lambda'}$ such that $(\bar{\kappa}, \bar{\lambda}) \cap \text{dom}(\ell') = \emptyset$.
- Let $\sigma : H^{M'}_{\bar{\lambda}} \to N$ with $N = \{\sigma(f)(a) \mid a \in (V_{\kappa'} \cup \{\kappa'\})^{< \omega}, f \in H^{M'}_{\bar{\lambda}}\}$.
- Let $M = H^{M'}_{\bar{\lambda}}$, $\sigma : M \to N$ and $\pi = \rho \circ j : M \to H_{\lambda}$.
Indestructibility by $\text{Add}(\kappa, \theta)$

Theorem: (Cheng, G., '14) A remarkable cardinal κ can be made indestructible by $\text{Add}(\kappa, \theta)$ for every θ.

Proof:

- \mathbb{P}_κ is the κ-length Easton support iteration which forces with $\text{Add}(\xi, \mu)^{\mathbb{P}_\xi}$ at stage ξ whenever $\ell(\xi) = \langle \mu, x \rangle$ for some x.
- Suppose κ is not remarkable in a $\mathbb{P}_\kappa * \text{Add}(\kappa, \theta)$-extension.
- There is a regular $\lambda > \kappa$ and $q \in \mathbb{P}_\kappa * \text{Add}(\kappa, \theta)$ such that $q \models \text{“there are no desired embeddings } \pi \text{ and } \sigma \text{ for } H_\lambda \text{”}$.

- Fix a good pair $\pi : M \rightarrow H_\lambda$ and $\sigma : M \rightarrow N$ with
 - $\pi(q) = q$, $\pi(\overline{\mathbb{P}_\kappa}) = \mathbb{P}_\kappa$, $\pi(\overline{\theta}) = \theta$, $\pi(\overline{\ell}) = \ell$
 - $\sigma(\overline{\mathbb{P}_\kappa}) = \mathbb{P}_{\kappa'}$, $\sigma(\overline{\theta}) = \theta'$, $\sigma(\overline{\ell}) = \ell'$,
 - $(\overline{\kappa}, \text{ORD}^M \cap \text{dom}(\ell')) = \emptyset$ and $\overline{\ell}(\overline{\kappa}) = \langle \overline{\theta}, x \rangle$.
- Fix a V-generic $G * g \subseteq \mathbb{P}_\kappa * \text{Add}(\kappa, \theta)$ such that
 - $q \in G * g$,
 - $G * g$ is π "M-generic" ($\mathbb{P}_\kappa * \text{Add}(\kappa, \theta)$ is countably closed),
- Let $\overline{G} * \overline{g} = \pi^{-1}(G * g)$.

Victoria Gitman
Indestructibility by $\text{Add}(\kappa, \theta)$ (continued)

Lift π to $M[\bar{G}][\bar{g}]$:
- $\pi " \bar{G} * \bar{g} \subseteq G * g$.
- Lift π to $\pi : M[\bar{G}][\bar{g}] \to H_\lambda[G][g]$ by the lifting criterion.

Lift σ to $M[\bar{G}]$:
- Need an N-generic $G' \subseteq \bar{P}_\kappa'$ with $\sigma " \bar{G} = \bar{G} \subseteq G'$.
- Factor $\bar{P}_\kappa' = \bar{P}_\kappa * \text{Add}(\bar{\kappa}, \bar{\theta}) * \bar{P}_{\text{tail}}$.
- Choose a $N[\bar{G}][\bar{g}]$-generic $G_{\text{tail}} \subseteq \bar{P}_{\text{tail}}$ ($N[\bar{G}][\bar{g}]$ is countable) and let $G' = \bar{G} * \bar{g} * G_{\text{tail}}$.
- Lift σ to $\sigma : M[\bar{G}] \to N[G']$ by the lifting criterion.

Lift σ to $M[\bar{G}][\bar{g}]$:
- Need an $N[G']$-generic $g' \subseteq \text{Add}(\kappa', \theta')^{N[G']}$ with $\sigma " \bar{g} \subseteq g'$.
Choose any $N[G']$-generic $g' \subseteq \text{Add}(\kappa', \theta')^{N[G']}$. Indestructibility by $\text{Add}(\kappa, \theta)$ (continued)

For $p \in \text{Add}(\kappa', \theta')^{N[G']}$, let p^* be the result of altering p to agree with $\sigma'' \bar{g}$.

Theorem (Woodin):

- Each $p^* \in \text{Add}(\kappa', \theta')^{N[G']}$.\[\]
- $g^* = \{p^* \mid p \in g'\}$ is $N[G']$-generic for $\text{Add}(\kappa', \theta')^{N[G']}$.\[\]
- Proof needs (1) $\bar{g} \in N[G']$ and (2) $N = \{\sigma(f)(a) \mid a \in [V_{\kappa'} \cup \{\kappa'\}]^{<\omega}, f \in M\}$.

Lift σ to $\sigma : M[\bar{G}][\bar{g}] \rightarrow N[G'][g^*]$ by the lifting criterion.

There is no forcing in $\bar{P}_{\kappa'}$ in $(\bar{\kappa}, \text{ORD}^M)$ and $\bar{P}_{\kappa'}$ is progressively more closed.

- ORD^M is regular in $N[G'][g^*]$,\[\]
- $M[\bar{G}][\bar{g}] = H_{\text{ORD}^M}^{N[G'][g^*]}$.\[\]

Thus, $V[G][g]$ has σ and π as desired, but $q \in G \ast g$ forces otherwise. $\rightarrow \leftarrow \square$
Indestructibility by \(<\kappa\)-closed \(\leq\kappa\)-distributive forcing

Theorem: (Cheng, G., '14) A remarkable cardinal \(\kappa\) can be made indestructible all \(<\kappa\)-closed \(\leq\kappa\)-distributive forcing.

Proof:

- \(P_\kappa\) is the \(\kappa\)-length Easton support iteration which forces with \(\dot{Q}_\xi\) at stage \(\xi\) whenever \(\ell(\xi) = \langle \dot{Q}_\xi, x \rangle\), where \(\dot{Q}_\xi\) is a \(P_\xi\)-name for a \(<\xi\)-closed \(\leq\xi\)-distributive poset in \(V^{P_\xi}\) and \(x\) is some set.
- Suppose \(\kappa\) is not remarkable in a \(P_\kappa * \dot{Q}\)-extension, where \(\dot{Q}\) is a \(P_\kappa\)-name for a \(<\kappa\)-closed \(\leq\kappa\)-distributive poset.
- There is a regular \(\lambda > \kappa\) and \(q \in P_\kappa * \dot{Q}\) such that
 \[
 q \Vdash "\text{there are no desired embeddings } \pi \text{ and } \sigma \text{ for } H_\lambda".
 \]
- Fix a good pair \(\pi : M \rightarrow H_\lambda\) and \(\sigma : M \rightarrow N\) with

 - \(\pi(\bar{q}) = q, \pi(\bar{P}_\kappa) = P_\kappa, \pi(\dot{Q}_\kappa) = \dot{Q}, \pi(\bar{\ell}) = \ell\)

 - \(\sigma(\bar{P}_\kappa) = P_\kappa', \sigma(\dot{Q}_\kappa) = \dot{Q}_\kappa', \sigma(\bar{\ell}) = \ell'\),

 - \((\bar{\kappa}, \text{ORD}^M) \cap \text{dom}(\ell') = \emptyset \text{ and } \bar{\ell}(\bar{\kappa}) = \langle \dot{Q}_\bar{\kappa}, x \rangle\).
- Fix a \(V\)-generic \(G * g \subseteq P_\kappa * \dot{Q}\) such that

 - \(q \in G * g\),

 - \(G * g\) is \(\pi \upharpoonright M\)-generic (\(P_\kappa * \dot{Q}\) is countably closed),
- Let \(\bar{G} * \bar{g} = \pi^{-1}(G * g)\).
Indestructibility by $<\kappa$-closed $\leq\kappa$-distributive forcing (continued)

Lift π to $M[\bar{G}][\bar{g}]$:

- π " $\bar{G} \ast \bar{g} \subseteq G \ast g$.
- Lift π to $\pi : M[\bar{G}][\bar{g}] \to H[\bar{G}][g]$ by the lifting criterion.

Lift σ to $M[\bar{G}]$:

- Need an N-generic $G' \subseteq \bar{P}$ with σ " $\bar{G} = \bar{G} \subseteq G'$.
- Factor $\bar{P} = \bar{P} \ast \dot{Q} \ast \bar{P}$.
- Choose a $N[\bar{G}][\bar{g}]$-generic $G_{\text{tail}} \subseteq \bar{P}_{\text{tail}}$ ($N[\bar{G}][\bar{g}]$ is countable) and let $G' = \bar{G} \ast \bar{g} \ast G_{\text{tail}}$.
- Lift σ to $\sigma : M[\bar{G}] \to N[G']$ by the lifting criterion.
Indestructibility by $\langle \kappa \rangle$-closed $\leq \langle \kappa \rangle$-distributive forcing (continued)

Lift σ to $M[\bar{G}][\bar{g}]$:
- Need an $N[G']$-generic $g' \subseteq (\check{\mathbb{Q}}_{\kappa'})_{G'} = \mathbb{Q}_{\kappa'}$ with $\sigma " \bar{g} \subseteq g'$.
- $g' = \langle \sigma " \bar{g} \rangle$ is the filter generated by $\sigma " \bar{g}$.
- Clearly g' is $\sigma " M[\bar{G}]$-generic.
- Indeed, g' is $N[G']$-generic.
 - $N = \{\sigma(f)(a) \mid a \in [V_{\kappa'} \cup \{\kappa'\}]^{<\omega}, f \in M\}$.
 - $\mathbb{Q}_{\kappa'}$ is $\leq \kappa$-distributive in $N[G']$.
- Lift σ to $\sigma : M[\bar{G}][\bar{g}] \rightarrow N[G'][g']$ by the lifting criterion.
- There is no forcing in $\bar{\mathbb{P}}_{\kappa'}$ in $(\check{\kappa}, \text{ORD}^M)$ and $\bar{\mathbb{P}}_{\kappa'}$ is progressively more closed.
 - ORD^M is regular in $N[G'][g']$,
 - $M[\bar{G}][\bar{g}] = H^{N[G'][g']}_{\text{ORD}^M}$.

Thus, $V[G][g]$ has σ and π as desired, but $q \in G \ast g$ forces otherwise. $\rightarrow \leftarrow \square$
Indestructible remarkable cardinals

Theorem: (Cheng, G., '14) A remarkable κ can be made indestructible by all $<\kappa$-closed $\leq \kappa$-distributive forcing and all two-step iterations $\text{Add}(\kappa, \theta) \ast \dot{R}$, where \dot{R} is forced to be $<\kappa$-closed and $\leq \kappa$-distributive.

Proof: P_κ is the κ-length Easton-support iteration which forces with \dot{Q}_ξ at stage ξ whenever $\ell(\xi) = \langle \dot{Q}_\xi, x \rangle$ for some set x, where \dot{Q}_ξ is a P_ξ-name for either

- a $<\xi$-closed $\leq \xi$-distributive forcing, or
- $\text{Add}(\xi, \mu)^{V_{P_\xi}} \ast \dot{R}$, where \dot{R} is forced to be $<\xi$-closed and $\leq \xi$-distributive. □

Applications

Theorem: Any consistent continuum pattern on the regular cardinals can be realized above a remarkable cardinal.

Theorem: It is consistent that κ is remarkable, but not weakly compact in HOD.
Thank you!