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Abstract. We construct a variety of inner models exhibiting large cardinal

features usually obtained by forcing. For example, if there is a supercompact

cardinal, then there is an inner model with a Laver indestructible supercompact
cardinal. If there is a supercompact cardinal, then there is an inner model with

a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++

and another in which the least strongly compact cardinal is supercompact.
If there is a strongly compact cardinal, then there is an inner model with a

strongly compact cardinal, for which the measurable cardinals are bounded
below it and another inner model W with a strongly compact cardinal, such

that HV
κ+ ⊆ HODW . Similar facts hold for supercompact, measurable and

strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly
iterable cardinal, then there is an inner model of the Proper Forcing Axiom

and another inner model with a supercompact cardinal in which GCH + V =

HOD holds. Under the same hypothesis, there is an inner model with level
by level equivalence between strong compactness and supercompactness, and

indeed, another in which there is level by level inequivalence between strong

compactness and supercompactness. If a cardinal is strongly compact up to
a weakly iterable cardinal, then there is an inner model in which the least

measurable cardinal is strongly compact. If there is a weakly iterable limit δ of
<δ-supercompact cardinals, then there is an inner model with a proper class of

Laver-indestructible supercompact cardinals. We describe three general proof

methods, which can be used to prove many similar results.

1. Introduction

The theme of this article is to inquire the extent to which several set-theoretic
large cardinal properties obtainable by forcing must also already be found in an
inner model. We find this interesting in the case of supercompact and other large
cardinals that seem to lay beyond the current reach of the fine-structural inner
model program. For example, one reason we know that the GCH is relatively
consistent with many large cardinals, especially the smaller large cardinals, is that
the fine-structural inner models that have been constructed for these large cardinals
satisfy the GCH; another reason is that the canonical forcing of the GCH preserves
all the standard large cardinals. In the case of supercompact and other very large
large cardinals, we currently lack such fine-structural inner models and therefore
have relied on the forcing argument alone when showing relative consistency with
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the GCH. It seems quite natural to inquire, without insisting on fine structure,
whether these cardinals nevertheless have an inner model with the GCH.

Test Question 1. If there is a supercompact cardinal, then must there be an inner
model with a supercompact cardinal in which the GCH also holds?

Test Question 2. If there is a supercompact cardinal, then must there be an inner
model with a supercompact cardinal κ such that 2κ = κ+?

Test Question 3. If there is a supercompact cardinal, then must there be an inner
model with a supercompact cardinal κ such that 2κ > κ+?

We regard these test questions and the others we are about to introduce as
stand-ins for many more variant questions, asking of a particular large cardinal
feature known to be forceable, whether it must hold already in an inner model. Sy
Friedman [Fri06] defines that a theory T is internally consistent if there is an inner
model of T . Thus, our questions are inquiring about the internal consistency of
these forceable large cardinal properties. To be precise, we define that a class W
is an inner model if it is a transitive class model of ZFC, containing all ordinals.
The inner-model consistency strength of a theory is the consistency strength of the
assertion that the theory is internally consistent. Interestingly, this can sometimes
exceed the ordinary consistency strength of the assertion. In this terminology, Test
Questions 1, 2 and 3 inquire whether the inner model consistency strength of a
supercompact cardinal plus the corresponding amount of the GCH is the same as
just a supercompact cardinal.

In several cases we shall be able to go beyond mere internal consistency by
finding especially attractive inner models with the desired property. For example,
in some of our answers below, we shall produce for every cardinal θ an inner model
W with the desired feature, such that also W θ ⊆ W , meaning that W contains
all θ-sequences over W . This appears to be an especially strong form of internal
consistency, and it would be interesting to investigate the extent to which it is
indeed stronger than mere internal consistency.

Let us continue with a few more test questions that we shall use to frame our later
discussion. Forcing, of course, can also achieve large cardinal features that we do
not expect to hold in the fine-structural inner models. For example, Laver [Lav78]
famously proved that after his forcing preparation, any supercompact cardinal κ is
made (Laver) indestructible, meaning that it remains supercompact after any fur-
ther <κ-directed closed forcing. In contrast, large cardinals are almost universally
destructible over their fine-structural inner models (e.g. see [Ham94, Theorem 1.1]).
Nevertheless, giving up the fine-structure, we may still ask for indestructibility in
an inner model.

Test Question 4. If there is a supercompact cardinal, then must there be an inner
model with an indestructible supercompact cardinal?

For another example, recall that Baumgartner [Bau84] proved that if κ is a
supercompact cardinal, then there is a forcing extension with the Proper Forcing
Axiom (PFA). We inquire whether there must in fact be an inner model with the
PFA:

Test Question 5. If there is a supercompact cardinal, then must there be an inner
model with the Proper Forcing Axiom?
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Next, we inquire the extent to which there must be inner models W having a very
rich HODW . With class forcing, one can easily force V = HOD while preserving all
of the most well-known large cardinal notions, and of course, one finds V = HOD in
the canonical inner models of large cardinals. Must there also be such inner models
for the very large large cardinals?

Test Question 6. If there is a supercompact cardinal, then must there be an inner
model with a supercompact cardinal satisfying V = HOD?

In addition, one may easily force to make any particular set A definable in a
forcing extension by forcing that preserves all the usual large cardinals, and so
another version of this question inquires:

Test Question 7. If there is a supercompact cardinal, then for every set A, must
there be an inner model W with a supercompact cardinal such that A ∈ HODW ?

Similarly, if there is a measurable cardinal, then does every set A have an inner
model with a measurable cardinal in which A ∈ HODW ? What of other large
cardinal notions? What if one restricts to A ∈ Hκ+? There is an enormous family
of such questions surrounding the HODs of inner models. Furthermore, apart from
large cardinals, for which sets A is there an inner model W with A ∈ HODW ?
There are numerous variants of this question.

More generally, whenever a feature is provably forceable in the presence of a
certain large cardinal, then we ask: is there already an inner model with that
feature? How robust can these inner models be?

Before continuing, we fix some terminology. Suppose κ is a regular cardinal. A
forcing notion is <κ-directed closed when any directed subset of it of size less than
κ has a lower bound. (This is what Laver in [Lav78] refers to as κ-directed closed.)
A forcing notion is ≤κ-closed if any decreasing chain of length less than or equal to
κ has a lower bound. A forcing notion is ≤κ-strategically closed if in the game of
length κ + 1 in which two players alternately select conditions from it to construct
a descending (κ + 1)-sequence, with the second player playing at limit stages, the
second player has a strategy that allows her always to continue playing. A forcing
notion is <κ-strategically closed if in the game of length κ in which two players
alternately select conditions from it to construct a descending κ-sequence, with the
second player playing at limit stages, the second player has a strategy that allows her
always to continue playing. If a poset P is ≤κ-closed, then it is also ≤κ-strategically
closed. If λ is an ordinal, then Add(κ, λ) is the standard poset for adding λ many
Cohen subsets to κ. A Boolean algebra B is (κ, 2)-distributive if every f : κ → 2 in
the generic extension by B is in the ground model. A transitive set M |= ZFC− is a
κ-model if |M | = κ, κ ∈ M and M<κ ⊆ M . An elementary embedding j : M → N
is said to lift to another elementary embedding j∗ : M∗ → N∗, where M ⊆ M∗

and N ⊆ N∗, if the two embeddings agree on the smaller domain j∗ � M = j. An
elementary embedding j : M → N having critical point κ is κ-powerset preserving
if M and N have the same subsets of κ. A cardinal κ is strongly Ramsey if every
A ⊆ κ is contained in a κ-model M for which there exists a κ-powerset preserving
elementary embedding j : M → N .

2. Three Proof Methods

In order best to introduce our methods, which we view as the main contribution
of this article, we shall begin with Test Question 4, which is answered by Theorem 8
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below. We shall give three different arguments with this conclusion, using different
proof methods (our third method will prove a slightly weaker result, because it
requires a slightly stronger hypothesis). These methods are robust enough directly
to answer many variants of the test questions. In Sections 4 and 5, we describe how
some further modifications of the methods enable them to prove additional related
results.

Theorem 8. If there is a supercompact cardinal, then there is an inner model with
an indestructible supercompact cardinal.

The first proof makes use of an observation of Hamkins and Seabold involving
Boolean ultrapowers (see [HS]), which is essentially encapsulated in Theorems 10
and 11.

Definition 9. A forcing notion P is <κ-friendly if for every γ < κ, there is a
condition p ∈ P below which the restricted forcing P � p adds no subsets to γ.

Theorem 10 (Hamkins, Seabold [HS]). If κ is a strongly compact cardinal and P
is a <κ-friendly notion of forcing, then there is an inner model W satisfying every
sentence forced by P over V .

Proof. The proof uses Boolean ultrapowers (see [HS] for a full account). To make
this paper self-contained, we shall review the method. Suppose that B is the com-
plete Boolean algebra corresponding to the forcing notion P. Let V B be the usual
class of B-names, endowed as a Boolean-valued structure by the usual recursive
definition of the Boolean values [[ ϕ ]] for every assertion ϕ in the forcing language.
Now suppose that U ⊆ B is an ultrafilter, not necessarily generic in any sense,
and define the equivalence relation σ =U τ ⇐⇒ [[ σ = τ ]] ∈ U . When U is
not V -generic, this relation is not the same as val(σ,U) = val(τ, U). Neverthe-
less, the relation σ ∈U τ ⇐⇒ [[ σ ∈ τ ]] ∈ U is well-defined with respect to =U ,
and we may form the quotient structure V B/U as the collection of (Scott’s trick
reduced) equivalence classes [τ ]U . The relation ∈U is set-like, because whenever
σ ∈U τ , then σ is =U equivalent to a mixture of the names in the domain of τ , and
there are only set many such mixtures. One can easily establish  Los’ theorem that
V B/U |= ϕ[[τ ]U ] ⇐⇒ [[ ϕ(τ) ]] ∈ U . In particular, any statement ϕ that is forced
by 1l will be true in V B/U . Thus, since U is in V , we have produced in V a class
model V B/U satisfying the desired theory; but there is no reason so far to suppose
that this model is well-founded.

In order to find an ultrafilter U for which V B/U is well-founded, we shall make
use of our assumption that P and hence also B is <κ-friendly for a strongly compact
cardinal κ. Just as with classical powerset ultrapowers, the structure V B/U is well-
founded if and only if U is countably complete (see [HS]). Next, consider any θ ≥ |B|
and let j : V → M be a θ-strong compactness embedding, so that j " B ⊆ s ∈ M
for some s ∈ M with |s|M < j(κ). Since j(B) is <j(κ)-friendly, there is a condition
p ∈ j(B) such that j(B) � p adds no new subsets to λ = |s|M . Thus, j(B) � p is
(λ, 2)-distributive in M . Applying this, it follows in M that

p = p ∧ 1 = p ∧
∧
b∈s

(b ∨ ¬b) =
∧
b∈s

(p ∧ b) ∨ (p ∧ ¬b) =
∨

f∈2s

∧
b∈s

(p ∧ (¬)f(b)b),

where (¬)0b = b and (¬)1b = ¬b, and where we use distributivity to deduce the
final equality. Since p is not 0, it follows that there must be some f with q =
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b∈s p ∧ (¬)f(b)b 6= 0. Note that f(b) and f(¬b) must have opposite values. Now

we use q as a seed to define the ultrafilter U = { a ∈ B | q ≤ j(a) }, which is the same
as { a ∈ B | f(j(a)) = 0 }. This is easily seen to be a κ-complete filter using the fact
that cp(j) = κ (just as in the power-set ultrafilter cases known classically). It is an
ultrafilter precisely because s covers j " B, so either f(j(a)) = 0 or f(¬j(a)) = 0,
and so either a ∈ U or ¬a ∈ U , as desired. In summary, using this ultrafilter U ,
the structure V B/U is a well-founded set-like model of the desired theory. The
corresponding Mostowski collapse is the desired inner model W . �

The metamathematical reader will observe that Theorem 10 is more properly
described as a theorem scheme, since we defined a certain inner model, using P as
a parameter, and then proved of each sentence forceable by P over V , that this
sentence also holds in the inner model. By Tarski’s theorem on the non-definability
of truth, it does not seem possible to state the conclusion of Theorem 10 in a single
first order statement. Several similar theorems in this article will also be theorem
schemes.

The following account of the Boolean ultrapower may be somewhat more illumi-
nating.

Theorem 11 ([HS]). If κ is strongly compact and P is <κ-friendly, then there is
an elementary embedding j : V → V into an inner model V and a V -generic filter
G ⊆ j(P) with G ∈ V . In particular, W = V [G] fulfills Theorem 10.

Proof. This is actually what is going on in the Boolean quotient. We may define the
canonical predicate for the ground model of V B by [[ τ ∈ V̌ ]] =

∨
x∈V [[ τ = x̌ ]], and

let V = {[τ ]U | [[ τ ∈ V̌ ]] ∈ U}, which is actually the same as {[τ ]U | [[ τ ∈ V̌ ]] = 1l}.
An easy induction on formulas shows that the map j : x 7→ [x̌]U is an elementary
embedding j : V → V , and this is the map known as the Boolean ultrapower. If Ġ
is the (usual) canonical name for the generic filter, then [[ Ġ is V̌ -generic for B̌ ]] = 1,
and so the corresponding equivalence class G = [Ġ]U is V -generic for [B̌]U = j(B).
Since these embeddings and equivalence classes all exist in V , we have the entire
Boolean ultrapower

j : V → V ⊆ V [G]

existing in V , as desired. The structure V [G] is isomorphic to the quotient V B/U

by the map associating [τ ]U = [ ˙val(τ̌ , Ġ)]U in V B/U with val([τ̌ ]U , G) in V [G]. �

Certain instances of this phenomenon are already well known. For example,
consider Prikry forcing with respect to a normal measure µ on a measurable cardinal
κ, which is <κ-friendly because it adds no bounded subsets to κ. If V → M1 →
M2 → · · · is the usual iteration of µ, with a direct limit to jω : V → Mω, then the
critical sequence κ0, κ1, κ2, . . . is well known to be Mω-generic for the corresponding
Prikry forcing at jω(κ) using jω(µ). This is precisely the situation occurring in
Theorem 11, where we have an embedding j : V → V and a V -generic filter G ⊆
j(P) all inside V . Thus, Theorem 11 generalizes this classical aspect about Prikry
forcing to all friendly forcing under the stronger assumption of strong compactness.

We now derive Theorem 8 as a corollary.

Proof of Theorem 8. We shall apply Theorem 10 by finding a <κ-friendly version
of the Laver preparation. The original Laver preparation of [Lav78] is not friendly,
because there are many stages γ < κ at which it definitely adds, for example, a
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Cohen subset to γ. But a relatively simple modification will make it <κ-friendly.
Suppose that ` ...κ → Vκ is a Laver function. It follows easily that the restriction ` �
(γ, κ) to any final segment (γ, κ) of κ is also a Laver function, and the corresponding
Laver preparation P`�(γ,κ) is ≤γ-closed, hence adding no new subsets to γ, while
still forcing indestructibility for κ. Let P = ⊕{P`�(γ,κ) | γ < κ} be the lottery sum
of all these various preparations1, so that the generic filter in effect selects a single
γ and then forces with P`�(γ,κ). This poset is <κ-friendly, since a condition could
opt in the lottery to use a preparation with γ as large below κ as desired. The point
is that the Laver preparation works fine for indestructibility even if we allow it to
delay the start of the forcing as long as desired, and such a modification makes it
<κ-friendly. So Theorem 10 applies, and Theorem 8 now follows as a corollary. �

After realizing that Theorem 8 could be proved via Boolean ultrapowers, we
searched for a direct proof. We arrived at the following stronger result, which
produces more robust inner models W , satisfying a closure condition W θ ⊆ W .

Theorem 12. If there is a supercompact cardinal, then for every cardinal θ there is
an inner model W with an indestructible supercompact cardinal, such that W θ ⊆ W .

Proof. Suppose that κ is supercompact. By a result of Solovay [Sol74], the SCH
holds above κ, and so if θ is any singular strong limit cardinal of cofinality at least κ,
then 2θ<κ

= θ+. Consider any such θ as large as desired above κ, and let j : V → M
be a θ-supercompactness embedding, the ultrapower by a normal fine measure on
Pκ(θ). Thus, θ < j(κ) and Mθ ⊆ M . By elementarity, j(κ) is supercompact in M .
Let P be the Laver preparation of j(κ) in M , with nontrivial forcing only in the
interval (θ, j(κ)). That is, we put off the start of the Laver preparation until beyond
θ, and this is exactly what corresponds to the use of friendliness in the earlier proof.
Notice that P is ≤θ-closed in M , and therefore also ≤θ-closed in V . But also, P has
size j(κ) in M , and has at most j(2κ) many dense subsets in M . Observe in V that
|j(2κ)| ≤ (2κ)θ<κ ≤ (2θ<κ

)θ<κ

= 2θ<κ

= θ+. In V we may therefore enumerate
the dense subsets of P in M in a θ+ sequence, and using the fact that P is ≤θ-
closed, diagonalize to meet them all. So there is in V an M -generic filter G ⊆ P.
Thus, M [G] is an inner model of V , in which j(κ) is an indestructible supercompact
cardinal. Since Mθ ⊆ M , it follows that M [G] contains all θ-sequences of ordinals
in V , and so also M [G]θ ⊆ M [G]. So W = M [G] is as desired. �

This second method of proof can be generalized to the following, where we define
that P is <κ-superfriendly, if for every γ < κ there is a condition p ∈ P such
that P � p is ≤γ-strategically closed. It was the superfriendliness of the Laver
preparation that figured in the proof of Theorem 12 and the proof generalizes in a
straightforward way to obtain the theorem below.

Theorem 13. If κ is supercompact and P is <κ-superfriendly, then for every θ
there is an inner model W satisfying every statement forced by P over V and for
which W θ ⊆ W .

Proof. Indeed, in the style of Theorem 11, we show that there is an embedding
j : V → M into a transitive class M , such that in V there is an M -generic filter

1If A = {Pi | i ∈ I}, then the lottery sum ⊕A is the partial order with underlying set

{〈P, p〉 | P ∈ A and p ∈ P} ∪ {1l}, ordered by 〈P, p〉 ≤ 〈Q, q〉 if and only if P = Q and p ≤ q, with 1l
above everything. The lottery preparation of [Ham00] employs long iterations of such sums.
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G ⊆ j(P), such that M [G]θ ⊆ M [G], so that W = M [G] is the desired inner
model. As in the proof of Theorem 12, using Solovay’s theorem we may choose θ a
singular strong limit cardinal of cofinality at least κ as large as desired, such that
2θ<κ

= θ+, and also |P| ≤ θ. Let j : V → M be a θ-supercompactness embedding,
the ultrapower by a normal fine measure on Pκ(θ). In particular, Mθ ⊆ M . Using
the fact that j(P) is <j(κ)-superfriendly in M , there is a condition p ∈ j(P) such
that j(P) � p is ≤θ-strategically closed. Since P has size at most θ, the number of
dense subsets of P is at most 2θ = θ+. Thus, the number of dense subsets of j(P)
in M , counted in V , is at most |j(θ+)| ≤ (θ+)θ<κ

= (2θ<κ

)θ<κ

= 2θ<κ

= θ+, by
our choice of θ. Thus, in V we may line up into a θ+ sequence the dense subsets of
j(P) that are in M . Since j(P) is <θ+-strategically closed in M and Mθ ⊆ M , we
may diagonalize against this sequence and build in V an M -generic filter G ⊆ j(P).
The model W = M [G] is as desired. Note that W θ ⊆ W since every θ-sequence of
ordinals from V is already in M , and W can code sets with ordinals. �

We can now solve several more of the test questions as corollaries.

Theorem 14. If there is a supercompact cardinal, then there is an inner model
with an indestructible supercompact cardinal κ such that 2κ = κ+ and another
inner model with an indestructible supercompact cardinal κ such that 2κ = κ++.
Thus, the answers to Test Questions 2, 3 and 4 are yes. Indeed, for any cardinal
θ, such inner models W can be found for which also W θ ⊆ W .

Proof. Let P be the <κ-friendly version of the Laver preparation used in Theorem
8, which is easily seen to be <κ-superfriendly, and let Q̇ = ˙Add(κ+, 1) be the subse-
quent forcing to ensure 2κ = κ+. The combination P ∗ Q̇ remains <κ-superfriendly,
forces 2κ = κ+ and preserves the indestructible supercompactness of κ. Thus, by
either Theorem 10 or 13, there is an inner model satisfying this theory. Similarly,
if Ṙ = ˙Add(κ, κ++), then P ∗ Q̇ ∗ Ṙ is <κ-superfriendly, preserves the indestructible
supercompactness of κ and forces 2κ = κ++, so again there is an inner model of
the desired theory. The method of Theorem 13 will ensure in each case, for any
desired cardinal θ, that the inner model W satisfies W θ ⊆ W . �

The proof admits myriad alternatives. For example, we could have just as easily
forced 2κ = κ+++, or GCH on a long block of cardinals at κ and above, or failures
of this, in any definable pattern above κ. If Q is any <κ-directed closed forcing,
to be performed after the (superfriendly) Laver preparation, then the combination
P ∗ Q̇ is <κ-superfriendly and preserves the indestructible supercompactness of κ.
Thus, any statement forced by P ∗ Q̇, using any parameter in Vκ, will be true in
the inner models W arising in Theorems 10 and 13. See also Theorem 15 for an
intriguing application of this method.

We now apply these methods to the family of questions surrounding Questions
6 and 7. The following theorem answers Question 7 and several of its variants, but
not Question 6. With our third proof method in a later section, we will deduce the
full conclusion of Question 6 using a slightly stronger hypothesis.

Theorem 15.
(1) If κ is strongly compact, then there is an inner model W with a strongly

compact cardinal, such that HV
κ+ ⊆ HODW . If the GCH holds below κ,

then for any A ∈ HV
κ+ , one can arrange that A is definable in W without

parameters.
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(2) If κ is measurable and 2κ = κ+, then there is an inner model W with a
measurable cardinal, such that HV

κ+ ⊆ HODW . If the GCH holds below κ,
then for any A ∈ HV

κ+ , one can arrange that A is definable in W without
parameters.

(3) If κ is supercompact, then for every set A ∈ HV
κ+ and every cardinal θ, there

is an inner model W with a supercompact cardinal in which A ∈ HODW

and W θ ⊆ W . If the GCH holds below κ, then one can arrange that A is
definable in W without parameters.

In particular, by Theorem 15(3), the answer to Question 7 is yes.

Proof. For statement (1), we use the Boolean ultrapower method of Theorems 10
and 11. For γ < κ, let Qγ be the poset that codes P (γ) into the GCH pattern
on a block of cardinals above γ, using ≤γ-closed forcing. Let P be the lottery sum
⊕{Qγ | γ < κ}, which is <κ-superfriendly and therefore <κ-friendly. Since each
Qγ is small relative to κ, it follows by the results of [LS67] that κ remains strongly
compact after forcing with P. By Theorem 11, there is an embedding j : V → V
into an inner model V , and in V , there is a V -generic filter G ⊆ j(P). Since
κ ≤ cp(j), Vκ = V κ. Consequently, the ordinal γ selected by G in the lottery j(P)
must be at least κ. Thus, G is coding P (γ) and hence also P (κ) into the continuum
function in some interval between κ and j(κ). So in the inner model W = V [G],
we have a strongly compact cardinal j(κ), as well as P (κ)V ⊆ HODW and hence
HV

κ+ ⊆ HODW , as desired.
For the second part of statement (1), in the case that the GCH holds below

κ in V , consider any A ∈ Hκ+ . Let Â ⊆ κ be a subset of κ coding A in some
canonical way. Let P be the forcing as in the previous paragraph, but modified so
that the lottery also may choose the order in which the sets in P (γ) are coded. By
inspecting the proof of Theorem 11, i.e., by forcing below the appropriate condition,
we may assume that G opts for a poset in j(P) that begins coding at γ, which is the
successor of a cardinal of cofinality κ, and that Â is the first set to be coded. Note
that in W = V [G], the cardinal γ is definable as the place where the GCH coding
starts, and so κ is definable as the cofinality of the predecessor of γ, and so Â and
hence A are definable in W without parameters. As in the previous paragraph, we
also have a strongly compact cardinal in W and HV

κ+ ⊆ W .
For statement (2), suppose that κ is measurable and 2κ = κ+. We follow the

method of Theorem 12. Let j : V → M be the ultrapower by any normal measure
on κ. Let P be the forcing used to prove the second part of statement (1), which by
lottery selects some γ < κ and an enumeration of P (γ), which is then coded into the
GCH pattern above γ. In the forcing j(P), consider a condition p that opts to code
P (κ). Thus, j(P) � p is ≤κ-closed and has size less than j(κ). Since 2κ = κ+, the
number of subsets of j(P) in M , counted in V , is bounded by |j(2κ)|V ≤ (2κ)κ = κ+.
Thus, by diagonalization, we may construct in V an M -generic filter G ⊆ j(P) below
p. Let W = M [G]. By the results of [LS67], the cardinal j(κ) remains measurable
in W , since below p the forcing was small relative to j(p). In addition, every set in
P (κ)V = P (κ)M is coded into the continuum function of W , so HV

κ+ ⊆ HODW , as
desired. If the GCH holds below κ, then we can define κ in W as the place where
the coding begins, and we can define the first set that is coded (among others),
without parameters.
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For statement (3), where κ is supercompact, we may use the same argument as
in statements (1) and (2), but employing the method of Theorem 12. The resulting
inner model W = M [G] will have HV

κ+ ⊆ HODW and W θ ⊆ W , as desired. And
again, when the GCH holds below κ in V , then we may arrange that any particular
A ∈ HV

κ+ is definable in W without parameters. �

Let us highlight the consequences of this theorem with the following striking ex-
ample. Namely, suppose that κ is strongly compact in V and the GCH holds. Both
of these statements remain true in the forcing extension V [c] obtained by adding a
single V -generic Cohen real c. Since this forcing is almost homogeneous, we know c

is not in HODV [c]. (See [Rei06] and [Rei07] for the definition of almost homogeneous
and a discussion of this property of almost homogeneous forcing.) Nevertheless, by
Theorem 15, there are inner models W ⊆ V [c] such that HV

κ+ ⊆ HODW , with a
strongly compact cardinal, in which c is definable without parameters!

Our first two proof methods are attractive in that they are able to answer several
of the test questions with the provably optimal hypothesis and, moreover, while also
producing inner models with especially desirable features, such as W θ ⊆ W for any
desired θ. Nevertheless, and perhaps as a consequence, these methods seem unable
to produce inner models in which the full GCH holds, say, if the CH fails in V ,
because the resulting inner models for those methods will agree with V up to Vκ

and beyond, where κ is the initial supercompact cardinal. Similarly, neither method
seems able to produce an inner model in which PFA holds, since the only known
forcing to attain this—a long countable support iteration of proper forcing—adds
Cohen reals unboundedly often and is therefore highly non-friendly. Furthermore,
the methods seem not easily to accommodate class forcing, and allow us only to put
particular sets A into HODW for an inner model W , without having W fully satisfy
V = HOD. Therefore, these methods seem unable to answer Questions 1, 5 and
6. (With our third proof method, we shall give partial solutions of these questions
in Theorems 23 and 25, by using a stronger hypothesis.) hypothesis.) Another
unusual feature of our first two methods, as used in Theorems 8, 12 and 14, is that
it is not the same supercompact cardinal κ that is found to be supercompact in the
desired inner model. Rather, it is in each case the ordinal j(κ) that is found to be
supercompact (and indestructible or with fragments or failures of the GCH) in an
inner model. A modified version of Question 4 could ask, after all, whether every
supercompact cardinal κ is itself indestructibly supercompact in an inner model.
For precisely this question, we don’t know, but if κ is supercompact up to a weakly
iterable cardinal above κ, then the answer is yes by Theorem 22. (See Section 3 for
the definition of weakly iterable cardinal.)

So let us now turn to the third method of proof, which will address these concerns,
at the price of an additional large cardinal hypothesis. We shall use this method
to produce an inner model with a supercompact cardinal and the full GCH, an
inner model with the PFA and an inner model where κ itself is indestructibly
supercompact, among other possibilities. The method is very similar to the methods
introduced and fruitfully applied by Sy Friedman [Fri06] and by Sy Friedman and
Natasha Dobrinen [DF08], [DF10], where they construct class generic filters in V
over an inner model W . Also Ralf Schindler, in a personal communication with the
third author, used a version of the method to provide an answer to Test Question
5, observing that if there is a supercompact cardinal with a measurable cardinal
above it, then there is an inner model of the PFA.
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Theorem 16 (Schindler). If there is a supercompact cardinal with a measurable
cardinal above it, then there is an inner model with the PFA.

The basic idea is that if κ is supercompact and κ < δ for some measurable
cardinal δ, then one finds a countable elementary substructure X ≺ Vθ, with δ � θ,
whose Mostowski collapse is a countable iterable structure with a supercompact
cardinal κ0 below a measurable cardinal δ0. By iterating the measurable cardinal
δ0 of this structure out of the universe, one arrives at a full inner model M , and
because κ0 was below the critical point of the iteration, which is δ0, it follows that
both κ0 and even P (κ0)M are countable in V . Thus, by the usual diagonalization
in V , there is an M -generic filter G for the Baumgartner PFA forcing (or whatever
other forcing was desired), and so M [G] is the desired inner model. This method
generalizes to any forcing notion below a measurable cardinal.

In the subsequent sections of this article, we shall elaborate on the details of this
argument, while also explaining how to reduce the hypothesis from a measurable
cardinal above the supercompact cardinal to merely a weakly iterable cardinal
above. The construction encounters a few complications in the class-length forcing
iterations, since (unlike the argument above) these iterations will be stretched to
proper class size during the iteration, and so one cannot quite so easily produce
the desired M -generic filter. Nevertheless, the new method remains fundamentally
similar to the argument we described in the previous paragraph. Finally, we shall
give several additional applications of the method.

3. Iterable Structures

We now develop some basic facts about iterable structures, which shall be suf-
ficient to carry out the third proof method. In particular, we shall review the
fact that any structure elementarily embedding into an iterable structure is itself
iterable, and for a special class of forcing required in later arguments, we shall
give sufficient conditions for a forcing extension of a countable iterable structure to
remain iterable.

Consider structures of the form 〈M, δ, U〉 where M |= ZFC− is transitive, δ is a
cardinal in M , and U ⊆ P(δ)M . The set U is an M -ultrafilter, if 〈M, δ, U〉 |= “U
is a normal ultrafilter”. An M -ultrafilter U is weakly anemable if U ∩ A ∈ M for
every set A of size δ in M . By using only the equivalence classes of functions in
M , an M -ultrafilter suffices for the usual ultrapower construction. It is easy to see
that U is weakly amenable exactly when M and the ultrapower of M by U have the
same subsets of δ, that is the ultrapower embedding is δ-powerset preserving. In
this case, it turns out that one can define the iterated ultrapower of M by U to any
desired ordinal length. We say that 〈M, δ, U〉 is iterable if U is a weakly amenable
M -ultrafilter and all of these resulting iterated ultrapowers are well-founded.

Definition 17. A cardinal δ is weakly iterable if there is an iterable structure
〈M, δ, U〉 containing Vδ as an element.

It is clear that measurable cardinals are weakly iterable. Ramsey cardinals also
are weakly iterable, since if δ is Ramsey, every A ⊆ δ is an element of an iterable
structure 〈M, δ, U〉 (see [Mit79]). On the other hand, a weakly iterable cardinal
need not even be regular. For example, every measurable cardinal remains weakly
iterable after Prikry forcing, because the ground model iterable structures still
exist. More generally, we claim that the least weakly iterable cardinal must have
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cofinality ω. To see this, suppose that δ is a weakly iterable cardinal of uncountable
cofinality with the iterable structure 〈M, δ, U〉. We shall argue that there is a smaller
weakly iterable cardinal of cofinality ω. Choose X0 ≺ M for some countable X0

containing δ, and let γ0 = sup(X0 ∩ δ). Inductively define Xn+1 ≺Σn
M with

γn+1 = sup(Xn+1 ∩ δ) < δ satisfying Vγn+1 ⊆ Xn+1 and |Xn+1| < δ. This is
possible since δ is inaccessible in M , so the witnesses we need to add to Xn+1

below δ will be bounded below δ, even if δ may be singular in V . Observe that
if Xω =

⋃
n∈ω Xn and 〈N, γ,W 〉 is the collapse of the structure 〈Xω, δ, U ∩ Xω〉,

then δ collapses to γ = supn γn and so Vγ ∈ N . The iterability of 〈N, γ,W 〉 will
follow from Lemma 18 below, completing the argument that γ is a weakly iterable
cardinal of cofinality ω below δ.

If δ is weakly iterable with the iterable structure 〈M, δ, U〉, then δ is at least
ineffable in M and therefore, the existence of weakly iterable cardinals carries at
least this large cardinal strength (see [Git09]). In fact, weakly iterable cardinals
cannot exist in L (see [GW10]), but it follows from [Wel04] that they are weaker
than an ω1-Erdős cardinal. Note that the inaccessibility of δ in the domain of the
iterable structure witnessing its weak iterability implies that it is a i-fixed point
and Vδ |= ZFC, by the absoluteness of satisfaction.

Lemma 18. Suppose 〈M, δ, U〉 is iterable. Suppose further that 〈N, γ,W 〉 is a
structure for which there exists an elementary embedding ρ : N → M in the language
with ∈ only with the additional properties that ρ(γ) = δ, and whenever x ∈ N is
such that x ⊆ W , then ρ(x) ⊆ U . Then 〈N, γ,W 〉 is iterable as well.

Proof. This is a standard idea. We shall demonstrate the iterability of 〈N, γ,W 〉
by embedding the iterated ultrapowers of N by W into the iterated ultrapowers of
M by U . Let {jξγ : Mξ → Mγ | ξ < γ ∈ Ord} be the directed system of iterated
ultrapowers of M = M0 with the associated sequence of ultrafilters {Uξ | ξ ∈ Ord}
and the critical sequence {κξ | ξ ∈ Ord}. Also, let {hξγ : Nξ → Nγ | ξ < γ < α} be
the not necessarily well-founded directed system of iterated ultrapowers of N = N0

with the associated sequence of ultrafilters {Wξ | ξ ∈ Ord}. Let {W i
0 : i ∈ I} be an

enumeration of all subsets of W0 that are elements of N0, and define W i
ξ = h0ξ(W i

0).
It is easy to see that if A ⊆ Wξ is an element of Nξ, then A ⊆ W i

ξ for some i ∈ I.
We shall show that the following diagram commutes:

M0
j01 - M1

j12 - M2
j23 - . . .

jξξ+1- Mξ+1

jξ+1ξ+2- . . .

N0

ρ0
6

h01 - N1

ρ1
6

h12 - N2

ρ2
6

h23 - . . .
hξξ+1- Nξ+1

ρξ
6

hξ+1ξ+2- . . .

where
(1) ρξ+1([f ]Wξ

) = jξξ+1(ρξ(f))(κξ),
(2) if λ is a limit ordinal and t is a thread in the direct limit Nλ with domain

[β, λ), then ρλ(t) = jβλ(ρβ(t(β))), and
(3) ρξ(W i

ξ) ⊆ Uξ.
We shall argue that the ρξ exist by induction on ξ. Let ρ0 = ρ, and note that ρ0

satisfies condition (3) by hypothesis. Suppose inductively that ρξ has the desired
properties. Define ρξ+1 as in (1) above. Since ρξ(W i

ξ) ⊆ Uξ by the inductive as-
sumption, it follows that ρξ+1 is a well-defined elementary embedding. The commu-
tativity of the diagram is also clear. It remains to verify that ρξ+1(W i

ξ+1) ⊆ Uξ+1.
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Recall that
W i

ξ+1 = hξξ+1(W i
ξ) = [cW i

ξ
]Wξ

.

Let ρξ(W i
ξ) = v. Then by the inductive assumption, v ⊆ Uξ. Thus,

ρξ+1(W i
ξ+1) = jξξ+1(cv)(κξ) = cjξξ+1(v)(κξ) = jξξ+1(v) ⊆ Uξ+1.

This completes the inductive step. The limit case also follows easily. �

Note that if ρ is an elementary embedding of the whole structure 〈N, γ,W 〉, then
the hypotheses of Lemma 18 follow easily. This is how Lemma 18 will be used in
most applications below.

In the next section, we shall build inner models by iterating out these countable
iterable structures and forcing over the limit model inside the universe, just as
we explained in the proof sketch for Theorem 16. In other arguments, however,
the desired forcing will be stretched to proper class length, and so we shall proceed
instead by first forcing over the countable structure and then iterating the extended
structure. For these arguments, therefore, we need to understand when a forcing
extension of an iterable countable structure remains iterable. For a certain general
class of forcing notions and embeddings, we shall show in Theorem 19 that indeed
the lift of an iterable embedding to a forcing extension remains iterable, and what is
more, lifting just the first step of the iteration to the forcing extension can lead to a
lift of the entire iteration. In rather general circumstances, therefore, the iteration
of a lift is a lift of the iteration.

This argument will rely on the following characterization of when an ultrapower
of a forcing extension is a lift of the ultrapower of the ground model. Suppose
that M is a transitive model of ZFC−, that P is a poset in M and that G ⊆ P is
M -generic. Suppose further that U is an M -ultrafilter on a cardinal δ in M and
U∗ is an M [G]-ultrafilter extending U , both with well-founded ultrapowers. Then
the ultrapower by U∗ lifts the ultrapower by U if and only if every f : δ → M
in M [G] is U∗-equivalent to some g : δ → M in M . To see why this no-new-
functions characterization is true, note that the ultrapower by U∗ must have the
form of a forcing extension by the image of P, with the ground model consisting
exactly of the equivalence classes of functions f : δ → M in M [G]. Applying this
characterization, if we lift the first embedding in the iteration, then the ultrafilter
derived from the lift will have the above property. The key to the argument will
be to capture this property as a schema of first-order statements over the forcing
extension and propagate it along the iteration using elementarity.

Let us now discuss a class of posets for which this strategy proves successful.
Suppose j : M → N is an elementary embedding with critical point δ. We define
that a poset P ∈ M is j-useful if P is δ-c.c. in M and j(P) ∼= P ∗ Ṗtail, where
1lP  “Ṗtail is ≤δ-strategically closed” in N . There are numerous examples of such
posets arising in the context of forcing with large cardinals, and we shall mention
several in Sections 4 and 5. We presently explain how the property of j-usefulness
allows us to find lifts of an ultrapower embedding to the forcing extension, so that
the iteration of the lift is the lift of the iteration. If Q is any poset and X is a set,
not necessarily transitive, define as usual that a condition q ∈ Q is X-generic for
Q if for every V -generic filter G ⊆ Q containing q and every maximal antichain
A ⊆ Q with A ∈ X, the intersection G ∩ A ∩X 6= ∅; in other words, q forces over
V that the generic filter meets the maximal antichains of X inside X. Suppose
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j : M → N and P is j-useful. Our key observation about j-usefulness is that if
X ∈ N is sufficiently elementary in N with X<δ ⊆ X and |X| = δ in N , then
every condition (p, q̇) ∈ P∗ Ṗtail∩X can be strengthened to an X-generic condition.
First, observe that every condition in P is X-generic for P, since maximal antichains
of P have size less than δ and so if X contains such an antichain as an element,
it must be a subset as well. Thus, for the pair (p, q̇) to be X-generic for j(P), it
suffices for p to force that q̇ sits below some element of every dense subset of Ptail

in X[Ġ]. Such a q̇ is found by a simple diagonalization argument, using the facts
that |X| = δ, X<δ ⊆ X and Ṗtail is forced to be ≤δ-strategically closed.

Let us use the notation 〈M, δ, U〉 |= “I am Hδ+” to mean that M believes every
set has size at most δ. We now prove that if a certain external genericity condition
is met, then the iteration of a lift is a lift of the iteration.

Theorem 19. Suppose that 〈M0, δ, U0〉 |=“I am Hδ+” is iterable, and that the first
step of the iteration j01 : M0 → M1 lifts to an embedding j∗01 : M0[G0] → M1[G1]
on the forcing extension, where G0 ⊆ P is M0-generic, j∗01(G0) = G1 ⊆ j01(P) is
M1-generic and P is j01-useful.

M0[G0]
j∗01- M1[G1]

∪ ∪
M0

j01 - M1
j12 - · · · - Mξ

jξξ+1- · · ·

Then j∗01 is the ultrapower by a weakly amenable M0[G0]-ultrafilter U∗
0 extending

U0. Furthermore, if G1 meets certain external dense sets Da ⊆ j01(P) for a ∈ M0

described in the proof below, then 〈M0[G0], δ, U∗
0 〉 is iterable, and the entire iteration

of 〈M0[G0], δ, U∗
0 〉 lifts the iteration of 〈M0, δ, U0〉 step-by-step.

M0[G0]
j∗01- M1[G1]

j∗12 - · · · - Mξ[Gξ]
j∗ξξ+1- · · ·

∪ ∪ ∪
M0

j01 - M1
j12 - · · · - Mξ

jξξ+1- · · ·
Thus, the iteration of the lift is a lift of the iteration.

Proof. Suppose that the ultrapower j01 : M0 → M1 by U0 lifts to j∗01 : M0[G0] →
M1[G1], with j∗01(G0) = G1. By the normality of U0, it follows that every element
of M1 has the form j01(f)(δ) for some f ∈ M δ

0 ∩M0. Every element of M1[G1] is
τG1 for some j01(P)-name τ ∈ M1, and so τ = j01(t)(δ) for some function t ∈ M0.
Define a function f in M0[G0] by f(α) = t(α)G0 , and observe that j∗01(f)(δ) =
j01(t)(δ)j∗01(G0) = τG1 . Thus, every element of M1[G1] has the form j∗01(f)(δ) for
some f ∈ M0[G0]δ ∩M0[G0]. It follows that j∗01 is the ultrapower of M0[G0] by the
M [G0]-ultrafilter U∗

0 = {X ⊆ δ | X ∈ M0[G], δ ∈ j∗01(X) }, which extends U0. Note
that since P is j01-useful, it follows that j01(P) ∼= P ∗ Ṗtail, where Ṗtail adds no new
subsets of δ and P is δ-c.c. From this, we obtain that P (δ)M1[G1] = P (δ)M1[G0] =
P (δ)M0[G0], and so U∗

0 is weakly amenable to M0[G0]. It therefore makes sense
to speak of the iterated ultrapowers of 〈M0[G0], δ, U∗

0 〉, apart from the question of
whether these iterates are well-founded.

The fact that the ultrapower j01 : M0 → M1 by U0 lifts to the ultrapower j∗01 :
M0[G0] → M1[j∗01(G0)] by U∗

0 is exactly equivalent to the assertion that for every
function f ∈ M δ

0 ∩M0[G0] there is a function g ∈ M δ
0 ∩M0 such that f and g agree

on a set in U∗
0 . In slogan form: Every new function agrees with an old function. This
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property is first order expressible in the expanded structure 〈M0[G0], δ, U∗
0 ,M〉, by

a statement with complexity at least Π2. If j∗01 were sufficiently elementary on
this structure, then it would preserve the truth of this statement and we could
deduce easily that the iterates of U∗

0 are step-by-step lifts of the corresponding
iterates of U0, completing the proof. Unfortunately, in the general case we cannot
be sure that j∗01 is sufficiently elementary on this expanded structure. Similarly,
although the original embedding j01 : M0 → M1 is fully elementary, it may not
be fully elementary on the corresponding expanded structure j01 : 〈M0, δ, U0〉 →
〈M1, δ1, U1〉. The rest of this argument, therefore, will be about getting around
this difficulty by showing that if G1 satisfies an extra genericity criterion, then the
iteration of U∗

0 does indeed lift the iteration of U0.
Specifically, through this extra requirement on G1, we will arrange that for every

a ∈ M0, there is a set ma ∈ M0 such that

(1) ma is a transitive model of ZFC− containing P and a, and
(2) every f : δ → ma in ma[G0] is u∗a-equivalent to some g : δ → ma in ma,

where u∗a = ma ∩ U∗
0 , which is an element of M0[G0] by the weak amenability of

U∗
0 to M0[G0].
Let us first suppose that we have already attained (1) and (2) for every a and

explain next how this leads to the conclusion of the theorem. Suppose inductively
that the iteration of U∗

0 on M0[G0] is a step-by-step lift of the iteration of U0 on
M0 up to stage ξ. Note that limit stages come for free, because if every successor
stage before a limit is a lift, then the limit stage is also a lift. Thus, we assume that
the diagram in the statement of the theorem is accurate through stage ξ, so that in
particular the ξth iteration j∗0ξ : M0[G0] → Mξ[Gξ] of U∗

0 is a lift of the ξth iteration
j0ξ : M0 → Mξ of U0, and we consider the next step Mξ[Gξ] → Ult(Mξ[Gξ], U∗

ξ ).
Since any given instance of (1) and (2), for fixed a, is expressible in M0[G0] as
a statement about (ma, G0, u

∗
a, a, P), it follows by elementarity that j∗0ξ(ma) is a

transitive model of ZFC− containing j0ξ(P), and that every f : j∗0ξ(δ) → j∗0ξ(ma)
in j∗0ξ(ma)[Gξ] is j∗0ξ(u∗a)-equivalent to a function g : j∗0ξ(δ) → j∗0ξ(ma) in j0ξ(ma).
Note that since u∗a ⊆ U∗

0 , it follows by an easy argument that j∗0ξ(u∗a) ⊆ U∗
ξ . Thus,

as far as j∗0ξ(ma) and j∗0ξ(ma)[Gξ] are concerned, every new function agrees with
an old function. But now the key point is that the j0ξ(ma) exhaust Mξ, since every
object in Mξ has the form j0ξ(f)(s) for some finite s ⊆ δξ, and thus once we put f
into ma by a suitable choice of a, then j0ξ(f)(s) will be in j0ξ(ma). From this, it
follows that the j∗0ξ(ma[G0]) exhaust Mξ[Gξ], since every element of Mξ[Gξ] has a
name in Mξ. Therefore, every new function in Mξ[Gξ] agrees on a set in U∗

ξ with an
old function in Mξ, and so the ultrapower of Mξ[Gξ] by U∗

ξ is a lift of jξξ+1. Thus,
we have continued the step-by-step lifting one additional step, and so by induction,
the entire iteration lifts step-by-step as claimed.

It remains to explain how we achieve (1) and (2) for every a ∈ M0. First, we
observe that M0 is the union of transitive models m of ZFC. This is because any
set A ⊆ δ in M0 is also in M1 and therefore in HM1

j01(δ)
, which is a model of ZFC

since j01(δ) is inaccessible in M1. By collapsing an elementary substructure of
this structure in M1, therefore, we find a size δ transitive model m |= ZFC with
A ∈ m ∈ M1. Since m has size δ and M0 = HM1

δ+ by weak amenability, it follows
that m ∈ M0 as well. Thus, for any a ∈ M0 there are numerous models m as in
statement (1), even with full ZFC.
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For any such m, let Xm = { j01(f)(δ) | f ∈ m }. It is not difficult to check that
Xm ≺ j01(m), by verifying the Tarski-Vaught criterion. Also, since j01 � m ∈ M1,
it follows that Xm ∈ M1, although by Replacement the map m 7→ Xm cannot exist
in M1, since M1 is the union of all Xm. For any a ∈ M0, let

Da =
{

q ∈ j01(P) | q is Xm-generic for some transitive m |= ZFC− with a ∈ m ∈ M0

}
.

Recall that a condition q is Xm-generic for j01(P) if every M1-generic filter G ⊆
j01(P) has G ∩ D ∩ Xm 6= ∅ for every dense set D ⊆ j01(P) in M1. Because the
definition of Da refers to the various Xm, there is little reason to expect that Da is
a set in M1. Nevertheless, we shall argue anyway that it is a dense subset of j01(P).

To see this, fix a and any condition p ∈ j01(P). Since p = j(~p)(δ) for some
function ~p ∈ M0, we may find as we explained above a transitive set m ∈ M0

with a, ~p, P ∈ m |= ZFC. We may also ensure in that argument that m<δ ⊆ m
in M0. It follows that X<δ

m ⊆ Xm in M1, and since ~p ∈ m, we also know that
p = j(~p)(δ) ∈ Xm. The forcing j01(P) is in Xm and factors as P ∗ Ṗtail, where P is
δ-c.c. and Ṗtail is forced to be ≤δ-strategically closed. Since M1 knows that Xm has
size δ, it can perform a diagonalization below p of the dense sets for the tail forcing,
and thereby produce a P-name for a condition in Ṗtail meeting all those dense sets.
(This is where we have used the key property of j-usefulness mentioned before the
theorem.) Thus, M1 can build an Xm-generic condition q for j01(P) below p. This
establishes that Da is dense, as we claimed.

We now suppose that G1 meets all the dense sets Da, and use this to establish
(1) and (2). For any a ∈ M0, we have a condition q ∈ G1 that is Xm-generic for
some transitive m |= ZFC− in M0 containing 〈a, P〉, thereby satisfying (1). From
this, it follows that Xm[G1] ∩M1 = Xm, since for any name in Xm for an object
in M1, Xm has a dense set of conditions deciding its value, and since G1 meets
this dense set inside Xm, the decided value must also be in Xm. Now, suppose
that f : δ → m is a function in m[G0], so that f = ḟG0 for some name ḟ ∈ m.
Since ḟ ∈ m, it follows that j01(ḟ) ∈ Xm, and so j01(f)(δ) ∈ Xm[G1]. Since
ran(f) ⊆ m, it follows that ran(j01(f)) ⊆ j01(m), which is contained in M1. Thus,
j01(f)(δ) ∈ Xm[G1] ∩ M1, which is equal to Xm. But every element of Xm has
the form j01(g)(δ) for some function g ∈ m, and so j01(f)(δ) = j01(g)(δ) for such
a function g. It follows that f and g agree on a set in U∗

0 and we have established
(2), completing the argument. �

A special case of the theorem occurs when P has size smaller than δ in M0. In
this case, Ṗtail is trivial and the extra genericity condition is automatically satisfied,
since the dense sets Da would be elements of M1. The nontrivial case of the theorem
occurs when the forcing P has size δ, and its image is therefore stretched on the
ultrapower side. We are unsure about the extent to which it could be true generally
that the iteration of a lift is a lift of the iteration. Surely some hypotheses are
needed on the forcing, since if P is an iteration of length δ and j(P) adds new
subsets to δ at stage δ, for example, then the lift j∗01 will not be weakly amenable,
making it impossible to iterate. Our j-usefulness hypothesis avoids this issue, but
we are not sure whether it is possible to omit the external genericity assumption
we made on G1. Nevertheless, this extra genericity assumption appears to be no
more difficult to attain in practice than ordinary M1-genericity. For example, in
the case of countable structures:
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Corollary 20. If 〈M, δ, U〉 |=“I am Hδ+” is a countable iterable structure and
P ∈ M is useful for the ultrapower of M by U , then there is an M -generic filter
G ⊆ P and M [G]-ultrafilter U∗ extending U such that 〈M [G], δ, U∗〉 is iterable, and
the iteration of M [G] by U∗ is a step-by-step lift of the iteration of M by U .

Proof. This is simply a special case of the previous theorem. When M is countable,
then there is no trouble in finding an M -generic filter G and M1-generic filter G1

satisfying the extra genericity requirement, since there are altogether only countably
many dense sets to meet. �

4. The third proof method

In this section, for the third proof method, we generalize the proof sketch of
Theorem 16 given at the end of Section 2. For the arguments here, we shall use the
hypothesis of having a weakly iterable cardinal δ with Vδ a model containing large
cardinals. We shall use the structure 〈M, δ, U〉 witnessing the weak iterability of
δ to produce a countable iterable structure and build the inner model out of the
iterates of this structure or the iterates of its forcing extension.

Theorem 21. If 〈M, δ, U〉 is iterable with a poset P ∈ V M
δ , then there is an inner

model satisfying every sentence forced by P over V M
δ .

Proof. Let 〈M0, δ0, U0〉 be obtained by collapsing a countable elementary substruc-
ture of 〈M, δ, U〉 containing P. By Lemma 18, 〈M0, δ0, U0〉 is iterable. Also, if Q is
the collapse of the poset P, then by elementarity Q forces the same sentences over
V M0

δ0
that P forces over V M

δ . Let {jξη : Mξ → Mη | ξ < η ∈ Ord} be the correspond-
ing directed system of iterated ultrapowers of M0, and consider the inner model
W =

⋃
ξ∈Ord j0ξ(V M0

δ0
), which is the cumulative part of the iteration lying below

the critical sequence. Since V M0
δ0

≺ W and V W
δ0

= V M0
δ0

, it follows that Q forces the
same sentences over V M0

δ0
as over W , and these are the same as forced by P over

V M
δ . Since Q lies below the critical point δ0 of the iteration, the model W contains

only countably many dense subsets of Q and so we can build a W -generic filter G
directly. Thus, the model W [G], an inner model of V , satisfies the requirement of
the theorem. �

Let us now apply this theorem to the case of an indestructible supercompact
cardinal.

Theorem 22. If κ is <δ-supercompact for a weakly iterable cardinal δ above κ,
then there is an inner model in which κ is an indestructible supercompact cardinal.

Proof. Suppose that κ is <δ-supercompact for a weakly iterable cardinal δ above
κ and the weak iterability of δ is witnessed by an iterable structure 〈M, δ, U〉,
with Vδ ∈ M . In particular, κ is <δ-supercompact in M . Note that the Laver
preparation P of κ is small relative to δ in M . Thus, by Theorem 21, there is an
inner model W0 satisfying the theory forced by P over Vδ. The forcing P, of course,
makes κ indestructibly supercompact in V P

δ , and so the inner model W0 has an
indestructible supercompact cardinal κ0.

In order to prove the full claim, we must find a W in which κ itself is inde-
structibly supercompact. For this, let us look more closely at how the inner model
W0 arises from the proof of Theorem 21. Specifically, the indestructible supercom-
pact cardinal κ0 of W0 arises inside a countable iterable structure M0, obtained
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by a Mostowski collapse of a countable structure containing κ, and κ0 is below the
critical point δ0 of the iteration. Thus, κ0 is not moved by the iteration and is
therefore a countable ordinal in V , even though it is indestructibly supercompact
in W0. Since in particular κ0 is measurable in W0, we may consider the internal
system of embeddings obtained by iterating a normal measure on κ0 in W0. The
successive images of κ0 lead to the critical sequence {κα | α ∈ Ord}, which is a
closed unbounded class of ordinals, containing all cardinals of V . It follows that
κ itself appears on this critical sequence, as the κth element κ = κκ. In particu-
lar, if j : W0 → Wκ is the κth iteration of the normal measure, then j(κ0) = κ,
and so by elementarity, Wκ is an inner model in which κ itself is an indestructible
supercompact cardinal. �

It should be clear that once there is an inner model W containing an indestruc-
tible supercompact cardinal, and this cardinal is a mere countable ordinal in V ,
then in fact it can be arranged that any desired cardinal of V is an indestructible
supercompact cardinal in an inner model. For example, this argument shows that
if there is a cardinal that is supercompact up to a weakly iterable cardinal, then
there are inner models W in which ℵV

1 is indestructibly supercompact, or ℵV
2 or ℵV

ω

is indestructibly supercompact, and so on, as desired.
The method also provides an answer to Test Question 5.

Theorem 23. If κ is <δ-supercompact for a weakly iterable cardinal δ above κ,
then there is an inner model of the PFA.

Proof. Let 〈M, δ, U〉 be an iterable structure containg Vδ. Then κ is supercompact
in Vδ, and so the Baumgartner forcing P ∈ Vδ forces the PFA over Vδ. Thus, by
Theorem 21, there is an inner model of the PFA. �

Let us return to Test Question 1, where we aim to produce an inner model with
a supercompact cardinal and the full GCH. In Theorem 14, we approached this, by
finding inner models of a supercompact cardinal such that 2κ = κ+ or such that
2κ = κ++, and the proof generalized to get various GCH patterns at or above κ.
The proofs of those theorems, however, relied on the friendliness of the iteration up
to κ, and so seem unable to attain the full GCH. For example, if CH fails in V , then
there can be no friendly forcing of the GCH. The third proof method, however, does
work to produce such an inner model. We cannot apply Theorem 21 directly to the
case of the poset forcing the GCH, since it is a class forcing over Vδ. Following the
proof of Theorem 21, we would need at the last step to obtain a generic for a class
forcing over the inner model W , and there is no obvious reason to suppose that
such a W -generic can be constructed. Instead, using Theorem 19, we shall follow
the modified strategy of forcing over the countable iterable structure first and then
iterating out to produce the inner model. Note that if the GCH fails in V , then for
large θ one cannot expect to find the GCH in the robust type of inner models W
for which W θ ⊆ W , since such a property would inject the GCH violations from V
into W .

The following theorem generalizes Theorem 21 to the case of class forcing with
respect to Vδ.

Theorem 24. If 〈M, δ, U〉 is iterable and P ⊆ V M
δ is a poset in M and useful for

the ultrapower by U , then there is an inner model satisfying every sentence forced
by P over V M

δ .
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Proof. We may assume without loss of generality that 〈M, δ, U〉 |= “I am Hδ+”.
(If not, replace M with HM

δ+ and observe that the structure 〈HM
δ+ , δ, U〉 remains

iterable since it has all the same functions f : δ → HM
δ+ as M .) As in Theorem 21,

let 〈M0, δ0, U0〉 be a countable iterable structure obtained by collapsing a countable
elementary substructure of 〈M, δ, U〉 containing P, and let Q be the image of P under
the collapse. Since M0 is countable, there is by Corollary 20 an M0-generic filter
G0 ⊆ Q and an M0[G0]-ultrafilter U∗

0 extending U0 such that 〈M0[G0], δ0, U
∗
0 〉 is

iterable, and such that the iteration of M0[G0] by U∗
0 is a step-by-step lifting of the

iteration of M0 by U0. Note that V
M0[G0]
δ0

= V M0
δ0

[G0] satisfies the theory forced
by P over V M

δ . Let {jξη : Mξ[Gξ] → Mη[Gη] | ξ < η ∈ Ord} be the directed
system of iterated ultrapowers of M0[G0], and consider W =

⋃
ξ∈Ord j0ξ(V M0[G0]

δ0
).

Since the iteration of U∗
0 lifts the iteration of U0 on M0 step-by-step, it follows that

W = W̄ [H], where W̄ =
⋃

ξ∈Ord j0ξ(V M0
δ0

) and H is the W̄ -generic filter arising
from

⋃
ξ j0ξ(G0) for the class forcing obtained by

⋃
ξ j0ξ(Q). By elementarity, W

satisfies the same sentences that are forced to hold over V M0
δ0

by Q, and these are
the same as those forced to hold over V M

δ by P. �

We may now apply Theorem 24 to provide answers to Questions 1 and 6, from
a stronger hypothesis.

Theorem 25. If κ is <δ-supercompact for a weakly iterable cardinal δ, then there
is an inner model in which κ is supercompact and the GCH plus V = HOD holds.

Proof. Let 〈M, δ, U〉 be an iterable structure containing Vδ, and as before, assume
without loss of generality that M |= “I am Hδ+”. Observe that the canonical class
forcing of the GCH is definable over Vδ and useful for the ultrapower embedding.
Note that although δ may be singular in V , it is Mahlo (and more) in M , and
so the forcing is δ-c.c. inside M . By Theorem 24, there is an inner model with a
supercompact cardinal and the GCH. To obtain an inner model where κ itself is
supercompact, simply follow the second part of the proof of Theorem 22. One can
similarly obtain an inner model satisfying V = HOD without the GCH by coding
sets into the continuum function, making essentially the same argument. (See,
e.g., the coding method used in [Rei06, Theorem 11] or [Rei07, Theorem 11].) If
GCH+V = HOD is desired, as in the statement of the theorem, then one should use
a coding method compatible with the GCH. For example, the 3∗

γ coding method
used in [BT09], in conjunction with the proof of [Rei06, Theorem 11] or [Rei07,
Theorem 11], forces GCH +V = HOD while preserving supercompactness, and has
the desired closure properties for this argument. �

The hypotheses of Theorems 22, 23 and 25 can be improved slightly, since it is
not required that δ is weakly iterable, but rather only that

(*) κ is <δ-supercompact inside an iterable structure 〈M, δ, U〉.

It is irrelevant assuming (*) whether Vδ ⊆ M or not, since the only use of that in
our argument was to ensure that κ was <δ-supercompact in M .

Next, we improve the iteration method to find more robust inner models, which
not only satisfy the desired theory, but which also agree with V up to δ. This
sort of additional feature cannot be attained by iterating a countable model out of
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the universe, which is ultimately how our earlier instances of the iteration method
proceeded.

Suppose as usual that 〈M, δ, U〉 is a structure where M |= ZFC−, δ is a cardinal
in M , and U is a weakly amenable M -ultrafilter. As a shorthand, let us refer to
these structures as weakly amenable. A weakly amenable structure that is closed
under <δ-sequences is automatically iterable. This is because it will be correct
about the countable completeness of the ultrafilter, which suffices for iterability (see
[Kun70]). Moreover, closure under <δ-sequences implies that V M

δ = Vδ. Thus, if
there exists a weakly amenable structure with M<δ ⊆ M , then δ is weakly iterable.
The existence of these structures, however, has a significantly larger consistency
strength than the existence of a weakly iterable cardinal that is between Ramsey
and measurable cardinals (see [Git09]).

Theorem 26. Suppose 〈M, δ, U〉 is weakly amenable with M<δ ⊆ M . Suppose that
P ⊆ Vδ is a poset in M such that for every γ < δ, there is a condition p ∈ P such
that P � p is ≤γ-strategically closed and useful for the ultrapower of M by U . Then
there is an inner model W of V satisfying every sentence forced by P over Vδ and
with V W

δ = Vδ.

Proof. As usual, without loss of generality, we assume that M |= “I am Hδ+”. The
hypothesis on P is a superfriendly version of usefulness. Consider the first two steps
of the iteration

M = M0
j01- M1

j12 - M2.

Our strategy will be to lift the second step of the iteration. We shall produce in V
a lift j∗12 : M1[G1] → M2[G2], where G1 ⊆ j01(P) is M1-generic and j∗12(G1) = G2

is M2-generic for j02(P), while also satisfying the extra genericity requirement of
Theorem 19. By that theorem, therefore, the lift will be iterable and the desired
inner model will be obtained by iterating it out of the universe.

To begin, note that the structure 〈M1, δ1, U1〉 arising from the ultrapower of
〈M, δ, U〉 is certainly iterable, since it was obtained after one step of the iterable
structure 〈M, δ, U〉. In addition, the closure assumptions on M0 ensure that M<δ

1 ⊆
M1 and |M1| = δ, and also that M<δ

2 ⊆ M2 and |M2| = δ. By the useful and
superfriendly assumption on P, and using elementarity, we may find a condition
q ∈ j01(P) below which j01(P) is <δ-strategically closed in M1 and useful for the
ultrapower of M1 by U1. Thus, below the appropriate condition p, j02(P) factors
in M2 as j01(P) ∗ Ṗtail, where j01(P) is j01(δ)-c.c. and Ṗtail is forced to be ≤j01(δ)-
strategically closed. Since there are only δ many dense subsets of j02(P) in M2 and
M<δ

2 ⊆ M2, we may diagonalize to find an M2-generic filter G2 ⊆ j02(P) below
p in V . It follows that G1 = G2 � j01(δ) is M1-generic for j01(P), and we may
lift the embedding j12 to j∗12 : M1[G1] → M2[G2]. We may furthermore arrange
in the diagonalization that G2 also meets all the external dense sets Da arising in
Theorem 19, since there are only δ many such additional sets, and they can simply
be folded into the diagonalization. Thus, by Theorem 19, the lift j∗12 is iterable. Let
{j∗1ξ : M1[G1] → Mξ[Gξ]} be the corresponding iteration, and let W =

⋃
ξ V

Mξ[Gξ]

j1ξ(δ1)

be the resulting inner model. This is the union of an elementary chain, and so W
is an elementary extension of M1[G1], which satisfies all sentences forced by P over
Vδ and includes HM

δ+ . In particular, Vδ ⊆ W and so V W
δ = Vδ, completing the

proof. �



20 ARTHUR W. APTER, VICTORIA GITMAN, AND JOEL DAVID HAMKINS

Theorem 27. If κ is indestructibly <δ-supercompact in a weakly amenable 〈M,U, δ〉
with M<δ ⊆ M , then there is an inner model W satisfying V = HOD in which κ
is indestructibly supercompact and for which V W

δ = Vδ.

Proof. Let 〈M, δ, U〉 be weakly amenable with M<δ ⊆ M . It follows that κ is
indestructibly supercompact in Vδ. Let P be the forcing notion that first generically
chooses (via a lottery sum) an ordinal γ0 in the interval [κ, δ), and then performs an
Easton support iteration of length δ. P does nontrivial forcing at regular cardinals
γ in the interval [γ0, δ), with forcing that either forces the GCH to hold at γ or
to fail at γ, using the lottery sum ⊕{Add(γ+, 1), Add(γ, γ++)}. An easy density
argument (see the proof of [Fri09, Lemma 13.1]) shows that any particular set of
ordinals below δ added by this forcing will be coded into the GCH pattern below
δ, and so P forces V = HOD over Vδ. By indestructibility, the forcing P preserves
the indestructible supercompactness of κ. Furthermore, the forcing P is definable
in Vδ, and the choice of γ0 makes the forcing as closed as desired below δ, as well
as useful for the ultrapower of M by U . Thus, the hypotheses of Theorem 26 are
satisfied. So by that theorem, there is an inner model W satisfying V = HOD and
having V W

δ = Vδ. Since κ is below δ, the critical point of the iteration of M by
U , it is not moved by that iteration, and so κ is indestructibly supercompact in
W . �

Next, we consider a variant of one of the questions mentioned after Test Question
7, asking the extent to which sets can be placed into the HOD of an inner model.

Theorem 28. If κ is strongly Ramsey, then for any A ∈ Hκ+ , there is an inner
model W containing A and satisfying V = HOD. If the GCH holds below κ, then
one can arrange that A is definable in W without parameters.

Proof. From our earlier discussion, we know that κ is strongly Ramsey if every
A ∈ Hκ+ can be placed into a weakly amenable structure 〈M,κ, U〉 with M<κ ⊆ M .

Starting with a weakly amenable 〈M,κ, U〉 with M<κ ⊆ M and A ∈ M , we use
the same forcing as in the proof of Theorem 27 and appeal to Theorem 26 to obtain
an inner model W satisfying V = HOD and having A ∈ W , as desired.

Lastly, if the GCH holds below κ, then as in Theorem 15, we may arrange
the coding to begin with coding A, and thereby make A definable in W without
parameters. �

Corollary 29. If there is a proper class of strongly Ramsey cardinals, then every
set A is an element of some inner model W satisfying V = HOD.

Proof. Under this hypothesis, every set A is in Hδ+ for some strongly Ramsey
cardinal δ, and so is in an inner model W satisfying V = HOD by Theorem 28. �

To summarize the situation with our test questions, we have provided definite
affirmative answers to Test Questions 2, 3, 4 and 7, along with several variants, but
have only provided the affirmative conclusion of Test Questions 1, 5 and 6 from the
(consistency-wise) stronger hypothesis that there is a cardinal supercompact up to
a weakly iterable cardinal (or at least supercompact inside an iterable structure).
We do not know if this hypothesis can be weakened for these results to merely a
supercompact cardinal. Perhaps either Woodin’s new approach to building non-
fine-structural inner models of a supercompact cardinal, or Foreman’s approach
of [For09] for constructing inner models of very large cardinals, will provide the
answers to these questions.
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5. Further Applications

We shall now describe how variants of our methods can be used to obtain a
further variety of inner models. First, using the methods of Theorem 25 and a
stronger hypothesis, we can obtain:

Theorem 30. Suppose that δ is a weakly iterable cardinal and a limit of cardinals
that are <δ-supercompact. Then:

(1) There is an inner model with a proper class of supercompact cardinals, all
Laver indestructible.

(2) There is an inner model with a proper class of supercompact cardinals, where
the GCH holds.

(3) There is an inner model with a proper class of supercompact cardinals, where
V = HOD and the Ground Axiom holds.

Of course, there are numerous other possibilities, for any of the usual forcing
iterations; we mention only these three as representative. In each case, the natural
forcing has the same closure properties needed to support the argument of Theorem
25. In the case of statement (2), for example, one uses the canonical Easton support
forcing of the GCH, and in statement (3), one uses any of the usual iterations that
force every set to be coded into the GCH pattern of the continuum function, a state
of affairs that implies both V = HOD and the Ground Axiom, the assertion that
the universe was not obtained by set forcing over any inner model (see [Ham05],
[Rei06] and [Rei07]).

For the next application of our methods, we show that there are inner models
witnessing versions of classical results of Magidor [Mag76].

Theorem 31.
(1) If κ is <δ-strongly compact for a weakly iterable cardinal δ, then there is

an inner model in which κ is both the least strongly compact and the least
measurable cardinal.

(2) If there is a strongly compact cardinal κ, then there is an inner model in
which the least strongly compact cardinal has only boundedly many measur-
able cardinals below it.

(3) If there is a supercompact cardinal κ, then for every cardinal θ, there is
an inner model W in which the least strongly compact cardinal is the least
supercompact cardinal and for which W θ ⊆ W .

(4) If κ is <δ-supercompact for a weakly iterable cardinal δ, then there is an
inner model in which κ is both the least strongly compact and least super-
compact cardinal.

Proof. For (1), let P be Magidor’s notion of iterated Prikry forcing from [Mag76],
which adds a Prikry sequence to every measurable cardinal below κ. Since |P| = κ,
it is small with respect to δ. By the arguments of [Mag76], the cardinal κ becomes
both the least strongly compact and the least measurable cardinal in V P

δ . Thus, by
Theorem 21, there is an inner model in which the least strongly compact cardinal
is the least measurable cardinal, and by the methods from the second part of the
proof of Theorem 22, this cardinal may be taken as κ itself.

For (2), we begin by noting that the partial ordering P mentioned in the preceding
paragraph is not <κ-friendly. However, in analogy to the first proof given for
Theorem 8, for every γ < κ, let Pγ be Magidor’s notion of iterated Prikry forcing
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from [Mag76] which adds a Prikry sequence to every measurable cardinal in the
open interval (γ, κ). By [Mag76], forcing with Pγ adds no subsets to γ. Let P∗ =
⊕{Pγ | γ < κ} be their lottery sum. Magidor’s arguments of [Mag76] together with
P∗’s definition as a lottery sum show that after forcing with P∗, for some γ < κ,
κ is the least strongly compact cardinal, and there are no measurable cardinals in
the open interval (γ, κ). Since P∗ is <κ-friendly, (2) now follows by Theorem 10.

For (3), let γ < κ, and let Pγ be the reverse Easton iteration of length κ
which adds a non-reflecting stationary set of ordinals of cofinality ω to every non-
measurable regular limit of strong cardinals in the open interval (γ, κ). (In other
words, Pγ does trivial forcing except at those δ ∈ (γ, κ) which are non-measurable
regular limits of strong cardinals, where it adds a non-reflecting stationary set of
ordinals of cofinality ω to δ.) By the remarks in [Apt05, Section 2], after forcing
with Pγ , κ becomes both the least strongly compact and least supercompact cardi-
nal. Let P = ⊕{Pγ | γ < κ} be their lottery sum. Since P is <κ-superfriendly, (3)
now follows by Theorem 13.

Finally, for (4), we note that for any γ < κ, Pγ of the preceding paragraph is
<κ-friendly, since it is <κ-superfriendly. Because |Pγ | = κ, (4) now follows by
Theorem 21 and the methods from the second part of the proof of Theorem 22. �

Before stating our next application, we briefly recall some definitions. Say that
a model V of ZFC containing supercompact cardinals satisfies level by level equiv-
alence between strong compactness and supercompactness if for every κ < λ reg-
ular cardinals, κ is λ strongly compact if and only if κ is λ supercompact. Say
that a model V of ZFC containing supercompact cardinals satisfies level by level
inequivalence between strong compactness and supercompactness if for every non-
supercompact measurable cardinal κ, there is some λ > κ such that κ is λ strongly
compact yet κ is not λ supercompact. Models satisfying level by level equivalence
between strong compactness and supercompactness were first constructed in [AS97],
and models satisfying level by level inequivalence between strong compactness and
supercompactness have been constructed in [Apt02], [Apt10b] and [Apt10a].

Theorem 32.
(1) If the GCH holds and κ is <δ-supercompact for a weakly iterable cardinal δ,

then there is an inner model in which κ is supercompact and the GCH and
level by level equivalence between strong compactness and supercompactness
hold.

(2) If the GCH holds and κ is δ-supercompact for a weakly iterable cardinal δ,
then there is an inner model in which κ is supercompact and the GCH and
level by level inequivalence between strong compactness and supercompact-
ness hold.

Proof. For (1), assume that κ and δ are least such that κ is <δ-supercompact and
δ is a weakly iterable cardinal. Let P be the class forcing from [AS97] defined over
Vδ such that V P

δ |= “κ is supercompact, and the GCH and level by level equivalence
between strong compactness and supercompactness hold”. We refer readers to
[AS97, Section 3] for the exact definition of P, which is rather complicated. We do
note, however, that if 〈M, δ, U〉 is an iterable structure containing Vδ, then because
κ and δ are least such that κ is <δ-supercompact and δ is weakly iterable, P is
useful for the ultrapower embedding. Therefore, by Theorem 24, there is an inner
model containing a supercompact cardinal in which the GCH and level by level
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equivalence between strong compactness and supercompactness hold, and by the
methods from the second part of the proof of Theorem 22, this cardinal may be
taken as κ itself.

For (2), assume that κ and δ are least such that κ is δ-supercompact and δ
is a weakly iterable cardinal. It is a general fact that if γ is ρ-supercompact, ρ
is weakly iterable, and j : V → M is an elementary embedding witnessing the ρ-
supercompactness of γ, then M |= “ρ is weakly iterable”. Therefore, by the proof of
[Apt10b, Theorem 2], there are cardinals κ0 < δ0 < κ and a partial ordering P ∈ Vδ0

such that V P
δ0
|= “κ0 is supercompact, and the GCH and level by level inequivalence

between strong compactness and supercompactness hold”. Thus, by Theorem 21,
there is an inner model containing a supercompact cardinal in which the GCH
and level by level inequivalence between strong compactness and supercompactness
hold, and by the methods from the second part of the proof of Theorem 22, this
cardinal may be taken as κ itself. �

We mentioned at the opening of this article that we take our Test Questions as
representative of the many more similar questions one could ask, inquiring about the
existence of inner models realizing various large cardinal properties usually obtained
by forcing. We would similarly like to take our answers—and in particular, the three
proof methods we have described—as providing a key to answering many of them.
Indeed, we encourage the reader to go ahead and formulate similar interesting
questions and see if these methods are able to provide an answer. Going forward,
we are especially keen to find or learn of generalizations of our first two methods,
in Theorems 10, 11 and 13, which might allow us to find the more robust inner
models provided by these methods for a greater variety of situations.
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