### Introduction to nonstandard models of arithmetic

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

# VCU Analysis, Logic, and Physics Seminar April 24, 2015

イロト イヨト イヨト イヨト

### Flashback: first number theory course

"Your assumptions are your windows on the world. Scrub them off every once in a while, or the light won't come in." –Isaac Asimov

ヘロト 人間ト 人団ト 人団ト

**Theorem**: The greatest common divisor g of a and b has the form g = ax + by. **Proof**:

- Let  $S = \{ax + by \mid x, y \in \mathbb{Z}, ax + by > 0\}$ , and note  $S \neq \emptyset$ .
- Let  $I = ax_0 + by_0$  be the least element of S.
- If  $l \nmid b$ , then b = lq + r with 0 < r < l.
- So  $r = b lq = b (ax_0 + by_0)q = a(-x_0q) + b(1 y_0)$  is in S.
- But this contradicts that / is least!
- Suppose  $c \mid a$  and  $c \mid b$ , and let a = xl and b = yl.
- $I = x_0(xc) + y_0(yc) = c(x_0x + y_0y)$ , so  $c \le I$ .  $\Box$

### Flashback: first number theory course

"Your assumptions are your windows on the world. Scrub them off every once in a while, or the light won't come in." –Isaac Asimov

**Theorem**: The greatest common divisor g of a and b has the form g = ax + by. **Proof**:

- Let  $S = \{ax + by \mid x, y \in \mathbb{Z}, ax + by > 0\}$ , and note  $S \neq \emptyset$ .
- Let  $I = ax_0 + by_0$  be the least element of S.
- If  $l \nmid b$ , then b = lq + r with 0 < r < l.
- So  $r = b lq = b (ax_0 + by_0)q = a(-x_0q) + b(1 y_0)$  is in S.
- But this contradicts that / is least!
- Suppose  $c \mid a$  and  $c \mid b$ , and let a = xl and b = yl.
- $I = x_0(xc) + y_0(yc) = c(x_0x + y_0y)$ , so  $c \le I$ .  $\Box$

Question: What assumptions did the proof use?

• g is the greatest common divisor of a and b.

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

### Flashback: first number theory course

"Your assumptions are your windows on the world. Scrub them off every once in a while, or the light won't come in." –Isaac Asimov

**Theorem**: The greatest common divisor g of a and b has the form g = ax + by. **Proof**:

- Let  $S = \{ax + by \mid x, y \in \mathbb{Z}, ax + by > 0\}$ , and note  $S \neq \emptyset$ .
- Let  $I = ax_0 + by_0$  be the least element of S.
- If  $l \nmid b$ , then b = lq + r with 0 < r < l.
- So  $r = b lq = b (ax_0 + by_0)q = a(-x_0q) + b(1 y_0)$  is in S.
- But this contradicts that / is least!
- Suppose  $c \mid a$  and  $c \mid b$ , and let a = xl and b = yl.
- $I = x_0(xc) + y_0(yc) = c(x_0x + y_0y)$ , so  $c \le I$ .  $\Box$

Question: What assumptions did the proof use?

- g is the greatest common divisor of a and b.
- Peano axioms!

イロン イロン イヨン イヨン 三日

## The axiomatic method

**Question**: What is the epistemology of mathematics? How do we know that a mathematical statement is true?

2

イロン イ団 とくほと くほとう

# The axiomatic method

**Question**: What is the epistemology of mathematics? How do we know that a mathematical statement is true?

### The (naive) axiomatic method

- Introduced by Euclid in the *Elements* around 300 BC, it revolutionizes how mathematics is done.
- All mathematical statements are derivable from a few self-evident truths by logical inference.
- The "self-evident truths" are called axioms.

イロン イヨン イヨン イヨン

# The axiomatic method

**Question**: What is the epistemology of mathematics? How do we know that a mathematical statement is true?

### The (naive) axiomatic method

- Introduced by Euclid in the *Elements* around 300 BC, it revolutionizes how mathematics is done.
- All mathematical statements are derivable from a few self-evident truths by logical inference.
- The "self-evident truths" are called axioms.

### Peano axioms

- Two millennia later, in 1889, Giuseppe Peano (building on an earlier work of Dedekind) proposed an axiomatization of arithmetic.
- A modern version of the Peano axioms is taught to every high school student (without the subtleties).
- Peano is better known for proving that there is a space filling curve, a continuous map from the unit interval onto the unit square.

・ロト ・個ト ・ヨト ・ヨト

### Peano axioms

#### Addition and Multiplication

- $\forall x \forall y \forall z \ (x+y) + z = x + (y+z)$
- $\forall x \forall y \ x + y = y + x$
- $\forall x \forall y \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- $\forall x \forall y \ x \cdot y = y \cdot x$
- $\forall x \forall y \forall z \ x \cdot (y + z) = x \cdot y + x \cdot z.$
- $\forall x \ (x + 0 = x \land x \cdot 1 = x)$

(associativity of addition) (commutativity of addition) (associativity of multiplication) (commutativity of multiplication) (distributive law) (additive and multiplicative identity)

・ロト ・個ト ・ヨト ・ヨト

3

### Peano axioms

#### Addition and Multiplication

• 
$$\forall x \forall y \forall z \ (x+y) + z = x + (y+z)$$

- $\forall x \forall y \ x + y = y + x$
- $\forall x \forall y \forall z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- $\forall x \forall y \ x \cdot y = y \cdot x$

• 
$$\forall x \forall y \forall z \ x \cdot (y + z) = x \cdot y + x \cdot z.$$

• 
$$\forall x \ (x+0=x \wedge x \cdot 1=x)$$

#### Order

- $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$
- $\forall x \neg x < x$
- $\forall x \forall y ((x < y \lor x = y) \lor y < x)$
- $\forall x \forall y \forall z \ (x < y \rightarrow x + z < y + z)$
- $\forall x \forall y \forall z \ ((0 < z \land x < y) \rightarrow x \cdot z < x \cdot z)$
- $\forall x \forall y \ (x < y \leftrightarrow \exists z \ (z > 0 \land x + z = y))$
- $\forall x \ (x \ge 0 \land (x > 0 \rightarrow x \ge 1))$

(associativity of addition) (commutativity of addition) (associativity of multiplication) (commutativity of multiplication) (distributive law) (additive and multiplicative identity)

(transitive) (anti-reflexive) (linear) (respects addition) (respects multiplication)

(discrete)

### Peano axioms

#### Addition and Multiplication

• 
$$\forall x \forall y \forall z (x + y) + z = x + (y + z)$$
 (associativity of addition)  
•  $\forall x \forall y x + y = y + x$  (commutativity of addition)  
•  $\forall x \forall y \forall z (x \cdot y) \cdot z = x \cdot (y \cdot z)$  (associativity of multiplication)  
•  $\forall x \forall y \forall z (x \cdot y + z) = x \cdot y + x \cdot z$ . (distributive law)  
•  $\forall x \forall y \forall z (x + 0 = x \land x \cdot 1 = x)$  (additive and multiplicative identity)  
Order  
•  $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$  (transitive)  
•  $\forall x \forall y \forall z ((x < y \land x = y) \lor y < x)$  (linear)  
•  $\forall x \forall y \forall z ((x < y \rightarrow x + z < y + z)$  (respects addition)  
•  $\forall x \forall y \forall z ((0 < z \land x < y) \rightarrow x \cdot z < x \cdot z)$  (respects multiplication)  
•  $\forall x \forall y (x < y \leftrightarrow \exists z (z > 0 \land x + z = y))$   
•  $\forall x (x \ge 0 \land (x > 0 \rightarrow x \ge 1))$  (discrete)  
Induction Scheme

For every statement  $\varphi(x)$ :  $(\varphi(0) \land \forall x \ (\varphi(x) \to \varphi(x+1))) \to \forall x \varphi(x)$ 

<ロ> <個> <ヨ> <ヨ> 三日

- A formal treatment of mathematics was necessitated by the increasingly abstract character it assumed in the 18-19<sup>th</sup> centuries.
- The most robust formal mathematical system is first-order logic.

イロン イ団 と イヨン イヨン

- A formal treatment of mathematics was necessitated by the increasingly abstract character it assumed in the 18-19<sup>th</sup> centuries.
- The most robust formal mathematical system is first-order logic.

#### Language of first-order logic

- General: variables, logical connectives, quantifiers
- Subject specific: functions, relations, constants
  - ▶ language of group theory:  $\mathcal{L}_G = (\circ, -1, e)$
  - ▶ language of arithmetic:  $\mathcal{L}_A = (+, \cdot, <, 0, 1)$

イロト イヨト イヨト イヨト

- A formal treatment of mathematics was necessitated by the increasingly abstract character it assumed in the 18-19<sup>th</sup> centuries.
- The most robust formal mathematical system is first-order logic.

#### Language of first-order logic

- General: variables, logical connectives, quantifiers
- Subject specific: functions, relations, constants
  - ▶ language of group theory:  $\mathcal{L}_G = (\circ, -1, e)$
  - language of arithmetic:  $\mathcal{L}_A = (+, \cdot, <, 0, 1)$

**Axioms**: A collection of statements in a first-order language defining fundamental structural properties

- common to many different mathematical objects, e.g., group axioms,
- of a single mathematical object, e.g., Peano axioms.

- A formal treatment of mathematics was necessitated by the increasingly abstract character it assumed in the 18-19<sup>th</sup> centuries.
- The most robust formal mathematical system is first-order logic.

#### Language of first-order logic

- General: variables, logical connectives, quantifiers
- Subject specific: functions, relations, constants
  - ▶ language of group theory:  $\mathcal{L}_G = (\circ, -1, e)$
  - language of arithmetic:  $\mathcal{L}_A = (+, \cdot, <, 0, 1)$

**Axioms**: A collection of statements in a first-order language defining fundamental structural properties

- common to many different mathematical objects, e.g., group axioms,
- of a single mathematical object, e.g., Peano axioms.

### **Rules of logical inference**

• Logical axioms, e.g.,

$$\blacktriangleright \ (\neg \psi \to \neg \varphi) \to (\varphi \to \psi),$$

- $x = y \rightarrow f(x) = f(y)$ .
- Modus ponens: if  $\varphi$  and  $\varphi \rightarrow \psi$ , then conclude  $\psi$ .

イロン イヨン イヨン イヨン 三日

### Models for group axioms

A model is a group:  $(G, \circ, {}^{-1}, e)$ 

• G is a set,

• • is a function on  $G \times G$ ,  $^{-1}$  is a function on G, e is a fixed element in G,

such that the group axioms are satisfied.

- Symmetric group S<sub>3</sub> all permutations on 3 objects
  - $\triangleright$  o is function composition,  $^{-1}$  inverts the permutation, e is the identity permutation
  - finite, non-abelian
- Integers Z
  - • is addition,  $^{-1}$  negates, e is 0
  - infinite, abelian group

### Models for group axioms

A model is a group:  $(G, \circ, {}^{-1}, e)$ 

• G is a set,

• • is a function on  $G \times G$ ,  $^{-1}$  is a function on G, e is a fixed element in G,

such that the group axioms are satisfied.

- Symmetric group S<sub>3</sub> all permutations on 3 objects
  - $\circ$  is function composition,  $^{-1}$  inverts the permutation, *e* is the identity permutation
  - finite, non-abelian
- Integers Z
  - $\triangleright$  o is addition,  $^{-1}$  negates, e is 0
  - infinite, abelian group

There are vastly different models of the group axioms!

- local properties (expressible in  $\mathcal{L}_G$ ): abelian/non-abelian, divisible/non-divisible
- global properties (not expressible in  $\mathcal{L}_G$ ): cyclic/non-cyclic, nilpotent/non-nilpotent
- sizes: finite/countable/uncountable

### Models for Peano axioms

A model is  $(M, +, \cdot, <, 0, 1)$ :

• M is a set,

• +, · are functions on  $M \times M$ , < is a relation on  $M \times M$ , 0, 1 are fixed elements in M, such that the Peano axioms are satisfied.

(ℕ, +, ·, <, 0, 1)</li>

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

### Models for Peano axioms

A model is  $(M, +, \cdot, <, 0, 1)$ :

• M is a set,

• +, · are functions on  $M \times M$ , < is a relation on  $M \times M$ , 0, 1 are fixed elements in M, such that the Peano axioms are satisfied.

•  $(\mathbb{N}, +, \cdot, <, 0, 1)$ 

### Euclid's world

- $(\mathbb{N}, +, \cdot, <, 0, 1)$  should be the unique model of the Peano axioms.
- Every true arithmetic statement should be provable from the Peano axioms.

◆□> ◆圖> ◆理> ◆理>

### Models for Peano axioms

A model is  $(M, +, \cdot, <, 0, 1)$ :

• M is a set,

• +, · are functions on  $M \times M$ , < is a relation on  $M \times M$ , 0, 1 are fixed elements in M, such that the Peano axioms are satisfied.

•  $(\mathbb{N}, +, \cdot, <, 0, 1)$ 

#### Euclid's world

- $(\mathbb{N}, +, \cdot, <, 0, 1)$  should be the unique model of the Peano axioms.
- Every true arithmetic statement should be provable from the Peano axioms.

The real world: Peano axioms (or any other reasonable axioms) cannot

- determine the size of a model,
- decide the truth of all arithmetic statements.

**Definition**: A model for a collection of statements C in a first-order language  $\mathcal{L}$  is a set S together with definitions on S of all functions, relations, constants in  $\mathcal{L}$  such that all statements in C are satisfied.

イロン イヨン イヨン イヨン

**Definition**: A model for a collection of statements C in a first-order language  $\mathcal{L}$  is a set S together with definitions on S of all functions, relations, constants in  $\mathcal{L}$  such that all statements in C are satisfied.

- Variables in first-order statements apply only to elements of *S*.
  - Induction cannot be expressed as a single statement in  $\mathcal{L}_A$  because we cannot quantify over subsets.
  - Divisibility of a group requires infinitely many statements in  $\mathcal{L}_{G}$ .

イロト イヨト イヨト イヨト

**Definition**: A model for a collection of statements C in a first-order language  $\mathcal{L}$  is a set S together with definitions on S of all functions, relations, constants in  $\mathcal{L}$  such that all statements in C are satisfied.

- Variables in first-order statements apply only to elements of *S*.
  - Induction cannot be expressed as a single statement in  $\mathcal{L}_A$  because we cannot quantify over subsets.
  - Divisibility of a group requires infinitely many statements in  $\mathcal{L}_G$ .

**Definition**: A collection of statements is consistent if we cannot prove from it any statement of the form  $\varphi \land \neg \varphi$ .

Inconsistent collections of statements cannot have models!

ヘロト 人間ト 人団ト 人団ト

### The glories and the frailties of formal mathematics

" ...the point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it." -Bertrand Russell

イロン イヨン イヨン イヨン

**Completeness Theorem**: (Gödel, Maltsev, 1930-36) Every consistent collection of statements has a model.

• If every finite fragment of a collection of statements has a model, then the whole collection has a model.

The glories and the frailties of formal mathematics

" ...the point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it." -Bertrand Russell

**Completeness Theorem**: (Gödel, Maltsev, 1930-36) Every consistent collection of statements has a model.

• If every finite fragment of a collection of statements has a model, then the whole collection has a model.

**Lowenheim-Skolem Theorem**: (Lowenheim, Skolem, Maltsev, 1920-36) If a collection of statements has an infinite model, then it has a model of every possible infinite cardinality.

- Axioms cannot determine the size of a model.
- There are uncountable models of the Peano axioms!

The glories and the frailties of formal mathematics

" ...the point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it." -Bertrand Russell

**Completeness Theorem**: (Gödel, Maltsev, 1930-36) Every consistent collection of statements has a model.

• If every finite fragment of a collection of statements has a model, then the whole collection has a model.

**Lowenheim-Skolem Theorem**: (Lowenheim, Skolem, Maltsev, 1920-36) If a collection of statements has an infinite model, then it has a model of every possible infinite cardinality.

- Axioms cannot determine the size of a model.
- There are uncountable models of the Peano axioms!

**First Incompleteness Theorem**: (Gödel, 1931) No reasonable axioms can prove all true statements of arithmetic (and similarly complex subjects).

- Reasonable means expressible algorithmically.
- "All true statements of arithmetic" is not reasonable.
- There is a true arithmetic statement that cannot be proved from the Peano axioms.

### A nonstandard model of arithmetic

A nonstandard model of arithmetic is any model of the Peano axioms that is not the standard model  $(\mathbb{N}, +, \cdot, <, 0, 1)$ .

The existence of a countable nonstandard model of arithmetic (even satisfying all true arithmetic statements) follows from the completeness theorem.

- Expand  $\mathcal{L}_A$  by adding a constant c to obtain the language  $\mathcal{L}_{A^*} = (+, \cdot, <, 0, 1, c)$ .
- $\bullet\,$  Let  ${\mathcal C}$  be any collection of true arithmetic statements, e.g., the Peano axioms.
- Let  $\mathcal{C}^*$  consist of:
  - C,  $\{c > 0, c > 1, c > 2, ..., c > n, ...\}$  (note:  $n = \underbrace{1 + \cdots + 1}$ )

## A nonstandard model of arithmetic

A nonstandard model of arithmetic is any model of the Peano axioms that is not the standard model  $(\mathbb{N}, +, \cdot, <, 0, 1)$ .

The existence of a countable nonstandard model of arithmetic (even satisfying all true arithmetic statements) follows from the completeness theorem.

• Expand  $\mathcal{L}_A$  by adding a constant c to obtain the language  $\mathcal{L}_{A^*} = (+, \cdot, <, 0, 1, c)$ .

n

- $\bullet\,$  Let  ${\mathcal C}$  be any collection of true arithmetic statements, e.g., the Peano axioms.
- Let  $\mathcal{C}^*$  consist of:

C,  

$$\{c > 0, c > 1, c > 2, ..., c > n, ...\}$$
 (note:  $n = \underbrace{1 + \dots + 1}$ )

**Observation**: Every finite fragment F of  $C^*$  has a model.

Proof:

- There is the largest *n* such that c > n is in *F*.
- $(\mathbb{N}, +, \cdot, <, 0, 1, n+1)$  is a model of *F*.

By completeness theorem,  $C^*$  has a model  $(M, +, \cdot, <, 0, 1, c)!$ 

## A nonstandard model of arithmetic

A nonstandard model of arithmetic is any model of the Peano axioms that is not the standard model  $(\mathbb{N}, +, \cdot, <, 0, 1)$ .

The existence of a countable nonstandard model of arithmetic (even satisfying all true arithmetic statements) follows from the completeness theorem.

• Expand  $\mathcal{L}_A$  by adding a constant c to obtain the language  $\mathcal{L}_{A^*} = (+, \cdot, <, 0, 1, c)$ .

n

- $\bullet\,$  Let  ${\mathcal C}$  be any collection of true arithmetic statements, e.g., the Peano axioms.
- Let  $\mathcal{C}^*$  consist of:

C,  

$$\{c > 0, c > 1, c > 2, ..., c > n, ...\}$$
 (note:  $n = \underbrace{1 + \cdots + 1}$ )

**Observation**: Every finite fragment F of  $C^*$  has a model.

Proof:

- There is the largest *n* such that c > n is in *F*.
- $(\mathbb{N}, +, \cdot, <, 0, 1, n+1)$  is a model of *F*.

By completeness theorem,  $\mathcal{C}^*$  has a model  $(M, +, \cdot, <, 0, 1, c)!$ 

Question: What does it look like?

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

 $| \cdots \rangle$ 

•  $\mathbb{N}$  is the initial segment of M.

2

イロト イヨト イヨト イヨト

**⊢ • • • • • •** · · ·)

- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).

і с

2

イロン イ団と イヨン イヨン



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* 1, *c* 2, *c* 3,....

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* 1, *c* 2, *c* 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* 1, *c* 2, *c* 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .

- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* 1, *c* 2, *c* 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$

$$+ \cdots + \cdots ) \cdots ( \cdots + \underbrace{\frac{c}{2}}_{2^{c}} \cdots ) \quad ( \cdots + \underbrace{c}_{c} \cdots ) \qquad ( \cdots + \underbrace{c}_{2^{c}} \cdots ) \cdots$$

- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* 1, *c* 2, *c* 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$

VCU 11 / 23



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* − 1, *c* − 2, *c* − 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$
- M has  $\frac{3c}{2}$ :  $c + n < \frac{3c}{2} < 2c n$  for all  $n \in \mathbb{N}$ .

VCU 11 / 23


- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* − 1, *c* − 2, *c* − 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$
- M has  $\frac{3c}{2}$ :  $c + n < \frac{3c}{2} < 2c n$  for all  $n \in \mathbb{N}$ .

VCU 11 / 23



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has c + 1, c + 2, c + 3, ... as well as c 1, c 2, c 3, ...
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$
- M has  $\frac{3c}{2}$ :  $c + n < \frac{3c}{2} < 2c n$  for all  $n \in \mathbb{N}$ .

VCU 11 / 23



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* − 1, *c* − 2, *c* − 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$
- M has  $\frac{3c}{2}$ :  $c + n < \frac{3c}{2} < 2c n$  for all  $n \in \mathbb{N}$ .

VCU 11 / 23



- $\mathbb{N}$  is the initial segment of M.
- *M* has an element  $c > \mathbb{N}$  (assume *c* is even).
- *M* has *c* + 1, *c* + 2, *c* + 3,... as well as *c* − 1, *c* − 2, *c* − 3,....
- *M* has 2c: 2c > c + n for all  $n \in \mathbb{N}$ .
- *M* has  $\frac{c}{2}$ :  $\frac{c}{2} < c n$  for all  $n \in \mathbb{N}$
- *M* has  $\frac{3c}{2}$ :  $c + n < \frac{3c}{2} < 2c n$  for all  $n \in \mathbb{N}$ .

**Paradox?** Induction is equivalent to every subset has a least element, but clearly this is false!

・ロト ・四ト ・ヨト ・ヨト 三国

**Question**: Can we compute inside a nonstandard model of arithmetic? Is there a nonstandard model of arithmetic for which there an algorithm to compute addition and multiplication?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

**Question**: Can we compute inside a nonstandard model of arithmetic? Is there a nonstandard model of arithmetic for which there an algorithm to compute addition and multiplication?

• It is natural to think of elements of a nonstandard model as  $\mathbb{N} \cup \mathbb{Q} \times \mathbb{Z}$ .

ヘロト 人間ト 人団ト 人団ト

**Question**: Can we compute inside a nonstandard model of arithmetic? Is there a nonstandard model of arithmetic for which there an algorithm to compute addition and multiplication?

- It is natural to think of elements of a nonstandard model as  $\mathbb{N} \cup \mathbb{Q} \times \mathbb{Z}$ .
- (p, m) + n = (p, m + n). How about  $(p, m) \cdot n$ ?



**Question**: Can we compute inside a nonstandard model of arithmetic? Is there a nonstandard model of arithmetic for which there an algorithm to compute addition and multiplication?

- It is natural to think of elements of a nonstandard model as  $\mathbb{N} \cup \mathbb{Q} \times \mathbb{Z}$ .
- (p, m) + n = (p, m + n). How about  $(p, m) \cdot n$ ?



• How about (p, m) + (q, n),  $(p, n) \cdot (q, m)$ ?



block p block q

**Question**: Can we compute inside a nonstandard model of arithmetic? Is there a nonstandard model of arithmetic for which there an algorithm to compute addition and multiplication?

- It is natural to think of elements of a nonstandard model as  $\mathbb{N} \cup \mathbb{Q} \times \mathbb{Z}$ .
- (p, m) + n = (p, m + n). How about  $(p, m) \cdot n$ ?



• How about (p, m) + (q, n),  $(p, n) \cdot (q, m)$ ?

 $\underbrace{\vdash} \cdots \underbrace{\vdash} \cdots$ 

block p

block q

イロン イロン イヨン イヨン 三日 二

• Is there a nonstandard model of arithmetic for which there is algorithm to compute

- (p, m) + (q, n),
- (p, m)  $\cdot n$ ,
- (p, m)  $\cdot (q, n)$ ?

### Tennenbaum's Theorem

"All you really need to know for the moment is that the universe is a lot more complicated than you might think, even if you start from a position of thinking it's pretty damn complicated in the first place." - Douglas Adams

**Theorem**: (Tennenbaum, 1959) There is no nonstandard model of arithmetic for which there is an algorithm to compute any of the following (p, m) + (q, n),  $(p, m) \cdot n$ ,  $(p, m) \cdot (q, n)$ .

VCU 13 / 23

イロト イヨト イヨト イヨト

### Tennenbaum's Theorem

"All you really need to know for the moment is that the universe is a lot more complicated than you might think, even if you start from a position of thinking it's pretty damn complicated in the first place." – Douglas Adams

**Theorem**: (Tennenbaum, 1959) There is no nonstandard model of arithmetic for which there is an algorithm to compute any of the following (p, m) + (q, n),  $(p, m) \cdot n$ ,  $(p, m) \cdot (q, n)$ .

- We cannot hope to compute inside a nonstandard model of arithmetic!
- Every nonstandard model of arithmetic contains non-algorithmic information.
- $(\mathbb{N}, +, \cdot, <, 0, 1)$  is the unique computable model of arithmetic!

ヘロト 人間ト 人団ト 人団ト

Theorem: Every natural number has a unique binary expansion.

• This follows from the Peano axioms, and therefore extends to nonstandard models.

<ロ> (日) (日) (日) (日) (日)

Theorem: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.

イロン イ団 と イヨン イヨン

Theorem: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

・ロト ・個ト ・ヨト ・ヨト

Theorem: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

• Every  $c \in M$  has a unique binary expansion.

ヘロト 人間ト 人団ト 人団ト

**Theorem**: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

- Every  $c \in M$  has a unique binary expansion.
- Every  $c \in M$  codes a (possibly infinite) subset of  $\mathbb{N}$ !

・ロト ・個ト ・ヨト ・ヨト

**Theorem**: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

- Every  $c \in M$  has a unique binary expansion.
- Every  $c \in M$  codes a (possibly infinite) subset of  $\mathbb{N}$ !
  - $c = 2^1 + 2^3 + 2^5 + \dots + 2^{2b+1}$  ( $b > \mathbb{N}$ ) codes the odd numbers.

**Theorem**: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

- Every  $c \in M$  has a unique binary expansion.
- Every  $c \in M$  codes a (possibly infinite) subset of  $\mathbb{N}$ !
  - $c = 2^1 + 2^3 + 2^5 + \dots + 2^{2b+1}$  ( $b > \mathbb{N}$ ) codes the odd numbers.
  - ▶  $c = 2^2 + 2^3 + 2^5 + 2^7 + \dots + 2^p$  ( $p > \mathbb{N}$  is a nonstandard prime) codes the prime numbers.

**Theorem**: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

- Every  $c \in M$  has a unique binary expansion.
- Every  $c \in M$  codes a (possibly infinite) subset of  $\mathbb{N}$ !
  - ▶  $c = 2^1 + 2^3 + 2^5 + \dots + 2^{2b+1}$  ( $b > \mathbb{N}$ ) codes the odd numbers.
  - ▶  $c = 2^2 + 2^3 + 2^5 + 2^7 + \dots + 2^p$  ( $p > \mathbb{N}$  is a nonstandard prime) codes the prime numbers.

**Definition**: A subset A of  $\mathbb{N}$  is coded in a nonstandard model  $(M, +, \cdot, <, 0, 1)$  if there is  $c \in M$  coding A.

イロン イロン イヨン イヨン 三日

**Theorem**: Every natural number has a unique binary expansion.

- This follows from the Peano axioms, and therefore extends to nonstandard models.
- Every natural number codes a finite set of numbers, e.g.,  $1288 = 2^3 + 2^8 + 2^{10}$  codes the set {3, 8, 10}.
- Every finite set of numbers is coded by some natural number, e.g., the set  $\{0, 5, 7\}$  is coded by  $161 = 2^0 + 2^5 + 2^7$ .

Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic.

- Every  $c \in M$  has a unique binary expansion.
- Every  $c \in M$  codes a (possibly infinite) subset of  $\mathbb{N}$ !
  - ▶  $c = 2^1 + 2^3 + 2^5 + \dots + 2^{2b+1}$  ( $b > \mathbb{N}$ ) codes the odd numbers.
  - ▶  $c = 2^2 + 2^3 + 2^5 + 2^7 + \dots + 2^p$  ( $p > \mathbb{N}$  is a nonstandard prime) codes the prime numbers.

**Definition**: A subset A of  $\mathbb{N}$  is coded in a nonstandard model  $(M, +, \cdot, <, 0, 1)$  if there is  $c \in M$  coding A.

**Question**: What can we say about subsets of  $\mathbb{N}$  coded in a nonstandard model M?

イロン イロン イヨン イヨン 三日

**Definition**: A subset A of  $\mathbb{N}$  is computable if there is an algorithm to determine membership in A.

• There is a computer program which outputs 1 if  $n \in A$  and 0 if  $n \notin A$ .

3

イロン イ団と イヨン イヨン

**Definition**: A subset A of  $\mathbb{N}$  is computable if there is an algorithm to determine membership in A.

• There is a computer program which outputs 1 if  $n \in A$  and 0 if  $n \notin A$ .

#### Computable sets:

• the set of odd numbers

・ロト ・個ト ・ヨト ・ヨト

**Definition**: A subset A of  $\mathbb{N}$  is computable if there is an algorithm to determine membership in A.

• There is a computer program which outputs 1 if  $n \in A$  and 0 if  $n \notin A$ .

#### Computable sets:

- the set of odd numbers
- the set of prime numbers

イロト イヨト イヨト イヨト

**Definition**: A subset A of  $\mathbb{N}$  is computable if there is an algorithm to determine membership in A.

• There is a computer program which outputs 1 if  $n \in A$  and 0 if  $n \notin A$ .

#### Computable sets:

- the set of odd numbers
- the set of prime numbers
- the set of codes of the Peano axioms
  - fix a reasonable coding of strings into numbers
  - in practice, this is done by any text editor

イロン イヨン イヨン イヨン

**Definition**: A subset *A* of  $\mathbb{N}$  is computable if there is an algorithm to determine membership in *A*.

• There is a computer program which outputs 1 if  $n \in A$  and 0 if  $n \notin A$ .

#### Computable sets:

- the set of odd numbers
- the set of prime numbers
- the set of codes of the Peano axioms
  - fix a reasonable coding of strings into numbers
  - in practice, this is done by any text editor

#### Non-computable sets:

• the set of codes of true arithmetic statements

イロン イヨン イヨン イヨン

Theorem: Every nonstandard model of arithmetic codes all computable sets.

æ

イロト イヨト イヨト イヨト

Theorem: Every nonstandard model of arithmetic codes all computable sets.

Theorem: Every set of natural numbers is coded in some countable nonstandard model.

<ロ> (日) (日) (日) (日) (日)

Theorem: Every nonstandard model of arithmetic codes all computable sets.

**Theorem**: Every set of natural numbers is coded in some countable nonstandard model. **Proof**:

• Every finite initial segment of A is coded by some natural number.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem: Every nonstandard model of arithmetic codes all computable sets.

**Theorem**: Every set of natural numbers is coded in some countable nonstandard model. **Proof**:

- Every finite initial segment of A is coded by some natural number.
- Write down a collection of statements in  $\mathcal{L}_A$  together with a new constant *c*:
  - If  $n \in A$ , then the  $n^{\text{th}}$ -digit in the binary expansion of c is 1.
  - ▶ If  $n \notin A$ , then  $n^{\text{th}}$ -digit in the binary expansion of c is 0.

イロン イ団 と イヨン イヨン

Theorem: Every nonstandard model of arithmetic codes all computable sets.

Theorem: Every set of natural numbers is coded in some countable nonstandard model.

Proof:

- Every finite initial segment of A is coded by some natural number.
- Write down a collection of statements in  $\mathcal{L}_A$  together with a new constant *c*:
  - If  $n \in A$ , then the  $n^{\text{th}}$ -digit in the binary expansion of c is 1.
  - ▶ If  $n \notin A$ , then  $n^{\text{th}}$ -digit in the binary expansion of c is 0.
- Use completeness theorem. □

・ロト ・回ト ・ヨト ・ヨト

Theorem: Every nonstandard model of arithmetic codes all computable sets.

Theorem: Every set of natural numbers is coded in some countable nonstandard model.

Proof:

- Every finite initial segment of A is coded by some natural number.
- Write down a collection of statements in  $\mathcal{L}_A$  together with a new constant *c*:
  - If  $n \in A$ , then the  $n^{\text{th}}$ -digit in the binary expansion of c is 1.
  - ▶ If  $n \notin A$ , then  $n^{\text{th}}$ -digit in the binary expansion of c is 0.
- Use completeness theorem. □

Theorem: Every nonstandard model of arithmetic codes some non-computable set.

• Every nonstandard model of arithmetic contains non-algorithmic information.

・ロト ・個ト ・ヨト ・ヨト

## Some nonstandard facts about nonstandard models

"If you think this Universe is bad, you should see some of the others." - Philip K. Dick

イロト イヨト イヨト イヨト

**Theorem**: There are continuum many countable non-isomorphic models of arithmetic. **Proof**: Every subset of  $\mathbb{N}$  is coded in some countable model of arithmetic.

## Some nonstandard facts about nonstandard models

"If you think this Universe is bad, you should see some of the others." - Philip K. Dick

イロト イヨト イヨト イヨト

**Theorem**: There are continuum many countable non-isomorphic models of arithmetic. **Proof**: Every subset of  $\mathbb{N}$  is coded in some countable model of arithmetic.

**Theorem**: (Friedman, 1973) Every nonstandard countable model of arithmetic is isomorphic to an initial segment of itself.

## Some nonstandard facts about nonstandard models

"If you think this Universe is bad, you should see some of the others." - Philip K. Dick

Theorem: There are continuum many countable non-isomorphic models of arithmetic.

**Proof**: Every subset of  $\mathbb{N}$  is coded in some countable model of arithmetic.

**Theorem**: (Friedman, 1973) Every nonstandard countable model of arithmetic is isomorphic to an initial segment of itself.

**Theorem**: There are countable models of arithmetic with continuum many automorphisms.

- $(\mathbb{N}, +, \cdot, <, 0, 1)$  has no automorphisms!
- A nonstandard model of arithmetic can have indiscernible numbers satisfying the exact same first-order properties.

イロン イロン イヨン イヨン 三日

### Goodstein sequences

#### Hereditary base *n* notation

Example: Write 3003 in hereditary base 3 notation.

- $3^7 + 3^6 + 3^4 + 2 \cdot 3^1$
- $3^{2 \cdot 3 + 1} + 3^{2 \cdot 3} + 3^{3 + 1} + 2 \cdot 3^{1}$
- $3^{3+3+1} + 3^{3+3} + 3^{3+1} + 3^1 + 3^1$

#### Hereditary base *n* notation

Example: Write 3003 in hereditary base 3 notation.

- $3^7 + 3^6 + 3^4 + 2 \cdot 3^1$
- $3^{2 \cdot 3 + 1} + 3^{2 \cdot 3} + 3^{3 + 1} + 2 \cdot 3^{1}$
- $3^{3+3+1} + 3^{3+3} + 3^{3+1} + 3^1 + 3^1$

To write a number in hereditary base *n* notation:

- Write the number in base n:  $a_k n^k + a_{k-1} n^{k_1} + \cdots + a_1 n + a_0$  where each  $a_i < n$ .
- Replace each  $a_i n^i$  with  $n^i + \cdots + n^i$

 $a_i$  times

- Write every exponent in hereditary base *n* notation.
- You are done when every digit appearing in the expression is either n or 1.
#### Goodstein sequence $G_m$ :

•  $G_m(1)$ : m

イロト イポト イヨト イヨト 二日

#### Goodstein sequence $G_m$ :

- $G_m(1)$ : m
- G<sub>m</sub>(2)
  - write  $G_m(1)$  in hereditary base 2 notation
  - replace all 2's by 3's
  - subtract 1

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

#### Goodstein sequence $G_m$ :

- $G_m(1)$ : m
- G<sub>m</sub>(2)
  - write  $G_m(1)$  in hereditary base 2 notation
  - replace all 2's by 3's
  - subtract 1
- $G_m(n+1)$ 
  - write  $G_m(n)$  in hereditary base n+1 notation
  - replace all n + 1 by n + 2
  - subtract 1

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

#### Goodstein sequence $G_m$ :

- $G_m(1)$ : m
- G<sub>m</sub>(2)
  - write  $G_m(1)$  in hereditary base 2 notation
  - replace all 2's by 3's
  - subtract 1
- $G_m(n+1)$ 
  - write  $G_m(n)$  in hereditary base n+1 notation
  - replace all n + 1 by n + 2
  - subtract 1

Example:  $G_3 = \{3, 3, 3, 2, 1, 0\}$ 

| $G_{3}(1)$         |                |                | 3 |
|--------------------|----------------|----------------|---|
| G <sub>3</sub> (2) | $2^1 + 1$      | $3^1 + 1$      | 3 |
| $G_{3}(3)$         | 3 <sup>1</sup> | 4 <sup>1</sup> | 3 |
| G <sub>3</sub> (4) | 1 + 1 + 1      | 1 + 1 + 1      | 2 |
| $G_{3}(5)$         | 1 + 1          | 1 + 1          | 1 |
| $G_{3}(6)$         | 1              | 1              | 0 |

VCU 19 / 23

# Goodstein sequences: $G_4$

| $G_4(1)$           |                                             |                                             | 4   |
|--------------------|---------------------------------------------|---------------------------------------------|-----|
| G <sub>4</sub> (2) | 2 <sup>2</sup>                              | 3 <sup>3</sup>                              | 26  |
| $G_4(3)$           | $3^{1+1} + 3^{1+1} + 3 + 3 + 1 + 1$         | $4^{1+1} + 4^{1+1} + 4 + 4 + 1 + 1$         | 41  |
| $G_4(4)$           | $4^{1+1} + 4^{1+1} + 4 + 4 + 1$             | $5^{1+1} + 5^{1+1} + 5 + 5 + 1$             | 60  |
| $G_4(5)$           | $5^{1+1} + 5^{1+1} + 5 + 5$                 | $6^{1+1} + 6^{1+1} + 6 + 6$                 | 83  |
| $G_4(6)$           | $6^{1+1} + 6^{1+1} + 6 + 1 + 1 + 1 + 1 + 1$ | $7^{1+1} + 7^{1+1} + 7 + 1 + 1 + 1 + 1 + 1$ | 109 |
| •                  |                                             |                                             | :   |
| $G_4(11)$          | $11^{1+1} + 11^{1+1} + 11$                  | $12^{1+1} + 12^{1+1} + 12$                  | 253 |
| $G_4(11)$          | $12^{1+1} + 12^{1+1} + 1 + 1 + \dots + 1$   | $13^{1+1} + 13^{1+1} + 1 + 1 + \dots + 1$   | 299 |
| •                  | :                                           | · · · · · · · · · · · · · · · · · · ·       | :   |

VCU 20 / 23

2

イロト イヨト イヨト イヨト

## Goodstein sequences: $G_4$

| $G_4(1)$           |                                             |                                             | 4   |
|--------------------|---------------------------------------------|---------------------------------------------|-----|
| G <sub>4</sub> (2) | 2 <sup>2</sup>                              | 3 <sup>3</sup>                              | 26  |
| $G_4(3)$           | $3^{1+1} + 3^{1+1} + 3 + 3 + 1 + 1$         | $4^{1+1} + 4^{1+1} + 4 + 4 + 1 + 1$         | 41  |
| $G_4(4)$           | $4^{1+1} + 4^{1+1} + 4 + 4 + 1$             | $5^{1+1} + 5^{1+1} + 5 + 5 + 1$             | 60  |
| $G_4(5)$           | $5^{1+1} + 5^{1+1} + 5 + 5$                 | $6^{1+1} + 6^{1+1} + 6 + 6$                 | 83  |
| $G_4(6)$           | $6^{1+1} + 6^{1+1} + 6 + 1 + 1 + 1 + 1 + 1$ | $7^{1+1} + 7^{1+1} + 7 + 1 + 1 + 1 + 1 + 1$ | 109 |
| •                  |                                             |                                             | :   |
| $G_4(11)$          | $11^{1+1} + 11^{1+1} + 11$                  | $12^{1+1} + 12^{1+1} + 12$                  | 253 |
| $G_4(11)$          | $12^{1+1} + 12^{1+1} + 1 + 1 + \dots + 1$   | $13^{1+1} + 13^{1+1} + 1 + 1 + \dots + 1$   | 299 |
| •                  | · · · · · · · · · · · · · · · · · · ·       | · · · · · · · · · · · · · · · · · · ·       |     |

"Elements of G<sub>4</sub> continue to increase for a while, but at base  $3 \cdot 2^{402653209}$ , they reach a maximum of  $3 \cdot 2^{402653210} - 1$ , stay there for the next  $3 \cdot 2^{402653209}$  steps, then begin their first and final descent to 0." – Wikipedia

**Theorem**: (Goodstein, 1944) For every m, the sequence  $G_m$  is eventually 0.

- The proof uses Zermelo-Fraenkel set theory.
- Zermelo-Fraenkel set theory is a much stronger axiomatic system.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

## Applications of nonstandard models: Goodstein's Theorem

**Theorem**: (Goodstein, 1944) For every m, the sequence  $G_m$  is eventually 0.

- The proof uses Zermelo-Fraenkel set theory.
- Zermelo-Fraenkel set theory is a much stronger axiomatic system.

**Theorem**: (Kirby, Paris, 1982) Goodstein's Theorem cannot be proved from the Peano axioms.

• The proof uses nonstandard models of arithmetic!

・ロト ・回ト ・ヨト ・ヨト

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by n numbers.

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by n numbers.

**Observation**: Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic satisfying all true statements about  $\mathbb{N}$ . If M has a twin prime pair above  $\mathbb{N}$ , then the twin prime conjecture is true.

イロン イロン イヨン イヨン 三日

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by n numbers.

**Observation**: Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic satisfying all true statements about  $\mathbb{N}$ . If M has a twin prime pair above  $\mathbb{N}$ , then the twin prime conjecture is true.

#### Proof:

• Suppose p and p+2 are prime in M with  $p > \mathbb{N}$ .

イロト イポト イヨト イヨト 二日

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by n numbers.

**Observation**: Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic satisfying all true statements about  $\mathbb{N}$ . If M has a twin prime pair above  $\mathbb{N}$ , then the twin prime conjecture is true.

#### Proof:

- Suppose p and p + 2 are prime in M with  $p > \mathbb{N}$ .
- For every  $n \in \mathbb{N}$ , M satisfies that there is a twin prime pair above n.

イロト イポト イヨト イヨト 二日

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by n numbers.

**Observation**: Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic satisfying all true statements about  $\mathbb{N}$ . If M has a twin prime pair above  $\mathbb{N}$ , then the twin prime conjecture is true.

#### Proof:

- Suppose p and p + 2 are prime in M with  $p > \mathbb{N}$ .
- For every  $n \in \mathbb{N}$ , M satisfies that there is a twin prime pair above n.
- M and  $\mathbb{N}$  satisfy the same arithmetic statements.

イロン イロン イヨン イヨン 三日

**Twin prime conjecture**: (Polignac, 1849) There are infinitely many primes p such that p + 2 is also prime.

• largest known twin primes:  $3756801695685 \cdot 2^{666669} \pm 1$  (Wikipedia)

**Theorem**: (Zhang, Polymath project, 2013-14) There is n < 246 such that there are infinitely many primes separated by *n* numbers.

**Observation**: Suppose that  $(M, +, \cdot, <, 0, 1)$  is a nonstandard model of arithmetic satisfying all true statements about  $\mathbb{N}$ . If M has a twin prime pair above  $\mathbb{N}$ , then the twin prime conjecture is true.

#### Proof:

- Suppose p and p+2 are prime in M with  $p > \mathbb{N}$ .
- For every  $n \in \mathbb{N}$ , M satisfies that there is a twin prime pair above n.
- M and  $\mathbb{N}$  satisfy the same arithmetic statements.
- For every n,  $\mathbb{N}$  satisfies that there is a twin prime pair above n.  $\Box$

イロン イロン イヨン イヨン 三日

P = NP?

- If there is a fast algorithm to verify whether a solution to a problem is correct, is there a fast algorithm to compute the solution?
- This is an arithmetic statement (algorithms are coded by numbers).

A very Bold Conjecture: One day, we will use nonstandard models of arithmetic to show that P = NP cannot be proved from the Peano axioms!

In the meantime, I like to study nonstandard models of arithmetic for the sake of their own uniquely beautiful properties.

# Thank you!

<ロ> (四) (四) (三) (三) (三) (三)