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Why second-order set theory?
Proper classes are collections of sets that are too “big” to be sets themselves. Naive set
theories which treated them as sets ran into paradoxes.

@ the universe V of all sets
@ the collection ORD of all ordinals

In first-order set theory, classes are informally defined as the definable (with parameters)
sub-collections of the model.

@ We cannot study proper classes within the formal framework of first-order set theory,
but only in the meta-theory.

@ The notion of class as a definable sub-collection is too restrictive!

Second-order set theory is a formal framework for studying the properties of sets as well
as classes.

o Classes are objects in the model.

@ We can axiomatize properties of classes.
o We can quantify over classes.
°

Non-definable classes are allowed.
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Why formally study classes?

Proper class forcing: we can obtain models
@ with desired continuum functions,
@ in which every set is coded into continuum pattern,
@ in which there is no definable linear ordering of sets.
Reinhardt axiom: there exists an elementary embedding j : V — V.
@ It is not expressible in first-order set theory.

@ |t is easy to see that if V = ZF, there no definable elementary j: V — V.

@ (Kunen Inconsistency) There is no elementary j : V — V in any model of a
“reasonable” second-order set theory with AC.
o (Open Problem) Can there be an elementary j : V — V in a model of a

“reasonable” second-order set theory without AC?
Model theoretic constructions with ultrafilters on classes

@ Models of first-order set theory with interesting model theoretic properties are
obtained as ultrapowers of models of second-order set theory.

@ Ultrafilter measures classes.

o Elements of ultrapower are equivalence classes of class functions.
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Second-order set theory

Primer on second-order set theory
Structures have two types of objects: sets and classes.

Syntax: two-sorted logic
@ separate variables and quantifiers for sets and classes
@ Relations and functions must specify sort for each coordinate.

o Convention: uppercase letters for classes and lowercase letters for sets.

Language of set theory:
@ ¢ relation: sets,

@ € relation: sets x classes.

Semantics: A model is M = (M, €,S), where (M, €) is a model of first-order set theory
and S consists of subsets of M.

Alternative formalization: first-order logic
@ objects are classes,

@ sets are defined to be those classes that are elements of other classes.
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Second-order set theory

Foundations of second-orders set theory: basic requirements

Bold Claim: A reasonable foundation should imply the basic properties of a ZFC model
together with its definable sub-collections.

@ The class of sets V is a model of ZFC.
(Axioms) ZFC for sets.

o V together with predicates for finitely many classes is a model of ZFC.
(Axioms) class replacement: the restriction of a class function to a set is a set.

o (Class existence principle) Every first-order definable sub-collection of V is a class.
(Axioms) first-order class comprehension scheme
class comprehension scheme for second-order formulas in I':
if o(x,X) isinT and Ais a class, then {x | ¢(x, A)} is a class.

Victoria Gitman KM and choice principles for classes SoTFoM 6 /33



Second-order set theory

Foundations of second-order set theory: GBC

First foundation is developed by Bernays, Godel, and von Neumann in the 1930s. It
codifies the “basic requirements”.

GBC: modern formulation

set axioms: ZFC
class extensionality

class replacement

global choice: there exists a global choice function class (not basic and equivalent to
the existence of a well-ordering of V)

o first-order class comprehension

GBC is predicative: definitions of classes don't quantify over classes.
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Second-order set theory

Foundations of second-order set theory: GBC (continued)

Observation:
@ There are models of ZFC that don't have a definable well-ordering.
@ The constructible universe L has a definable well-ordering.
o L together with its definable sub-collections is a model of GBC.
e GBC is equiconsistent with ZFC.

Theorem: (Solovay) Every countable model of ZFC can be extended to a model of GBC
without adding sets.

Proof sketch: Force to add a global well-ordering with a forcing that doesn't add sets
because it is <k-closed for every cardinal k. O

Corollary: GBC is conservative over ZFC: any property of sets provable in GBC is
already provable in ZFC.
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Second-order set theory

Foundations of second-order set theory: KM

A second-order theory is impredicative if it has comprehension for second-order formulas:
definitions of classes can quantify over classes.

Impredicative set theories were first studied by Wang and Morse in the 1940s.
The Kelley-Morse axioms first appeared in Kelley's General Topology textbook in 1955.

KM: modern formulation
e GBC

@ (full) second-order comprehension
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Strength of KM

Theorem: (Marek, Mostowski?) If (V,€,S) = KM, then V is the union of an
elementary chain of its rank initial segments V,:

Voo < Vay <+ < Vg < -+ <V,

and V thinks that each V.., |= ZFC.

Proof sketch:
o Every model of KM has a truth predicate class Tr coding first-order truth.
o Godel-codes of all (even nonstandard) ZFC axioms are in Tr.
o If (Va,€,Tr) <5, (V,€,Tr), then V, < V. O

Corollary:
o Full reflection holds in models of KM!
o KM proves Con(ZFC) (and much more).

@ The consistency strength of KM is greater than the strength of the theory:
ZFC + there is a transitive model of ZFC.
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Strength of KM (continued)

Theorem: KM is weaker than the theory ZFC + there is an inaccessible cardinal.

Proof sketch:
Suppose V | ZFC and « is inaccessible in V.

o (Vi,€, Viq1) E KM (and more).
@ Countable elementary substructures of V.41 give models of KM in V.
e Con(Con(KM)) holds.
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The choice scheme in second-order set theory

The choice scheme in second-order set theory

@ This is a choice/collection principle for classes.
@ It was first studied by Marek and Mostowski in the 1970s.

o “Every definable V-indexed family of collections of classes has a choice function.”

Coded functions F : V — S:

o If Zis a class and x is a set, then Z, := {y | (x,y) € Z} is the class coded on the
x"-slice of Z.

e Z codes F:V — S with F(x) = Z,.

Definition: The choice scheme consists of assertions
Vx 3X o(x, X, A) = IZVx o(x, Zy, A)

for every second-order o(x, X, Y) and class A.
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The choice scheme in second-order set theory

The choice scheme in second-order set theory (continued)

Some fragments of the choice scheme:
@ ¥} (or M}) choice scheme: bounds the complexity of ¢
@ parameterless choice scheme: no parameters allowed in ¢

@ set-sized choice scheme: consists of assertions
Vx € a3X ¢(x, X,A) = IZVx € ap(x, Z, A).

for every second-order ¢(x, X, Y), class A, and set a.

Some applications of the choice scheme: (more on this later)
o (Folklore) The to$ Theorem for internal second-order ultrapowers of models of KM
is equivalent (over KM) to the set-sized choice scheme.
o KM + choice scheme proves that first-order quantifiers don't affect the second-order
complexity of an assertion.
@ (Mostowski?) The theory KM + choice scheme is bi-interpretable with the theory
ZFC™ + there exists an inaccessible cardinal.
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The choice scheme in second-order set theory

Does KM imply (some fragment of) the choice scheme?

Observation: If V |=ZFC and & is inaccessible in V/, then
(Vi, €, Vier1) E KM + choice scheme.

Proof sketch: Use choice in V for families of subsets of V,.11. O

If we want a model of KM in which the choice scheme fails, choice should fail in V for
some easily describable family of subsets of V1.

Observation: Suppose V = ZF, & is regular in V, V., = ZFC, V,, is well-orderable in V,
then (Vi €, Viey1) = KM.

Independence strategy:
@ Start in V having an inaccessible cardinal k.
@ Perform a clever forcing and move to V[G].

@ Find a symmetric submodel N |= ZF of V[G] such that « is regular in N and
V¥ = V.., but choice fails for some easily describable family of subsets of V\",;.
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The choice scheme in second-order arithmetic

A detour into second-order arithmetic

There are two types of objects: numbers and sets of numbers (reals).
Syntax: two-sorted logic

Language of second-order arithmetic:
@ language of first-order arithmetic: £a = {+,+,<,0,1}

@ ¢ relation: numbers X sets

Semantics: A model is M = (M, +,-,<,0,1,S), where (M, +,-,<,0,1) is a model of
first-order arithmetic and S consists of subsets of M.

Basic requirements:
o (M, +,-,<,0,1) = PA (Peano axioms),

@ Induction axiom scheme: consists of assertions
(¢(0, m, A) AVn(p(n,m,A) = p(n+1,m,A))) — Vnp(n, m,A)

for every first-order ¢(n, m, X), set A, and number m.
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The choice scheme in second-order arithmetic

Foundations of second-order arithmetic

ACAy: arithmetical comprehension
@ analogue of GBC
@ basic requirements + first-order comprehension

o If V [EZF, then (w,+,-,<,0,1,8) E ACAy, where S is the collection of all
definable subsets of (w,+, -, <,0,1).

Zy: full second-order arithmetic
@ analogue of KM
@ basic requirements + second-order comprehension
o If V|=7ZF, then (w,+,-,<,0,1, P(w)) |= Z>.
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The choice scheme in second-order arithmetic

The choice scheme in second-order arithmetic

Definition: The choice scheme consists of assertions
vn3aX p(n, X,A) = 3ZVnp(n, Z,, A)
for every second-order ¢(n, X, Y) and set A.

Choice scheme fragments:
e ¥} (or MN}) choice scheme

@ parameterless choice scheme

Observation: If V = ZF + AC,, then (w,+,-,<,0,1, P(w)) = Z2> + choice scheme.

Independence strategy:
@ Perform a clever forcing and move to V[G].

@ Find a symmetric submodel N |= ZF of V[G] such that choice fails for some easily
describable family of subsets of P(w).
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The choice scheme in second-order arithmetic

Unexpected free choice

Theorem: Z, proves the ¥3-choice scheme.

Proof sketch: Suppose:
o M=(M,+,x,<,0,1,8) E Z>
o M = V¥n3Xe(n, X), where ¢ is ¥3.
Observe:
o If «is an ordinal coded in S, then S has a set coding L.
@ M has its own constructible universe L]
o M satisfies Shoenfield Absoluteness with respect to L*!:
If ¢ is X3, then M |= v iff LM = .
o LM = 3Xy(n, X) for every n.
@ Choose the [™-least X and use comprehension to collect!

If © has a set parameter A, replace L™ with L[A]™. O

Question: What about M3-choice scheme?
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The choice scheme in second-order arithmetic

Independence of Mi-choice scheme from Z;

The Feferman-Lévy model
Classic symmetric model N = ZF in which X is a countable union of countable sets.

Symmetric model properties:
o N EZF,
o all R} (the n™ cardinal of L) are countable in N,

o RE =¥ is the first uncountable cardinal of N.

Construction:

o Force with finite-support product P =[], __ Coll(w,¥,) over L to collapse
the first w-many successor cardinals of w to w.

o Let G C P be L-generic and G, = G [ ]],_,, Coll(w, X,).

o N C L[G] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A € L[Gx] for some m.

Victoria Gitman KM and choice principles for classes SoTFoM 19 / 33



The choice scheme in second-order arithmetic

Independence M3-choice scheme from Z, (continued)

Theorem: (Feferman, Lévy) M3-choice scheme can fail in a model of Z,.
Proof sketch: Consider M = (w, 4, x, <,0,1, P(w)) = Z».

P()" = Uyeo ()49,

Every Ly, is coded in M, but Ly, is not coded in M.

°
@ We cannot collect the codes of Ly,.
°

The assertion
Vn3X codes Ly, = 3ZVn Z, codes Ly,

fails in M.

o The assertion “X codes Ly," is M3:
X codes Lo AVY(Y codes Lg with 8 > oo — Lg thinks a = R,,). O
— —

1 1 1
My Ny Mg
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Independence of the choice scheme from KM

Independence of Mi-choice scheme from KM

Natural strategy: Do the Feferman-Lévy construction above an inaccessible cardinal .

Symmetric model properties:
o N |=7ZF, & is regular in N, V¥ = V. (This gives (V,, €, Viy1)" = KM.)
o all (k™™)" (the n™ successor cardinal of % in L) have size &,

o (k™) = (k)N

Construction:
@ Suppose k is inaccessible in L.
o Force with finite-support product P = [, _,, Coll(«, k") over L to collapse
the first w-many successor cardinals of x to k.
@ Let G C P be L-generic and G, = G | [, Coll(w, ™).

e N C L[G] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A € L[Gp] for some m.

n<m
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Independence of the choice scheme from KM

Independence of Mi-choice scheme from KM (continued)

Theorem: Mi-choice scheme can fail in a model of KM.
Proof: Consider M = (V,, €, Vi11)" = KM.
° Vfiv+1 = Un<w V,iGln].
o Every L, +n is coded in M, but L+ is not coded in M.
@ We cannot collect the (codes of) L, +n.

@ The assertion
Vn € w3X codes L, +n — IZVn € w X codes L, +n

fails in M.
o The assertion “X codes L,+n" is Mi: “X codes L," is I}.

@ M}-choice already fails for w-many choices!

Question: What about I'Ié-choice scheme?
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Independence of the choice scheme from KM

Is I'I(l)—choice scheme independent from KM?

Independence strategy:
e Start in V having:
> an inaccessible cardinal «,
> w-many normal x-Souslin trees (T, | n < w) with the property:
forcing with [ T, doesn't add branches to any T, with n > m.

n<m

o Forcing with a normal k-Souslin tree adds a cofinal branch.
@ Move to a forcing extension V[G] by P =[], . Ta.
o Let Gn =G [[],.,, To-

@ Find a symmetric model N C V[G] with the property:
A is a subset of ordinals in N iff A € V[Gp] for some m.

Each T, has a branch in N, but there is no collecting set of branches!
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Independence of the choice scheme from KM

A detour into homogeneous k-Souslin trees

Definition: Suppose & is a cardinal.
@ A normal k-tree is subtree of <2 of height x whose every node has

» 2 immediate successors,
> a successor at every higher level.

@ A normal k-Souslin tree has no branches of size k.
@ A homogeneous tree has for any two nodes on the same level an automorphism that
moves one to the other.
> A homogeneous tree is a weakly homogeneous poset.

Theorem: There is a universe V' with an inaccessible (or Mahlo) cardinal s having
rk-many homogeneous normal x-Souslin trees (T¢ | £ < k) with the property:
forcing with [[, ;5 T¢ (6 < ) doesn’t add branches to any T, with a > 6.
Proof sketch: Suppose & is inaccessible (or Mahlo).

o Let Q be the forcing to add a homogeneous x-Souslin tree.

o Force with bounded-support product P = H£<~ Q¢, where Q¢ =Q. O
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Independence of the choice scheme from KM

Independence of I_I(l)—choice from KM

Symmetric model properties:
o N |=ZF, xis regularin N, VN = V,.. (This gives (V,, €, V1)V = KM.)

@ N has a sequence 7= (T | n € w) of k-trees such that

» each T, has a branch,
> there is no collecting set of branches.

Construction:
@ Suppose:

> k is inaccessible,
» (Th | n < w) are homogeneous normal k-Souslin trees with the property:
forcing with ] T, doesn’t add branches to T, for n > m.

n<w T, to add branches to all T,.
o Let G C P be V-generic and G» = G | [] Tn.

o N C V[G] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A € V[G] for some m.
(This uses weak homogeneity of the trees.)

n<m

o Force with finite-support product P =[]

n<m
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Independence of the choice scheme from KM

Independence of M}-choice from KM (continued)

Theorem: (G., Johnstone, Hamkins) M3-choice scheme can fail in a model of KM.

Proof sketch: Consider M = (V,,, €, Vi.11)" = KM.

@ The assertion
\IJ(?) :=Vn € w3B branch of T,, - 3ZVn € wZ, is a branch of T,

fails in M.
@ The assertion “B is a branch of T," is 1§ (in the parameter ?)

o MMg-choice already fails for w-many choices! [J

Theorem: (G., Johnstone, Hamkins) Parameterless I'I(l)-choice scheme can fail in a model
of KM.

Proof sketch: Suppose  is Mahlo and ? has the required property.

o Code ? into the continuum function below x using Easton product forcing.
@ In the Easton product extension V[G]:

> K is inaccessible (even Mahlo),

> is definable in V,; and continues to have the required property. [J
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Separating fragments of the choice scheme

Separating fragments of the choice scheme

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice
scheme holds, but Mj-choice scheme fails.

Proof sketch:
@ Suppose
> K is inaccessible,
> ? = (T¢ | £ < K) are homogeneous normal k-Souslin trees with the property:
forcing with H§<5 T¢ doesn’t add branches to T¢ for £ > 6.
@ Force with bounded-support product P = H5<n Te.
o Let G C P be V-genericand Gs = G [ [[,_; Te.
o Construct symmetric model N C V[G] of ZF with the property:
A'is a subset of ordinals in N iff A € V[Gs] for some 6. O

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice
scheme holds, but parameterless I§-choice scheme fails.

Proof sketch: Suppose k is Mahlo and code ? into the continuum function below k. [J
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Separating fragments of the choice scheme (continued)

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which parameterless
choice scheme holds, but Mi-choice scheme fails.

Proof sketch:

@ We use ideas of Guzicki who proved a similar result for Zj.

@ Suppose & is inaccessible in L.

@ Force with bounded-support product H5<H+ Coll(, Ii(+£)) over L.
Let G C PP be L-generic and G5 = G | []_4 Coll(k, x"9)).

Construct symmetric model N C L[G] of ZF with the property:
A is a subset of ordinals in N iff A € L[Gs] for some §.

o Consider M = (V,, €, Vier1)".
Let A code (x7)" in M and let a¢ be the ordinal corresponding to & in A.

The assertion

V(A) :=VE3IX codes Lo, — IZVE X codes Lo,

ag
fails in M.

@ Parameterless choice holds in M. O
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The theory KM™

Definition: The theory KM™ consists of KM together with the choice scheme.
Bold claim: KM™ is a better foundation for second-order set theory than KM.

o KM™ proves Lo$ Theorem for internal second-order ultrapowers.

> Suppose M = (M, €,8) = KM*, I € M and U € M is an ultrafilter on |.
> Classes in Ult(M, U) are represented by coded functions F = (A; | i € I} in S.

o KMT™ proves that first-order quantifiers don't affect second-order complexity:
suppose (x) is equivalent to a Y1 formula, then so are
> Vxp(x),
> Ixp(x).

o KM is bi-interpretable with the theory ZFC™ + there is an inaccessible.

Open question: What is the consistency strength of KM™ compared to KM?
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Weaknesses of KM

Theorem: (Folklore) Lo$ Theorem for internal second-order ultrapowers is equivalent
(over KM) to the set-sized choice scheme.

Question: How badly does to$ Theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal
second-order ultrapower by an ultrafilter on w is not a model of KM.

Theorem: (G., Johnstone, Hamkins) There is a ¥i-formula ¢(x) and a model of KM in
which Vx¢(x) is not equivalent to a ¥1-formula.
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Stronger class choice principles

Stronger choice principles for classes?

Definition: The w-dependent choice scheme consists of assertions
VYX3AY (X, Y, A) = 3Z:w — SVn € wo(Zn, Zni1)

for every second-order formula ¢ and class A.
“Every definable relation on classes with no terminal nodes has an w-branch.”

Observation: KM™" + w-dependent choice scheme proves reflection for second-order
assertions: every second-order formula is reflected by some coded collection of classes.

Definition: The ORD-dependent choice scheme consists of assertions
VOYX : =S 3IAY o(X,Y,A) —3Z: ORD — SVBe(Z | B,Z3,A)

for every second-order ¢ and class A.
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Stronger class choice principles

Dependent choice scheme

Theorem: (Simpson, unpublished) There is a model of Z, in which choice scheme holds
but Mi-dependent choice scheme fails.

Theorem (Antos, Friedman) KM 4+ ORD-dependent choice scheme is preserved by all
definable tame hyperclass forcing.

Open question: Can we separate the choice scheme, w-dependent choice scheme, and
ORD-dependent choice scheme?
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hoice principles

Thank you!
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