Kelley-Morse set theory and choice principles for classes

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

SoTFoM II January 13, 2015

・ロト ・回ト ・ヨト ・ヨト

This is joint work with Joel David Hamkins and Thomas Johnstone (CUNY).

æ

イロト イヨト イヨト イヨト

Why second-order set theory?

Proper classes are collections of sets that are too "big" to be sets themselves. Naive set theories which treated them as sets ran into paradoxes.

- the universe V of all sets
- the collection ORD of all ordinals

In first-order set theory, classes are informally defined as the definable (with parameters) sub-collections of the model.

- We cannot study proper classes within the formal framework of first-order set theory, but only in the meta-theory.
- The notion of class as a definable sub-collection is too restrictive!

Second-order set theory is a formal framework for studying the properties of sets as well as classes.

- Classes are objects in the model.
- We can axiomatize properties of classes.
- We can quantify over classes.
- Non-definable classes are allowed.

イロン イ団と イヨン イヨン

Why formally study classes?

Proper class forcing: we can obtain models

- with desired continuum functions,
- in which every set is coded into continuum pattern,
- in which there is no definable linear ordering of sets.

Reinhardt axiom: there exists an elementary embedding $j : V \rightarrow V$.

- It is not expressible in first-order set theory.
- It is easy to see that if $V \models ZF$, there no definable elementary $j: V \rightarrow V$.
- (Kunen Inconsistency) There is no elementary $j: V \to V$ in any model of a "reasonable" second-order set theory with AC.
- (Open Problem) Can there be an elementary *j* : *V* → *V* in a model of a "reasonable" second-order set theory without AC?

Model theoretic constructions with ultrafilters on classes

- Models of first-order set theory with interesting model theoretic properties are obtained as ultrapowers of models of second-order set theory.
- Ultrafilter measures classes.
- Elements of ultrapower are equivalence classes of class functions.

イロト 不得 トイヨト イヨト

Primer on second-order set theory

Structures have two types of objects: sets and classes.

Syntax: two-sorted logic

- separate variables and quantifiers for sets and classes
- Relations and functions must specify sort for each coordinate.
- Convention: uppercase letters for classes and lowercase letters for sets.

Language of set theory:

- \in relation: sets,
- \in relation: sets \times classes.

Semantics: A model is $\mathcal{M} = \langle M, \in, S \rangle$, where $\langle M, \in \rangle$ is a model of first-order set theory and S consists of subsets of M.

Alternative formalization: first-order logic

- objects are classes,
- sets are defined to be those classes that are elements of other classes.

Foundations of second-orders set theory: basic requirements

Bold Claim: A reasonable foundation should imply the basic properties of a ZFC model together with its definable sub-collections.

- The class of sets V is a model of ZFC. (Axioms) ZFC for sets.
- V together with predicates for finitely many classes is a model of ZFC. (Axioms) class replacement: the restriction of a class function to a set is a set.
- (Class existence principle) Every first-order definable sub-collection of V is a class. (Axioms) first-order class comprehension scheme class comprehension scheme for second-order formulas in Γ: if φ(x, X) is in Γ and A is a class, then {x | φ(x, A)} is a class.

(日) (周) (王) (王)

Foundations of second-order set theory: GBC

First foundation is developed by Bernays, Gödel, and von Neumann in the 1930s. It codifies the "basic requirements".

GBC: modern formulation

- set axioms: ZFC
- class extensionality
- class replacement
- global choice: there exists a global choice function class (not basic and equivalent to the existence of a well-ordering of V)
- first-order class comprehension

GBC is predicative: definitions of classes don't quantify over classes.

<ロ> (日) (日) (日) (日) (日)

Foundations of second-order set theory: GBC (continued)

Observation:

- There are models of ZFC that don't have a definable well-ordering.
- The constructible universe *L* has a definable well-ordering.
- L together with its definable sub-collections is a model of GBC.
- GBC is equiconsistent with ZFC.

Theorem: (Solovay) Every countable model of ${\rm ZFC}$ can be extended to a model of ${\rm GBC}$ without adding sets.

Proof sketch: Force to add a global well-ordering with a forcing that doesn't add sets because it is $<\kappa$ -closed for every cardinal κ . \Box

Corollary: GBC is conservative over ZFC: any property of sets provable in GBC is already provable in ZFC.

(日) (周) (王) (王)

Foundations of second-order set theory: $\operatorname{K\!M}$

A second-order theory is impredicative if it has comprehension for second-order formulas: definitions of classes can quantify over classes.

Impredicative set theories were first studied by Wang and Morse in the 1940s.

The Kelley-Morse axioms first appeared in Kelley's General Topology textbook in 1955.

KM: modern formulation

- GBC
- (full) second-order comprehension

イロト イポト イヨト イヨト

${\small {\sf Strength of \, KM}}$

Theorem: (Marek, Mostowski?) If $\langle V, \in, S \rangle \models \text{KM}$, then V is the union of an elementary chain of its rank initial segments V_{α} :

$$V_{\alpha_0} \prec V_{\alpha_1} \prec \cdots \prec V_{\alpha_{\xi}} \prec \cdots \prec V,$$

and V thinks that each $V_{\alpha_{\xi}} \models \text{ZFC}$.

Proof sketch:

- \bullet Every model of KM has a truth predicate class Tr coding first-order truth.
- Gödel-codes of all (even nonstandard) ZFC axioms are in Tr.
- If $\langle V_{\alpha}, \in, \mathrm{Tr} \rangle \prec_{\Sigma_2} \langle V, \in, \mathrm{Tr} \rangle$, then $V_{\alpha} \prec V$. \Box

Corollary:

- Full reflection holds in models of $\rm KM!$
- KM proves Con(ZFC) (and much more).
- The consistency strength of KM is greater than the strength of the theory: $\rm ZFC$ + there is a transitive model of ZFC.

・ロト ・個ト ・ヨト ・ヨト

Strength of KM (continued)

Theorem: KM is weaker than the theory ZFC + there is an inaccessible cardinal.

Proof sketch: Suppose $V \models \text{ZFC}$ and κ is inaccessible in V.

- $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{KM}$ (and more).
- Countable elementary substructures of $V_{\kappa+1}$ give models of KM in V_{κ} .
- Con(Con(KM)) holds.

<ロ> (日) (日) (日) (日) (日)

The choice scheme in second-order set theory

- This is a choice/collection principle for classes.
- It was first studied by Marek and Mostowski in the 1970s.
- "Every definable V-indexed family of collections of classes has a choice function."

Coded functions $\mathcal{F}: V \to \mathcal{S}$:

- If Z is a class and x is a set, then $Z_x := \{y \mid (x, y) \in Z\}$ is the class coded on the x^{th} -slice of Z.
- $Z \operatorname{codes} \mathcal{F} : V \to S$ with $F(x) = Z_x$.

Definition: The choice scheme consists of assertions

 $\forall x \exists X \varphi(x, X, A) \to \exists Z \forall x \varphi(x, Z_x, A)$

for every second-order $\varphi(x, X, Y)$ and class A.

The choice scheme in second-order set theory (continued)

Some fragments of the choice scheme:

- Σ_n^1 (or Π_n^1) choice scheme: bounds the complexity of φ
- parameterless choice scheme: no parameters allowed in φ
- set-sized choice scheme: consists of assertions

 $\forall x \in a \exists X \varphi(x, X, A) \rightarrow \exists Z \forall x \in a \varphi(x, Z_x, A).$

for every second-order $\varphi(x, X, Y)$, class A, and set a.

Some applications of the choice scheme: (more on this later)

- (Folklore) The Łoś Theorem for internal second-order ultrapowers of models of KM is equivalent (over KM) to the set-sized choice scheme.
- $\bullet~{\rm KM}$ + choice scheme proves that first-order quantifiers don't affect the second-order complexity of an assertion.
- (Mostowski?) The theory $\rm KM$ + choice scheme is bi-interpretable with the theory $\rm ZFC^-$ + there exists an inaccessible cardinal.

イロン イヨン イヨン イヨン 三日

Does KM imply (some fragment of) the choice scheme?

Observation: If $V \models \text{ZFC}$ and κ is inaccessible in V, then

 $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{KM} + \text{choice scheme.}$

Proof sketch: Use choice in V for families of subsets of $V_{\kappa+1}$. \Box

If we want a model of KM in which the choice scheme fails, choice should fail in V for some easily describable family of subsets of $V_{\kappa+1}$.

Observation: Suppose $V \models \text{ZF}$, κ is regular in V, $V_{\kappa} \models \text{ZFC}$, V_{κ} is well-orderable in V, then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{KM}$.

Independence strategy:

- Start in V having an inaccessible cardinal κ .
- Perform a clever forcing and move to V[G].
- Find a symmetric submodel $N \models \text{ZF}$ of V[G] such that κ is regular in N and $V_{\kappa}^{N} = V_{\kappa}$, but choice fails for some easily describable family of subsets of $V_{\kappa+1}^{N}$.

イロン イヨン イヨン イヨン 三日

A detour into second-order arithmetic

There are two types of objects: numbers and sets of numbers (reals).

Syntax: two-sorted logic

Language of second-order arithmetic:

- language of first-order arithmetic: $\mathscr{L}_{A} = \{+, \cdot, <, 0, 1\}$
- $\bullet \ \in \ relation: \ numbers \times sets$

Semantics: A model is $\mathcal{M} = \langle M, +, \cdot, <, 0, 1, \mathcal{S} \rangle$, where $\langle M, +, \cdot, <, 0, 1 \rangle$ is a model of first-order arithmetic and \mathcal{S} consists of subsets of M.

Basic requirements:

- $\langle M, +, \cdot, <, 0, 1 \rangle \models \text{PA}$ (Peano axioms),
- Induction axiom scheme: consists of assertions

 $(\varphi(0, m, A) \land \forall n (\varphi(n, m, A) \rightarrow \varphi(n+1, m, A))) \rightarrow \forall n \varphi(n, m, A)$

for every first-order $\varphi(n, m, X)$, set A, and number m.

イロン イロン イヨン イヨン 三日

Foundations of second-order arithmetic

ACA₀: arithmetical comprehension

- analogue of GBC
- basic requirements + first-order comprehension
- If V ⊨ ZF, then ⟨ω,+,·,<,0,1,S⟩ ⊨ ACA₀, where S is the collection of all definable subsets of ⟨ω,+,·,<,0,1⟩.

 Z_2 : full second-order arithmetic

- ${\ensuremath{\bullet}}$ analogue of $\underline{K}\underline{M}$
- basic requirements + second-order comprehension
- If $V \models \text{ZF}$, then $\langle \omega, +, \cdot, <, 0, 1, P(\omega) \rangle \models \text{Z}_2$.

イロン イヨン イヨン イヨン

The choice scheme in second-order arithmetic

Definition: The choice scheme consists of assertions

 $\forall n \exists X \varphi(n, X, A) \to \exists Z \forall n \varphi(n, Z_n, A)$

for every second-order $\varphi(n, X, Y)$ and set A.

Choice scheme fragments:

- Σ_n^1 (or Π_n^1) choice scheme
- parameterless choice scheme

Observation: If $V \models ZF + AC_{\omega}$, then $\langle \omega, +, \cdot, <, 0, 1, P(\omega) \rangle \models Z_2$ + choice scheme.

Independence strategy:

- Perform a clever forcing and move to V[G].
- Find a symmetric submodel N ⊨ ZF of V[G] such that choice fails for some easily describable family of subsets of P(ω).

イロン イヨン イヨン イヨン 三日

Unexpected free choice

Theorem: Z_2 proves the Σ_2^1 -choice scheme.

Proof sketch: Suppose:

- $\mathcal{M} = \langle M, +, \times, <, 0, 1, \mathcal{S} \rangle \models \mathbb{Z}_2$
- $\mathcal{M} \models \forall n \exists X \varphi(n, X)$, where φ is Σ_2^1 .

Observe:

- If α is an ordinal coded in S, then S has a set coding L_{α} .
- \mathcal{M} has its own constructible universe $L^{\mathcal{M}}$!
- \mathcal{M} satisfies Shoenfield Absoluteness with respect to $L^{\mathcal{M}}$: If ψ is Σ_2^1 , then $\mathcal{M} \models \psi$ iff $L^{\mathcal{M}} \models \psi$.
- $L^{\mathcal{M}} \models \exists X \varphi(n, X)$ for every *n*.
- Choose the $L^{\mathcal{M}}$ -least X and use comprehension to collect!

If φ has a set parameter A, replace $L^{\mathcal{M}}$ with $L[A]^{\mathcal{M}}$. \Box

Question: What about Π_2^1 -choice scheme?

(日) (同) (三) (三)

Independence of Π_2^1 -choice scheme from Z_2

The Feferman-Lévy model

Classic symmetric model $N \models \text{ZF}$ in which \aleph_1 is a countable union of countable sets.

Symmetric model properties:

- $N \models ZF$,
- all \aleph_n^L (the n^{th} cardinal of L) are countable in N,
- $\aleph_{\omega}^{L} = \aleph_{1}^{N}$ is the first uncountable cardinal of N.

Construction:

- Force with finite-support product P = Π_{n<ω} Coll(ω, ℵ_n) over L to collapse the first ω-many successor cardinals of ω to ω.
- Let $G \subseteq \mathbb{P}$ be *L*-generic and $G_m = G \upharpoonright \prod_{n < m} \operatorname{Coll}(\omega, \aleph_n)$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in L[G_m]$ for some m.

<ロ> (四) (四) (三) (三) (三) (三)

Independence Π_2^1 -choice scheme from Z_2 (continued)

Theorem: (Feferman, Lévy) Π_2^1 -choice scheme can fail in a model of \mathbb{Z}_2 .

Proof sketch: Consider $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle^{N} \models \mathbb{Z}_{2}$.

- $P(\omega)^N = \bigcup_{n < \omega} P(\omega)^{L[G_n]}$.
- Every L_{\aleph_n} is coded in \mathcal{M} , but $L_{\aleph_{\omega}}$ is not coded in \mathcal{M} .
- We cannot collect the codes of L_{\aleph_n} .
- The assertion

$$\forall n \exists X \text{ codes } L_{\aleph_n} \rightarrow \exists Z \forall n Z_n \text{ codes } L_{\aleph_n}$$

fails in \mathcal{M} .

• The assertion "X codes
$$L_{\aleph_n}$$
" is Π_2^1 :
X codes $L_{\alpha} \land \forall Y(\underbrace{Y \text{ codes } L_{\beta} \text{ with } \beta > \alpha}_{\Pi_1^1} \longrightarrow \underbrace{L_{\beta} \text{ thinks } \alpha = \aleph_n}_{\Pi_0^1}). \square$

<ロ> (日) (日) (日) (日) (日)

Independence of Π_1^1 -choice scheme from KM

Natural strategy: Do the Feferman-Lévy construction above an inaccessible cardinal κ .

Symmetric model properties:

- $N \models \text{ZF}$, κ is regular in N, $V_{\kappa}^{N} = V_{\kappa}$. (This gives $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle^{N} \models \text{KM.}$)
- all $(\kappa^{+n})^{L}$ (the nth successor cardinal of κ in L) have size κ ,
- $(\kappa^{+\omega})^L = (\kappa^+)^N$.

Construction:

- Suppose κ is inaccessible in *L*.
- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} \operatorname{Coll}(\kappa, \kappa^{+n})$ over *L* to collapse the first ω -many successor cardinals of κ to κ .
- Let $G \subseteq \mathbb{P}$ be *L*-generic and $G_m = G \upharpoonright \prod_{n < m} \operatorname{Coll}(\omega, \kappa^{+n})$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in L[G_m]$ for some m.

イロン イロン イヨン イヨン 三日

Independence of Π_1^1 -choice scheme from KM (continued)

Theorem: Π_1^1 -choice scheme can fail in a model of KM.

Proof: Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^{N} \models \mathrm{KM}.$

- $V_{\kappa+1}^N = \bigcup_{n < \omega} V_{\kappa+1}^{L[G_n]}$.
- Every $L_{\kappa^{+n}}$ is coded in \mathcal{M} , but $L_{\kappa^{+\omega}}$ is not coded in \mathcal{M} .
- We cannot collect the (codes of) $L_{\kappa^{+n}}$.
- The assertion

 $\forall n \in \omega \exists X \text{ codes } L_{\kappa^{+n}} \rightarrow \exists Z \forall n \in \omega X \text{ codes } L_{\kappa^{+n}}$

fails in \mathcal{M} .

- The assertion "X codes $L_{\kappa^{+n}}$ " is Π^1_1 : "X codes L_{α} " is Π^1_0 .
- Π_1^1 -choice already fails for ω -many choices!

Question: What about Π_0^1 -choice scheme?

・ロト ・四ト ・ヨト ・ヨト

Is Π_0^1 -choice scheme independent from KM?

Independence strategy:

- Start in V having:
 - an inaccessible cardinal κ,
 - ω -many normal κ -Souslin trees $\langle T_n | n < \omega \rangle$ with the property: forcing with $\prod_{n < m} T_n$ doesn't add branches to any T_n with $n \ge m$.
- Forcing with a normal κ -Souslin tree adds a cofinal branch.
- Move to a forcing extension V[G] by $\mathbb{P} = \prod_{n < \omega} T_n$.
- Let $G_m = G \upharpoonright \prod_{n < m} T_n$.
- Find a symmetric model $N \subseteq V[G]$ with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.
- Each T_n has a branch in N, but there is no collecting set of branches!

・ロト ・個ト ・ヨト ・ヨト

A detour into homogeneous κ -Souslin trees

Definition: Suppose κ is a cardinal.

- A normal κ -tree is subtree of $<^{\kappa}2$ of height κ whose every node has
 - 2 immediate successors,
 - a successor at every higher level.
- A normal κ -Souslin tree has no branches of size κ .
- A homogeneous tree has for any two nodes on the same level an automorphism that moves one to the other.
 - A homogeneous tree is a weakly homogeneous poset.

Theorem: There is a universe V with an inaccessible (or Mahlo) cardinal κ having κ -many homogeneous normal κ -Souslin trees $\langle T_{\xi} | \xi < \kappa \rangle$ with the property: forcing with $\prod_{\xi < \delta} T_{\xi}$ ($\delta < \kappa$) doesn't add branches to any T_{α} with $\alpha \ge \delta$.

Proof sketch: Suppose κ is inaccessible (or Mahlo).

- Let \mathbb{Q} be the forcing to add a homogeneous κ -Souslin tree.
- Force with bounded-support product $\mathbb{P} = \prod_{\xi < \kappa} \mathbb{Q}_{\xi}$, where $\mathbb{Q}_{\xi} = \mathbb{Q}$. \Box

(日) (四) (E) (E) (E) (E)

Independence of Π_0^1 -choice from KM

Symmetric model properties:

- $N \models \text{ZF}$, κ is regular in N, $V_{\kappa}^{N} = V_{\kappa}$. (This gives $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle^{N} \models \text{KM}$.)
- *N* has a sequence $\overrightarrow{T} = \langle T_n \mid n \in \omega \rangle$ of κ -trees such that
 - each T_n has a branch,
 - there is no collecting set of branches.

Construction:

- Suppose:
 - κ is inaccessible,
 - $\langle T_n \mid n < \omega \rangle$ are homogeneous normal κ -Souslin trees with the property: forcing with $\prod_{n < m} T_n$ doesn't add branches to T_n for $n \ge m$.
- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} T_n$ to add branches to all T_n .
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_m = G \upharpoonright \prod_{n < m} T_n$.
- $N \subseteq V[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m. (This uses weak homogeneity of the trees.)

Independence of Π_0^1 -choice from KM (continued)

Theorem: (G., Johnstone, Hamkins) Π_0^1 -choice scheme can fail in a model of KM. **Proof sketch**: Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^N \models \text{KM}.$

• The assertion

 $\Psi(\overrightarrow{T}) := \forall n \in \omega \exists B \text{ branch of } T_n \to \exists Z \forall n \in \omega \ Z_n \text{ is a branch of } T_n$

fails in \mathcal{M} .

- The assertion "*B* is a branch of T_n " is Π_0^1 (in the parameter \vec{T}).
- Π_0^1 -choice already fails for ω -many choices!

Theorem: (G., Johnstone, Hamkins) Parameterless Π_0^1 -choice scheme can fail in a model of KM.

Proof sketch: Suppose κ is Mahlo and \overrightarrow{T} has the required property.

- Code $\vec{\tau}$ into the continuum function below κ using Easton product forcing.
- In the Easton product extension V[G]:
 - κ is inaccessible (even Mahlo),
 - ▶ \overrightarrow{T} is definable in V_κ and continues to have the required property. □

イロン 不留 とくほど 不足とし 聞

Separating fragments of the choice scheme

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice scheme holds, but Π_0^1 -choice scheme fails.

Proof sketch:

- Suppose
 - κ is inaccessible,
 - ► $\vec{T} = \langle T_{\xi} | \xi < \kappa \rangle$ are homogeneous normal κ -Souslin trees with the property: forcing with $\prod_{\xi < \delta} T_{\xi}$ doesn't add branches to T_{ξ} for $\xi \ge \delta$.
- Force with bounded-support product $\mathbb{P} = \prod_{\xi < \kappa} T_{\xi}$.
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_{\delta} = G \upharpoonright \prod_{\xi < \delta} T_{\xi}$.
- Construct symmetric model $N \subseteq V[G]$ of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_{\delta}]$ for some δ . \Box

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice scheme holds, but parameterless Π_0^1 -choice scheme fails.

Proof sketch: Suppose κ is Mahlo and code \overrightarrow{T} into the continuum function below κ . \Box

(日) (四) (E) (E) (E) (E)

Separating fragments of the choice scheme (continued)

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which parameterless choice scheme holds, but Π_1^1 -choice scheme fails.

Proof sketch:

- We use ideas of Guzicki who proved a similar result for Z_2 .
- Suppose κ is inaccessible in *L*.
- Force with bounded-support product $\prod_{\xi < \kappa^+} \operatorname{Coll}(\kappa, \kappa^{(+\xi)})$ over *L*.
- Let $G \subseteq \mathbb{P}$ be *L*-generic and $G_{\delta} = G \upharpoonright \prod_{\xi < \delta} \operatorname{Coll}(\kappa, \kappa^{(+\xi)})$.
- Construct symmetric model $N \subseteq L[G]$ of ZF with the property: A is a subset of ordinals in N iff $A \in L[G_{\delta}]$ for some δ .
- Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^N$.
- Let A code $(\kappa^+)^L$ in \mathcal{M} and let α_{ξ} be the ordinal corresponding to ξ in A.
- The assertion

$$\Psi(A) := \forall \xi \, \exists X \text{ codes } L_{\alpha_{\xi}} \to \exists Z \, \forall \xi \, X \text{ codes } L_{\alpha_{\xi}}$$

fails in \mathcal{M} .

 \bullet Parameterless choice holds in $\mathcal{M}.\ \Box$

<ロ> (四) (四) (三) (三) (三) (三)

The theory KM^+

Definition: The theory KM^+ consists of KM together with the choice scheme.

Bold claim: KM^+ is a better foundation for second-order set theory than KM.

- KM⁺ proves Łoś Theorem for internal second-order ultrapowers.
 - ▶ Suppose $\mathcal{M} = \langle M, \in, S \rangle \models KM^+$, $I \in M$ and $U \in M$ is an ultrafilter on I.
 - ▶ Classes in Ult(\mathcal{M}, U) are represented by coded functions $\mathcal{F} = \langle A_i | i \in I \rangle$ in \mathcal{S} .
- KM⁺ proves that first-order quantifiers don't affect second-order complexity: suppose $\varphi(x)$ is equivalent to a Σ_n^1 -formula, then so are
 - ∀xφ(x),
 - ► $\exists x \varphi(x).$
- $\bullet~{\rm KM^+}$ is bi-interpretable with the theory ${\rm ZFC^-}$ + there is an inaccessible.

Open question: What is the consistency strength of KM^+ compared to KM?

(日) (周) (王) (王)

Weaknesses of KM

Theorem: (Folklore) Los Theorem for internal second-order ultrapowers is equivalent (over KM) to the set-sized choice scheme.

Question: How badly does Loś Theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal second-order ultrapower by an ultrafilter on ω is not a model of KM.

Theorem: (G., Johnstone, Hamkins) There is a Σ_1^1 -formula $\varphi(x)$ and a model of KM in which $\forall x \varphi(x)$ is not equivalent to a Σ_1^1 -formula.

<ロ> (日) (日) (日) (日) (日)

Stronger choice principles for classes?

Definition: The ω -dependent choice scheme consists of assertions

 $\forall X \exists Y \varphi(X, Y, A) \to \exists Z : \omega \to S \ \forall n \in \omega \varphi(Z_n, Z_{n+1})$

for every second-order formula φ and class A. "Every definable relation on classes with no terminal nodes has an ω -branch."

Observation: $KM^+ + \omega$ -dependent choice scheme proves reflection for second-order assertions: every second-order formula is reflected by some coded collection of classes.

Definition: The ORD-dependent choice scheme consists of assertions

 $\forall \beta \forall X : \beta \to S \exists Y \varphi(X, Y, A) \to \exists Z : \text{ORD} \to S \forall \beta \varphi(Z \upharpoonright \beta, Z_{\beta}, A)$

for every second-order φ and class A.

Dependent choice scheme

Theorem: (Simpson, unpublished) There is a model of Z_2 in which choice scheme holds but Π_2^1 -dependent choice scheme fails.

Theorem (Antos, Friedman) $\rm KM^+ + ORD$ -dependent choice scheme is preserved by all definable tame hyperclass forcing.

Open question: Can we separate the choice scheme, ω -dependent choice scheme, and ORD-dependent choice scheme?

<ロ> (日) (日) (日) (日) (日)

Thank you!

イロト イヨト イヨト イヨト