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Second-order set theory

Why second-order set theory?

Proper classes are collections of sets that are too “big” to be sets themselves. Naive set
theories which treated them as sets ran into paradoxes.

the universe V of all sets

the collection ORD of all ordinals

In first-order set theory, classes are informally defined as the definable (with parameters)
sub-collections of the model.

We cannot study proper classes within the formal framework of first-order set theory,
but only in the meta-theory.

The notion of class as a definable sub-collection is too restrictive!

Second-order set theory is a formal framework for studying the properties of sets as well
as classes.

Classes are objects in the model.

We can axiomatize properties of classes.

We can quantify over classes.

Non-definable classes are allowed.
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Second-order set theory

Why formally study classes?

Proper class forcing: we can obtain models

with desired continuum functions,

in which every set is coded into continuum pattern,

in which there is no definable linear ordering of sets.

Reinhardt axiom: there exists an elementary embedding j : V → V .

It is not expressible in first-order set theory.

It is easy to see that if V |= ZF, there no definable elementary j : V → V .

(Kunen Inconsistency) There is no elementary j : V → V in any model of a
“reasonable” second-order set theory with AC.

(Open Problem) Can there be an elementary j : V → V in a model of a
“reasonable” second-order set theory without AC?

Model theoretic constructions with ultrafilters on classes

Models of first-order set theory with interesting model theoretic properties are
obtained as ultrapowers of models of second-order set theory.

Ultrafilter measures classes.

Elements of ultrapower are equivalence classes of class functions.
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Second-order set theory

Primer on second-order set theory

Structures have two types of objects: sets and classes.

Syntax: two-sorted logic

separate variables and quantifiers for sets and classes

Relations and functions must specify sort for each coordinate.

Convention: uppercase letters for classes and lowercase letters for sets.

Language of set theory:

∈ relation: sets,

∈ relation: sets× classes.

Semantics: A model is M = 〈M,∈,S〉, where 〈M,∈〉 is a model of first-order set theory
and S consists of subsets of M.

Alternative formalization: first-order logic

objects are classes,

sets are defined to be those classes that are elements of other classes.
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Second-order set theory

Foundations of second-orders set theory: basic requirements

Bold Claim: A reasonable foundation should imply the basic properties of a ZFC model
together with its definable sub-collections.

The class of sets V is a model of ZFC.
(Axioms) ZFC for sets.

V together with predicates for finitely many classes is a model of ZFC.
(Axioms) class replacement: the restriction of a class function to a set is a set.

(Class existence principle) Every first-order definable sub-collection of V is a class.
(Axioms) first-order class comprehension scheme
class comprehension scheme for second-order formulas in Γ:
if ϕ(x ,X ) is in Γ and A is a class, then {x | ϕ(x ,A)} is a class.
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Second-order set theory

Foundations of second-order set theory: GBC

First foundation is developed by Bernays, Gödel, and von Neumann in the 1930s. It
codifies the “basic requirements”.

GBC: modern formulation

set axioms: ZFC

class extensionality

class replacement

global choice: there exists a global choice function class (not basic and equivalent to
the existence of a well-ordering of V )

first-order class comprehension

GBC is predicative: definitions of classes don’t quantify over classes.
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Second-order set theory

Foundations of second-order set theory: GBC (continued)

Observation:

There are models of ZFC that don’t have a definable well-ordering.

The constructible universe L has a definable well-ordering.

L together with its definable sub-collections is a model of GBC.

GBC is equiconsistent with ZFC.

Theorem: (Solovay) Every countable model of ZFC can be extended to a model of GBC
without adding sets.

Proof sketch: Force to add a global well-ordering with a forcing that doesn’t add sets
because it is <κ-closed for every cardinal κ. �

Corollary: GBC is conservative over ZFC: any property of sets provable in GBC is
already provable in ZFC.
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Second-order set theory

Foundations of second-order set theory: KM

A second-order theory is impredicative if it has comprehension for second-order formulas:
definitions of classes can quantify over classes.

Impredicative set theories were first studied by Wang and Morse in the 1940s.

The Kelley-Morse axioms first appeared in Kelley’s General Topology textbook in 1955.

KM: modern formulation

GBC

(full) second-order comprehension
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Second-order set theory

Strength of KM

Theorem: (Marek, Mostowski?) If 〈V ,∈,S〉 |= KM, then V is the union of an
elementary chain of its rank initial segments Vα:

Vα0 ≺ Vα1 ≺ · · · ≺ Vαξ ≺ · · · ≺ V ,

and V thinks that each Vαξ |= ZFC.

Proof sketch:

Every model of KM has a truth predicate class Tr coding first-order truth.

Gödel-codes of all (even nonstandard) ZFC axioms are in Tr.

If 〈Vα,∈,Tr〉 ≺Σ2 〈V ,∈,Tr〉, then Vα ≺ V . �

Corollary:

Full reflection holds in models of KM!

KM proves Con(ZFC) (and much more).

The consistency strength of KM is greater than the strength of the theory:
ZFC + there is a transitive model of ZFC.
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Second-order set theory

Strength of KM (continued)

Theorem: KM is weaker than the theory ZFC + there is an inaccessible cardinal.

Proof sketch:
Suppose V |= ZFC and κ is inaccessible in V .

〈Vκ,∈,Vκ+1〉 |= KM (and more).

Countable elementary substructures of Vκ+1 give models of KM in Vκ.

Con(Con(KM)) holds.
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The choice scheme in second-order set theory

The choice scheme in second-order set theory

This is a choice/collection principle for classes.

It was first studied by Marek and Mostowski in the 1970s.

“Every definable V -indexed family of collections of classes has a choice function.”

Coded functions F : V → S:

If Z is a class and x is a set, then Zx := {y | (x , y) ∈ Z} is the class coded on the
x th-slice of Z .

Z codes F : V → S with F (x) = Zx .

Definition: The choice scheme consists of assertions

∀x ∃X ϕ(x ,X ,A)→ ∃Z ∀x ϕ(x ,Zx ,A)

for every second-order ϕ(x ,X ,Y ) and class A.
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The choice scheme in second-order set theory

The choice scheme in second-order set theory (continued)

Some fragments of the choice scheme:

Σ1
n (or Π1

n) choice scheme: bounds the complexity of ϕ

parameterless choice scheme: no parameters allowed in ϕ

set-sized choice scheme: consists of assertions

∀x ∈ a ∃X ϕ(x ,X ,A)→ ∃Z ∀x ∈ aϕ(x ,Zx ,A).

for every second-order ϕ(x ,X ,Y ), class A, and set a.

Some applications of the choice scheme: (more on this later)

(Folklore) The  Loś Theorem for internal second-order ultrapowers of models of KM
is equivalent (over KM) to the set-sized choice scheme.

KM + choice scheme proves that first-order quantifiers don’t affect the second-order
complexity of an assertion.

(Mostowski?) The theory KM + choice scheme is bi-interpretable with the theory
ZFC− + there exists an inaccessible cardinal.
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The choice scheme in second-order set theory

Does KM imply (some fragment of) the choice scheme?

Observation: If V |= ZFC and κ is inaccessible in V , then

〈Vκ,∈,Vκ+1〉 |= KM + choice scheme.

Proof sketch: Use choice in V for families of subsets of Vκ+1. �

If we want a model of KM in which the choice scheme fails, choice should fail in V for
some easily describable family of subsets of Vκ+1.

Observation: Suppose V |= ZF, κ is regular in V , Vκ |= ZFC, Vκ is well-orderable in V ,
then 〈Vκ,∈,Vκ+1〉 |= KM.

Independence strategy:

Start in V having an inaccessible cardinal κ.

Perform a clever forcing and move to V [G ].

Find a symmetric submodel N |= ZF of V [G ] such that κ is regular in N and
V N
κ = Vκ, but choice fails for some easily describable family of subsets of V N

κ+1.
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The choice scheme in second-order arithmetic

A detour into second-order arithmetic

There are two types of objects: numbers and sets of numbers (reals).

Syntax: two-sorted logic

Language of second-order arithmetic:

language of first-order arithmetic: LA = {+, ·, <, 0, 1}
∈ relation: numbers× sets

Semantics: A model is M = 〈M,+, ·, <, 0, 1,S〉, where 〈M,+, ·, <, 0, 1〉 is a model of
first-order arithmetic and S consists of subsets of M.

Basic requirements:

〈M,+, ·, <, 0, 1〉 |= PA (Peano axioms),

Induction axiom scheme: consists of assertions

(ϕ(0,m,A) ∧ ∀n (ϕ(n,m,A)→ ϕ(n + 1,m,A)))→ ∀nϕ(n,m,A)

for every first-order ϕ(n,m,X ), set A, and number m.
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The choice scheme in second-order arithmetic

Foundations of second-order arithmetic

ACA0: arithmetical comprehension

analogue of GBC

basic requirements + first-order comprehension

If V |= ZF, then 〈ω,+, ·, <, 0, 1,S〉 |= ACA0, where S is the collection of all
definable subsets of 〈ω,+, ·, <, 0, 1〉.

Z2: full second-order arithmetic

analogue of KM

basic requirements + second-order comprehension

If V |= ZF, then 〈ω,+, ·, <, 0, 1,P(ω)〉 |= Z2.
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The choice scheme in second-order arithmetic

The choice scheme in second-order arithmetic

Definition: The choice scheme consists of assertions

∀n ∃X ϕ(n,X ,A)→ ∃Z ∀nϕ(n,Zn,A)

for every second-order ϕ(n,X ,Y ) and set A.

Choice scheme fragments:

Σ1
n (or Π1

n) choice scheme

parameterless choice scheme

Observation: If V |= ZF + ACω, then 〈ω,+, ·, <, 0, 1,P(ω)〉 |= Z2 + choice scheme.

Independence strategy:

Perform a clever forcing and move to V [G ].

Find a symmetric submodel N |= ZF of V [G ] such that choice fails for some easily
describable family of subsets of P(ω).
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The choice scheme in second-order arithmetic

Unexpected free choice

Theorem: Z2 proves the Σ1
2-choice scheme.

Proof sketch: Suppose:

M = 〈M,+,×, <, 0, 1,S〉 |= Z2

M |= ∀n∃Xϕ(n,X ), where ϕ is Σ1
2.

Observe:

If α is an ordinal coded in S, then S has a set coding Lα.

M has its own constructible universe LM!

M satisfies Shoenfield Absoluteness with respect to LM:
If ψ is Σ1

2, then M |= ψ iff LM |= ψ.

LM |= ∃Xϕ(n,X ) for every n.

Choose the LM-least X and use comprehension to collect!

If ϕ has a set parameter A, replace LM with L[A]M. �

Question: What about Π1
2-choice scheme?
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The choice scheme in second-order arithmetic

Independence of Π1
2-choice scheme from Z2

The Feferman-Lévy model

Classic symmetric model N |= ZF in which ℵ1 is a countable union of countable sets.

Symmetric model properties:

N |= ZF,

all ℵLn (the nth cardinal of L) are countable in N,

ℵLω = ℵN1 is the first uncountable cardinal of N.

Construction:

Force with finite-support product P =
∏

n<ω Coll(ω,ℵn) over L to collapse
the first ω-many successor cardinals of ω to ω.

Let G ⊆ P be L-generic and Gm = G �
∏

n<m Coll(ω,ℵn).

N ⊆ L[G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ L[Gm] for some m.
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The choice scheme in second-order arithmetic

Independence Π1
2-choice scheme from Z2 (continued)

Theorem: (Feferman, Lévy) Π1
2-choice scheme can fail in a model of Z2.

Proof sketch: Consider M = 〈ω,+,×, <, 0, 1,P(ω)〉N |= Z2.

P(ω)N =
⋃

n<ω P(ω)L[Gn ].

Every Lℵn is coded in M, but Lℵω is not coded in M.

We cannot collect the codes of Lℵn .

The assertion
∀n ∃X codes Lℵn → ∃Z ∀n Zn codes Lℵn

fails in M.

The assertion “X codes Lℵn” is Π1
2:

X codes Lα︸ ︷︷ ︸
Π1

1

∧∀Y (Y codes Lβ with β > α︸ ︷︷ ︸
Π1

1

−→ Lβ thinks α = ℵn︸ ︷︷ ︸
Π1

0

). �
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Independence of the choice scheme from KM

Independence of Π1
1-choice scheme from KM

Natural strategy: Do the Feferman-Lévy construction above an inaccessible cardinal κ.

Symmetric model properties:

N |= ZF, κ is regular in N, V N
κ = Vκ. (This gives 〈Vκ,∈,Vκ+1〉N |= KM.)

all (κ+n)L (the nth successor cardinal of κ in L) have size κ,

(κ+ω)L = (κ+)N .

Construction:

Suppose κ is inaccessible in L.

Force with finite-support product P =
∏

n<ω Coll(κ, κ+n) over L to collapse
the first ω-many successor cardinals of κ to κ.

Let G ⊆ P be L-generic and Gm = G �
∏

n<m Coll(ω, κ+n).

N ⊆ L[G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ L[Gm] for some m.
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Independence of the choice scheme from KM

Independence of Π1
1-choice scheme from KM (continued)

Theorem: Π1
1-choice scheme can fail in a model of KM.

Proof: Consider M = 〈Vκ,∈,Vκ+1〉N |= KM.

V N
κ+1 =

⋃
n<ω V

L[Gn ]
κ+1 .

Every Lκ+n is coded in M, but Lκ+ω is not coded in M.

We cannot collect the (codes of) Lκ+n .

The assertion

∀n ∈ ω ∃X codes Lκ+n → ∃Z ∀n ∈ ω X codes Lκ+n

fails in M.

The assertion “X codes Lκ+n” is Π1
1: “X codes Lα” is Π1

0.

Π1
1-choice already fails for ω-many choices!

Question: What about Π1
0-choice scheme?
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Independence of the choice scheme from KM

Is Π1
0-choice scheme independent from KM?

Independence strategy:

Start in V having:
I an inaccessible cardinal κ,
I ω-many normal κ-Souslin trees 〈Tn | n < ω〉 with the property:

forcing with
∏

n<m Tn doesn’t add branches to any Tn with n ≥ m.

Forcing with a normal κ-Souslin tree adds a cofinal branch.

Move to a forcing extension V [G ] by P =
∏

n<ω Tn.

Let Gm = G �
∏

n<m Tn.

Find a symmetric model N ⊆ V [G ] with the property:
A is a subset of ordinals in N iff A ∈ V [Gm] for some m.

Each Tn has a branch in N, but there is no collecting set of branches!
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Independence of the choice scheme from KM

A detour into homogeneous κ-Souslin trees

Definition: Suppose κ is a cardinal.

A normal κ-tree is subtree of <κ2 of height κ whose every node has
I 2 immediate successors,
I a successor at every higher level.

A normal κ-Souslin tree has no branches of size κ.

A homogeneous tree has for any two nodes on the same level an automorphism that
moves one to the other.

I A homogeneous tree is a weakly homogeneous poset.

Theorem: There is a universe V with an inaccessible (or Mahlo) cardinal κ having
κ-many homogeneous normal κ-Souslin trees 〈Tξ | ξ < κ〉 with the property:
forcing with

∏
ξ<δ Tξ (δ < κ) doesn’t add branches to any Tα with α ≥ δ.

Proof sketch: Suppose κ is inaccessible (or Mahlo).

Let Q be the forcing to add a homogeneous κ-Souslin tree.

Force with bounded-support product P =
∏
ξ<κQξ, where Qξ = Q. �
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Independence of the choice scheme from KM

Independence of Π1
0-choice from KM

Symmetric model properties:

N |= ZF, κ is regular in N, V N
κ = Vκ. (This gives 〈Vκ,∈,Vκ+1〉N |= KM.)

N has a sequence
−→
T = 〈Tn | n ∈ ω〉 of κ-trees such that

I each Tn has a branch,
I there is no collecting set of branches.

Construction:

Suppose:
I κ is inaccessible,
I 〈Tn | n < ω〉 are homogeneous normal κ-Souslin trees with the property:

forcing with
∏

n<m Tn doesn’t add branches to Tn for n ≥ m.

Force with finite-support product P =
∏

n<ω Tn to add branches to all Tn.

Let G ⊆ P be V -generic and Gm = G �
∏

n<m Tn.

N ⊆ V [G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gm] for some m.
(This uses weak homogeneity of the trees.)
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Independence of the choice scheme from KM

Independence of Π1
0-choice from KM (continued)

Theorem: (G., Johnstone, Hamkins) Π1
0-choice scheme can fail in a model of KM.

Proof sketch: Consider M = 〈Vκ,∈,Vκ+1〉N |= KM.

The assertion

Ψ(
−→
T ) := ∀n ∈ ω ∃B branch of Tn → ∃Z ∀n ∈ ω Zn is a branch of Tn

fails in M.

The assertion “B is a branch of Tn” is Π1
0 (in the parameter

−→
T ).

Π1
0-choice already fails for ω-many choices! �

Theorem: (G., Johnstone, Hamkins) Parameterless Π1
0-choice scheme can fail in a model

of KM.

Proof sketch: Suppose κ is Mahlo and
−→
T has the required property.

Code
−→
T into the continuum function below κ using Easton product forcing.

In the Easton product extension V [G ]:
I κ is inaccessible (even Mahlo),
I
−→
T is definable in Vκ and continues to have the required property. �
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Separating fragments of the choice scheme

Separating fragments of the choice scheme

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice
scheme holds, but Π1

0-choice scheme fails.

Proof sketch:

Suppose
I κ is inaccessible,
I
−→
T = 〈Tξ | ξ < κ〉 are homogeneous normal κ-Souslin trees with the property:
forcing with

∏
ξ<δ Tξ doesn’t add branches to Tξ for ξ ≥ δ.

Force with bounded-support product P =
∏
ξ<κ Tξ.

Let G ⊆ P be V -generic and Gδ = G �
∏
ξ<δ Tξ.

Construct symmetric model N ⊆ V [G ] of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gδ] for some δ. �

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice
scheme holds, but parameterless Π1

0-choice scheme fails.

Proof sketch: Suppose κ is Mahlo and code
−→
T into the continuum function below κ. �
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Separating fragments of the choice scheme

Separating fragments of the choice scheme (continued)

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which parameterless
choice scheme holds, but Π1

1-choice scheme fails.

Proof sketch:

We use ideas of Guzicki who proved a similar result for Z2.

Suppose κ is inaccessible in L.

Force with bounded-support product
∏
ξ<κ+ Coll(κ, κ(+ξ)) over L.

Let G ⊆ P be L-generic and Gδ = G �
∏
ξ<δ Coll(κ, κ

(+ξ)).

Construct symmetric model N ⊆ L[G ] of ZF with the property:
A is a subset of ordinals in N iff A ∈ L[Gδ] for some δ.

Consider M = 〈Vκ,∈,Vκ+1〉N .

Let A code (κ+)L in M and let αξ be the ordinal corresponding to ξ in A.

The assertion

Ψ(A) := ∀ξ ∃X codes Lαξ → ∃Z ∀ξ X codes Lαξ

fails in M.

Parameterless choice holds in M. �
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KM vs. KM+

The theory KM+

Definition: The theory KM+ consists of KM together with the choice scheme.

Bold claim: KM+ is a better foundation for second-order set theory than KM.

KM+ proves  Loś Theorem for internal second-order ultrapowers.
I Suppose M = 〈M,∈,S〉 |= KM+, I ∈ M and U ∈ M is an ultrafilter on I .
I Classes in Ult(M,U) are represented by coded functions F = 〈Ai | i ∈ I 〉 in S.

KM+ proves that first-order quantifiers don’t affect second-order complexity:
suppose ϕ(x) is equivalent to a Σ1

n-formula, then so are
I ∀xϕ(x),
I ∃xϕ(x).

KM+ is bi-interpretable with the theory ZFC− + there is an inaccessible.

Open question: What is the consistency strength of KM+ compared to KM?
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KM vs. KM+

Weaknesses of KM

Theorem: (Folklore)  Loś Theorem for internal second-order ultrapowers is equivalent
(over KM) to the set-sized choice scheme.

Question: How badly does  Loś Theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal
second-order ultrapower by an ultrafilter on ω is not a model of KM.

Theorem: (G., Johnstone, Hamkins) There is a Σ1
1-formula ϕ(x) and a model of KM in

which ∀xϕ(x) is not equivalent to a Σ1
1-formula.
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Stronger class choice principles

Stronger choice principles for classes?

Definition: The ω-dependent choice scheme consists of assertions

∀X∃Y ϕ(X ,Y ,A)→ ∃Z : ω → S ∀n ∈ ω ϕ(Zn,Zn+1)

for every second-order formula ϕ and class A.
“Every definable relation on classes with no terminal nodes has an ω-branch.”

Observation: KM+ + ω-dependent choice scheme proves reflection for second-order
assertions: every second-order formula is reflected by some coded collection of classes.

Definition: The ORD-dependent choice scheme consists of assertions

∀β∀X : β → S ∃Y ϕ(X ,Y ,A)→ ∃Z : ORD→ S ∀β ϕ(Z � β,Zβ ,A)

for every second-order ϕ and class A.
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Stronger class choice principles

Dependent choice scheme

Theorem: (Simpson, unpublished) There is a model of Z2 in which choice scheme holds
but Π1

2-dependent choice scheme fails.

Theorem (Antos, Friedman) KM+ + ORD-dependent choice scheme is preserved by all
definable tame hyperclass forcing.

Open question: Can we separate the choice scheme, ω-dependent choice scheme, and
ORD-dependent choice scheme?
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Stronger class choice principles

Thank you!
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