Kelley-Morse set theory and choice principles for classes

Victoria Gitman

vgitman@nylogic.org
http://boolesrings.org/victoriagitman

SoT FoM II
January 13, 2015
This is joint work with Joel David Hamkins and Thomas Johnstone (CUNY).
Why second-order set theory?

Proper classes are collections of sets that are too “big” to be sets themselves. Naive set theories which treated them as sets ran into paradoxes.

- the universe V of all sets
- the collection ORD of all ordinals

In first-order set theory, classes are informally defined as the definable (with parameters) sub-collections of the model.

- We cannot study proper classes within the formal framework of first-order set theory, but only in the meta-theory.
- The notion of class as a definable sub-collection is too restrictive!

Second-order set theory is a formal framework for studying the properties of sets as well as classes.

- Classes are objects in the model.
- We can axiomatize properties of classes.
- We can quantify over classes.
- Non-definable classes are allowed.
Why formally study classes?

Proper class forcing: we can obtain models
- with desired continuum functions,
- in which every set is coded into continuum pattern,
- in which there is no definable linear ordering of sets.

Reinhardt axiom: there exists an elementary embedding $j: V \rightarrow V$.
- It is not expressible in first-order set theory.
- It is easy to see that if $V \models ZF$, there no definable elementary $j: V \rightarrow V$.
- (**Kunen Inconsistency**) There is no elementary $j: V \rightarrow V$ in any model of a “reasonable” second-order set theory with AC.
- (**Open Problem**) Can there be an elementary $j: V \rightarrow V$ in a model of a “reasonable” second-order set theory without AC?

Model theoretic constructions with ultrafilters on classes
- Models of first-order set theory with interesting model theoretic properties are obtained as ultrapowers of models of second-order set theory.
- Ultrafilter measures classes.
- Elements of ultrapower are equivalence classes of class functions.
Primer on second-order set theory

Structures have two types of objects: sets and classes.

Syntax: two-sorted logic
- separate variables and quantifiers for sets and classes
- Relations and functions must specify sort for each coordinate.
- Convention: uppercase letters for classes and lowercase letters for sets.

Language of set theory:
- \in relation: sets,
- \in relation: sets \times classes.

Semantics: A model is $\mathcal{M} = \langle M, \in, S \rangle$, where $\langle M, \in \rangle$ is a model of first-order set theory and S consists of subsets of M.

Alternative formalization: first-order logic
- objects are classes,
- sets are defined to be those classes that are elements of other classes.
Foundations of second-orders set theory: basic requirements

Bold Claim: A reasonable foundation should imply the basic properties of a ZFC model together with its definable sub-collections.

- The class of sets V is a model of ZFC.
 (Axioms) ZFC for sets.

- V together with predicates for finitely many classes is a model of ZFC.
 (Axioms) **class replacement**: the restriction of a class function to a set is a set.

- (Class existence principle) Every first-order definable sub-collection of V is a class.
 (Axioms) **first-order** class comprehension scheme
 class comprehension scheme for second-order formulas in Γ:
 if $\varphi(x, X)$ is in Γ and A is a class, then $\{x \mid \varphi(x, A)\}$ is a class.
Foundations of second-order set theory: GBC

First foundation is developed by Bernays, Gödel, and von Neumann in the 1930s. It codifies the \textit{“basic requirements”}.

\textbf{GBC: modern formulation}

- set axioms: ZFC
- class extensionality
- class replacement
- \textbf{global choice}: there exists a global choice function class (\textit{not basic} and equivalent to the existence of a \textit{well-ordering of }\mathcal{V})
- first-order class comprehension

\textbf{GBC is predicative}: definitions of classes don’t quantify over classes.
Foundations of second-order set theory: GBC (continued)

Observation:
- There are models of ZFC that don't have a definable well-ordering.
- The constructible universe \(L \) has a definable well-ordering.
- \(L \) together with its definable sub-collections is a model of GBC.
- GBC is equiconsistent with ZFC.

Theorem: (Solovay) Every countable model of ZFC can be extended to a model of GBC without adding sets.

Proof sketch: Force to add a global well-ordering with a forcing that doesn’t add sets because it is \(<\kappa\)-closed for every cardinal \(\kappa \). □

Corollary: GBC is conservative over ZFC: any property of sets provable in GBC is already provable in ZFC.
Foundations of second-order set theory: KM

A second-order theory is **impredicative** if it has comprehension for second-order formulas: definitions of classes can quantify over classes.

Impredicative set theories were first studied by Wang and Morse in the 1940s.

The **Kelley-Morse** axioms first appeared in Kelley’s *General Topology* textbook in 1955.

KM: modern formulation

- GBC
- (full) *second-order* comprehension
Strength of KM

Theorem: (Marek, Mostowski?) If $\langle V, \in, S \rangle \models \text{KM}$, then V is the union of an elementary chain of its rank initial segments V_α:

$$V_{\alpha_0} \prec V_{\alpha_1} \prec \cdots \prec V_{\alpha_\xi} \prec \cdots \prec V,$$

and V thinks that each $V_{\alpha_\xi} \models \text{ZFC}$.

Proof sketch:

- Every model of KM has a truth predicate class Tr coding first-order truth.
- Gödel-codes of all (even nonstandard) ZFC axioms are in Tr.
- If $\langle V_\alpha, \in, \text{Tr} \rangle \prec_\Sigma_2 \langle V, \in, \text{Tr} \rangle$, then $V_\alpha \prec V$. □

Corollary:

- Full reflection holds in models of KM!
- KM proves $\text{Con}(\text{ZFC})$ (and much more).
- The consistency strength of KM is greater than the strength of the theory: $\text{ZFC} + \text{there is a transitive model of ZFC}$.
Strength of KM (continued)

Theorem: KM is weaker than the theory ZFC + there is an inaccessible cardinal.

Proof sketch:
Suppose $V \models ZFC$ and κ is inaccessible in V.

- $\langle V_\kappa, \in, V_{\kappa+1} \rangle \models KM$ (and more).
- Countable elementary substructures of $V_{\kappa+1}$ give models of KM in V_κ.
- $\text{Con}(\text{Con}(\text{KM}))$ holds.
This is a choice/collection principle for classes.

It was first studied by Marek and Mostowski in the 1970s.

“Every definable V-indexed family of collections of classes has a choice function.”

Coded functions $F : V \to S$:

- If Z is a class and x is a set, then $Z_x := \{y \mid (x, y) \in Z\}$ is the class coded on the x^{th}-slice of Z.
- Z codes $F : V \to S$ with $F(x) = Z_x$.

Definition: The choice scheme consists of assertions

$$\forall x \exists X \varphi(x, X, A) \rightarrow \exists Z \forall x \varphi(x, Z_x, A)$$

for every second-order $\varphi(x, X, Y)$ and class A.
Some fragments of the choice scheme:

- Σ^1_n (or Π^1_n) choice scheme: bounds the complexity of φ
- parameterless choice scheme: no parameters allowed in φ
- set-sized choice scheme: consists of assertions

$$\forall x \in a \exists X \varphi(x, X, A) \rightarrow \exists Z \forall x \in a \varphi(x, Z_x, A).$$

for every second-order $\varphi(x, X, Y)$, class A, and set a.

Some applications of the choice scheme: (more on this later)

- (Folklore) The Łoś Theorem for internal second-order ultrapowers of models of KM is equivalent (over KM) to the set-sized choice scheme.
- KM + choice scheme proves that first-order quantifiers don’t affect the second-order complexity of an assertion.
- (Mostowski?) The theory KM + choice scheme is bi-interpretable with the theory ZFC$^- +$ there exists an inaccessible cardinal.
Does KM imply (some fragment of) the choice scheme?

Observation: If $V \models ZFC$ and κ is inaccessible in V, then

$$\langle V_\kappa, \in, V_{\kappa+1} \rangle \models KM + \text{choice scheme}. $$

Proof sketch: Use choice in V for families of subsets of $V_{\kappa+1}$. □

If we want a model of KM in which the choice scheme fails, choice should fail in V for some easily describable family of subsets of $V_{\kappa+1}$.

Observation: Suppose $V \models ZF$, κ is regular in V, $V_\kappa \models ZFC$, V_κ is well-orderable in V, then $\langle V_\kappa, \in, V_{\kappa+1} \rangle \models KM$.

Independence strategy:

- Start in V having an inaccessible cardinal κ.
- Perform a clever forcing and move to $V[G]$.
- Find a symmetric submodel $N \models ZF$ of $V[G]$ such that κ is regular in N and $V_\kappa^N = V_\kappa$, but choice fails for some easily describable family of subsets of $V_{\kappa+1}$.
A detour into second-order arithmetic

There are two types of objects: **numbers** and **sets** of numbers (reals).

Syntax: two-sorted logic

Language of second-order arithmetic:
- language of first-order arithmetic: \(\mathcal{L}_A = \{+ , \cdot , < , 0 , 1 \} \)
- \(\in \) relation: numbers \(\times \) sets

Semantics: A model is \(\mathcal{M} = \langle M , + , \cdot , < , 0 , 1 , S \rangle \), where \(\langle M , + , \cdot , < , 0 , 1 \rangle \) is a model of first-order arithmetic and \(S \) consists of subsets of \(M \).

Basic requirements:
- \(\langle M , + , \cdot , < , 0 , 1 \rangle \models \text{PA} \) (Peano axioms),
- **Induction axiom scheme**: consists of assertions

\[
(\varphi(0, m, A) \land \forall n (\varphi(n, m, A) \rightarrow \varphi(n + 1, m, A))) \rightarrow \forall n \varphi(n, m, A)
\]

for every first-order \(\varphi(n, m, X) \), set \(A \), and number \(m \).
Foundations of second-order arithmetic

ACA₀: arithmetical comprehension

- analogue of **GBC**
- basic requirements + **first-order** comprehension
- If $V \models ZF$, then $\langle \omega, +, \cdot, <, 0, 1, S \rangle \models ACA₀$, where S is the collection of all definable subsets of $\langle \omega, +, \cdot, <, 0, 1 \rangle$.

Z₂: full second-order arithmetic

- analogue of **KM**
- basic requirements + **second-order** comprehension
- If $V \models ZF$, then $\langle \omega, +, \cdot, <, 0, 1, P(\omega) \rangle \models Z₂$.
The choice scheme in second-order arithmetic

Definition: The choice scheme consists of assertions

\[\forall n \exists X \varphi(n, X, A) \rightarrow \exists Z \forall n \varphi(n, Z_n, A) \]

for every second-order \(\varphi(n, X, Y) \) and set \(A \).

Choice scheme fragments:
- \(\Sigma^1_n \) (or \(\Pi^1_n \)) choice scheme
- Parameterless choice scheme

Observation: If \(V \models ZF + AC_\omega \), then \(\langle \omega, +, \cdot, <, 0, 1, P(\omega) \rangle \models \mathbb{Z}_2 + \text{choice scheme} \).

Independence strategy:
- Perform a clever forcing and move to \(V[G] \).
- Find a symmetric submodel \(N \models ZF \) of \(V[G] \) such that choice fails for some easily describable family of subsets of \(P(\omega) \).
Unexpected free choice

Theorem: \mathbb{Z}_2 proves the Σ^1_2-choice scheme.

Proof sketch: Suppose:
- $\mathcal{M} = \langle \mathcal{M}, +, \times, <, 0, 1, S \rangle \models \mathbb{Z}_2$
- $\mathcal{M} \models \forall n \exists X \varphi(n, X)$, where φ is Σ^1_2.

Observe:
- If α is an ordinal coded in S, then S has a set coding L_α.
- \mathcal{M} has its own constructible universe $L^\mathcal{M}$!
- \mathcal{M} satisfies Shoenfield Absoluteness with respect to $L^\mathcal{M}$: If ψ is Σ^1_2, then $\mathcal{M} \models \psi$ iff $L^\mathcal{M} \models \psi$.
- $L^\mathcal{M} \models \exists X \varphi(n, X)$ for every n.
- Choose the $L^\mathcal{M}$-least X and use comprehension to collect!

If φ has a set parameter A, replace $L^\mathcal{M}$ with $L[A]^\mathcal{M}$. □

Question: What about Π^1_2-choice scheme?
Independence of Π^1_2-choice scheme from Z_2

The Feferman-Lévy model

Classic symmetric model $N \models ZF$ in which \aleph_1 is a countable union of countable sets.

Symmetric model properties:

- $N \models ZF$,
- all \aleph_n^L (the n^{th} cardinal of L) are countable in N,
- $\aleph_\omega^L = \aleph_1^N$ is the first uncountable cardinal of N.

Construction:

- Force with finite-support product $\mathbb{P} = \prod_{n<\omega} \text{Coll}(\omega, \aleph_n)$ over L to collapse the first ω-many successor cardinals of ω to ω.
- Let $G \subseteq \mathbb{P}$ be L-generic and $G_m = G \upharpoonright \prod_{n<m} \text{Coll}(\omega, \aleph_n)$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property:
 - A is a subset of ordinals in N iff $A \in L[G_m]$ for some m.

Victoria Gitman
Independence Π_2^1-choice scheme from Z_2 (continued)

Theorem: (Feferman, Lévy) Π_2^1-choice scheme can fail in a model of Z_2.

Proof sketch: Consider $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle^N \models Z_2$.

- $P(\omega)^N = \bigcup_{n<\omega} P(\omega)^{L[G_n]}$.
- Every L_{\aleph_n} is coded in \mathcal{M}, but L_{\aleph_ω} is not coded in \mathcal{M}.
- We cannot collect the codes of L_{\aleph_n}.
- The assertion
 $$\forall n \exists X \text{ codes } L_{\aleph_n} \rightarrow \exists Z \forall n Z_n \text{ codes } L_{\aleph_n}$$
 fails in \mathcal{M}.
- The assertion “X codes L_{\aleph_n}” is Π_2^1:
 $\langle \Pi_1^1 \land \forall Y (Y \text{ codes } L_\beta \text{ with } \beta > \alpha \rightarrow L_\beta \text{ thinks } \alpha = \aleph_n) \rangle$. \square
Independence of Π^1_1-choice scheme from KM

Natural strategy: Do the Feferman-Lévy construction above an inaccessible cardinal κ.

Symmetric model properties:
- $N \models \text{ZF}$, κ is regular in N, $V^N_\kappa = V_\kappa$. (This gives $\langle V_\kappa, \in, V_{\kappa+1} \rangle^N \models \text{KM}$.)
- All $(\kappa^{n+})^L$ (the n^{th} successor cardinal of κ in L) have size κ.
- $(\kappa^+)^L = (\kappa^+)^N$.

Construction:
- Suppose κ is inaccessible in L.
- Force with finite-support product $\mathbb{P} = \prod_{n<\omega} \text{Coll}(\kappa, \kappa^{n+})$ over L to collapse the first ω-many successor cardinals of κ to κ.
- Let $G \subseteq \mathbb{P}$ be L-generic and $G_m = G \upharpoonright \prod_{n<m} \text{Coll}(\omega, \kappa^{n+})$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in L[G_m]$ for some m.
Independence of Π_1^1-choice scheme from KM (continued)

Theorem: Π_1^1-choice scheme can fail in a model of KM.

Proof: Consider $\mathcal{M} = \langle V_\kappa, \in, V_{\kappa+1} \rangle^N \models \text{KM}$.

- $V_{\kappa+1}^N = \bigcup_{n<\omega} V_{\kappa+1}^{L[G_n]}$.
- Every $L_{\kappa+n}$ is coded in \mathcal{M}, but $L_{\kappa+\omega}$ is not coded in \mathcal{M}.
- We cannot collect the (codes of) $L_{\kappa+n}$.
- The assertion

$$\forall n \in \omega \exists X \text{ codes } L_{\kappa+n} \rightarrow \exists Z \forall n \in \omega X \text{ codes } L_{\kappa+n}$$

fails in \mathcal{M}.

- The assertion "X codes $L_{\kappa+n}$" is Π_1^1: "X codes L_α" is Π_0^1.
- Π_1^1-choice already fails for ω-many choices!

Question: What about Π_0^1-choice scheme?
Is Π^1_0-choice scheme independent from KM?

Independence strategy:
- Start in V having:
 - an inaccessible cardinal κ,
 - ω-many normal κ-Souslin trees $\langle T_n \mid n < \omega \rangle$ with the property:
 forcing with $\prod_{n < m} T_n$ doesn’t add branches to any T_n with $n \geq m$.
- Forcing with a normal κ-Souslin tree adds a cofinal branch.
- Move to a forcing extension $V[G]$ by $P = \prod_{n < \omega} T_n$.
- Let $G_m = G \upharpoonright \prod_{n < m} T_n$.
- Find a symmetric model $N \subseteq V[G]$ with the property:
 A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.
- Each T_n has a branch in N, but there is no collecting set of branches!
A detour into homogeneous κ-Souslin trees

Definition: Suppose κ is a cardinal.
- A normal κ-tree is subtree of $^{<\kappa}2$ of height κ whose every node has
 - 2 immediate successors,
 - a successor at every higher level.
- A normal κ-Souslin tree has no branches of size κ.
- A homogeneous tree has for any two nodes on the same level an automorphism that moves one to the other.
 - A homogeneous tree is a weakly homogeneous poset.

Theorem: There is a universe V with an inaccessible (or Mahlo) cardinal κ having κ-many homogeneous normal κ-Souslin trees $\langle T_\xi \mid \xi < \kappa \rangle$ with the property: forcing with $\prod_{\xi < \delta} T_\xi$ ($\delta < \kappa$) doesn’t add branches to any T_α with $\alpha \geq \delta$.

Proof sketch: Suppose κ is inaccessible (or Mahlo).
- Let Q be the forcing to add a homogeneous κ-Souslin tree.
- Force with bounded-support product $P = \prod_{\xi < \kappa} Q_\xi$, where $Q_\xi = Q$. □
Independence of Π^1_0-choice from KM

Symmetric model properties:

- $N \models ZF$, κ is regular in N, $V^N_{\kappa} = V_{\kappa}$. (This gives $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle^N \models KM$.)
- N has a sequence $\vec{T} = \langle T_n \mid n \in \omega \rangle$ of κ-trees such that
 - each T_n has a branch,
 - there is no collecting set of branches.

Construction:

- Suppose:
 - κ is inaccessible,
 - $\langle T_n \mid n < \omega \rangle$ are homogeneous normal κ-Souslin trees with the property: forcing with $\prod_{n < m} T_n$ doesn’t add branches to T_n for $n \geq m$.
- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} T_n$ to add branches to all T_n.
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_m = G \restriction \prod_{n < m} T_n$.
- $N \subseteq V[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.
 (This uses weak homogeneity of the trees.)
Independence of Π^1_0-choice from KM (continued)

Theorem: (G., Johnstone, Hamkins) Π^1_0-choice scheme can fail in a model of KM.

Proof sketch: Consider $\mathcal{M} = \langle V_\kappa, \in, V_{\kappa+1} \rangle^N \models \text{KM}$.

- The assertion
 \[\Psi(\vec{T}) := \forall n \in \omega \exists B \text{ branch of } T_n \rightarrow \exists Z \forall n \in \omega Z_n \text{ is a branch of } T_n \]
 fails in \mathcal{M}.
- The assertion “B is a branch of T_n” is Π^1_0 (in the parameter \vec{T}).
- Π^1_0-choice already fails for ω-many choices! □

Theorem: (G., Johnstone, Hamkins) Parameterless Π^1_0-choice scheme can fail in a model of KM.

Proof sketch: Suppose κ is Mahlo and \vec{T} has the required property.

- Code \vec{T} into the continuum function below κ using Easton product forcing.
- In the Easton product extension $V[G]$:
 - κ is inaccessible (even Mahlo),
 - \vec{T} is definable in V_κ and continues to have the required property. □
Separating fragments of the choice scheme

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice scheme holds, but Π^1_0-choice scheme fails.

Proof sketch:
- Suppose κ is inaccessible,
 - $\langle T_\xi \mid \xi < \kappa \rangle$ are homogeneous normal κ-Souslin trees with the property: forcing with $\prod_{\xi < \delta} T_\xi$ doesn’t add branches to T_ξ for $\xi \geq \delta$.
- Force with bounded-support product $\mathbb{P} = \prod_{\xi < \kappa} T_\xi$.
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_\delta = G \restriction \prod_{\xi < \delta} T_\xi$.
- Construct symmetric model $N \subseteq V[G]$ of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_\delta]$ for some δ. □

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which set-sized choice scheme holds, but parameterless Π^1_0-choice scheme fails.

Proof sketch: Suppose κ is Mahlo and code \overrightarrow{T} into the continuum function below κ. □
Separating fragments of the choice scheme (continued)

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which parameterless choice scheme holds, but Π^1_1-choice scheme fails.

Proof sketch:

- We use ideas of Guzicki who proved a similar result for Z_2.
- Suppose κ is inaccessible in L.
- Force with bounded-support product $\prod_{\xi<\kappa^+} \text{Coll}(\kappa, \kappa^{(+\xi)})$ over L.
- Let $G \subseteq \mathbb{P}$ be L-generic and $G_\delta = G \upharpoonright \prod_{\xi<\delta} \text{Coll}(\kappa, \kappa^{(+\xi)})$.
- Construct symmetric model $N \subseteq L[G]$ of ZF with the property: A is a subset of ordinals in N iff $A \in L[G_\delta]$ for some δ.
- Consider $M = \langle V_\kappa, \in, V_{\kappa+1} \rangle^N$.
- Let A code $(\kappa^+)^L$ in M and let α_ξ be the ordinal corresponding to ξ in A.
- The assertion

$$\Psi(A) := \forall \xi \exists X \text{ codes } L_{\alpha_\xi} \rightarrow \exists Z \forall \xi X \text{ codes } L_{\alpha_\xi}$$

fails in M.
- Parameterless choice holds in M. □
The theory \(\text{KM}^+ \)

Definition: The theory \(\text{KM}^+ \) consists of \(\text{KM} \) together with the choice scheme.

Bold claim: \(\text{KM}^+ \) is a better foundation for second-order set theory than \(\text{KM} \).

- \(\text{KM}^+ \) proves Łoś Theorem for internal second-order ultrapowers.
 - Suppose \(\mathcal{M} = \langle M, \in, S \rangle \models \text{KM}^+ \), \(I \in M \) and \(U \in M \) is an ultrafilter on \(I \).
 - Classes in \(\text{Ult}(\mathcal{M}, U) \) are represented by coded functions \(\mathcal{F} = \langle A_i | i \in I \rangle \) in \(S \).

- \(\text{KM}^+ \) proves that first-order quantifiers don’t affect second-order complexity: suppose \(\varphi(x) \) is equivalent to a \(\Sigma^1_n \)-formula, then so are
 - \(\forall x \varphi(x) \),
 - \(\exists x \varphi(x) \).

- \(\text{KM}^+ \) is bi-interpretable with the theory \(\text{ZFC}^- \) + there is an inaccessible.

Open question: What is the consistency strength of \(\text{KM}^+ \) compared to \(\text{KM} \)?
Weaknesses of KM

Theorem: (Folklore) Łoś Theorem for internal second-order ultrapowers is equivalent (over KM) to the set-sized choice scheme.

Question: How badly does Łoś Theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal second-order ultrapower by an ultrafilter on ω is not a model of KM.

Theorem: (G., Johnstone, Hamkins) There is a Σ^1_1-formula $\varphi(x)$ and a model of KM in which $\forall x \varphi(x)$ is not equivalent to a Σ^1_1-formula.
Stronger choice principles for classes?

Definition: The ω-dependent choice scheme consists of assertions

$$\forall X \exists Y \varphi(X, Y, A) \rightarrow \exists Z : \omega \rightarrow S \ \forall n \in \omega \varphi(Z_n, Z_{n+1})$$

for every second-order formula φ and class A.

“Every definable relation on classes with no terminal nodes has an ω-branch.”

Observation: $\text{KM}^+ + \omega$-dependent choice scheme proves reflection for second-order assertions: every second-order formula is reflected by some coded collection of classes.

Definition: The ORD-dependent choice scheme consists of assertions

$$\forall \beta \forall X : \beta \rightarrow S \ \exists Y \varphi(X, Y, A) \rightarrow \exists Z : \text{ORD} \rightarrow S \ \forall \beta \varphi(Z \upharpoonright \beta, Z_\beta, A)$$

for every second-order φ and class A.
Dependent choice scheme

Theorem: (Simpson, unpublished) There is a model of Z_2 in which choice scheme holds but Π^1_2-dependent choice scheme fails.

Theorem (Antos, Friedman) $K\text{M}^++\text{ORD}$-dependent choice scheme is preserved by all definable tame hyperclass forcing.

Open question: Can we separate the choice scheme, ω-dependent choice scheme, and ORD-dependent choice scheme?
Thank you!