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Second-order set theories

Classes in first-order set theory

The objects of first-order set theory are sets.

Suppose that M = (M, €) |= ZFC.

@ The classes of M are the definable sub-collections of M:
A C M is a class of if there is a formula ¢(x,y) and a € M such that

A={x| M= p(x,a)}.

@ Properties of M in relation to a non-definable collection can be studied
by adding a unary predicate for it.

@ Does ZFC continue to hold in the language with a predicate for a given
non-definable collection?
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Non-definable collections: two case studies
Tarski’s undefinability of truth
Suppose M = (M, €) = ZFC.
@ The collection of all Godel codes of true formulas in M
T={"¢(@)" | ME¢(@)}

is never definable.
o Is it possible that (M, €, T) = ZFC? YES!

Reinhardt Axiom
Suppose M = (M, €) = ZFC.
@ The ultimate large cardinal axiom: there exists an elementary embedding
j:M— M.

@ An elementary embedding j : M — M is never definable. (easy proof)
@ Is it possible that (M, €, j) = ZFC? NO! (the famous Kunen's Inconsistency)

Question: What is a general setting for considering non-definable collections?
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Second-order set theories

Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: two-sorted logic

@ separate sorts for sets and classes

o corresponding sorts for quantifiers

@ convention: uppercase letters for classes, lowercase letters for sets
Semantics:

A model is a triple M = (M, €,S), where M is the sets and S is the classes.

Alternatively, we can formalize second-order set theory in first-order logic:

@ objects are classes,

@ define that a set is a class that is an element of some other class.
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Second-order set theories

Axiomatizing second-order set theory
Standard axiomatizations

o Godel-Bernays (GBC)

o Kelley-Morse (KM)

Commonalities:

First-order axioms: ZFC.

Extensionality.

Replacement: if F is a class function and a is a set, then F [ ais a set.

There is a g|0ba| choice function (there exists a global well-ordering).

Difference: class existence principle - comprehension axiom schemes

o GBC: Comprehension for first-order formulas.
If o(x,Y) is a first-order formula and A is a class, then

{x | p(x,A)} is a class.

o KM: Comprehension for second-order formulas.
If ¢(x, Y) is a second-order formula and A is a class, then

{x] ¢(x,A)} is a class.
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Strength of GBC

Observation: If M = ZFC has a definable global well-ordering, then
(M, €,8) = GBC,

where S is the definable classes of M.
@ models of V =L
@ models of V = HOD

Theorem: (Solovay) Every (countable) model of ZFC can be extended to a model of
GBC without adding sets.

Proof: Force to add a global Well—ordering. Forcing conditions are set well-orders, ordered by extension. The forcing

extension has no new sets (because the forcing is < r-closed for every cardinal ) and the new classes satisfy GBC. D

e GBC is equiconsistent with ZFC.

o GBC is conservative over ZFC:
any property of sets provable in GBC is already provable in ZFC.
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Strength of KM: existence of truth predicate

Suppose M = (M, €,S) = KM.
Definition: A class T € S is a truth predicate for (M, €) if it satisfies Tarksi's truth
conditions: for every " € M (4 possibly nonstandard),

e if ¢ is atomic, M = ¢(a) iff "p(a)" € T,

e Tmp(@)Te TiffTp(a)" ¢ T,

o "Tp(@A)AY@) T e TiffTp(a)" € T and "Y(a) €T,

o "Ixp(x,a) € Tiff 3b"p(b,a)7 € T.

Observation: If T is a truth predicate, then M |= ¢(3) iff "p(3a)7 € T.
Observation: If T is a truth predicate and "7 € ZFCM (, possibly nonstandara), then o € T
Proof:
@ Is every (potentially nonstandard) instance of replacement in T7?
@ Suppose "Va € d3lbp(a,b)T € T (1" means unique) -
o MEVaed3dlbTp(a,b)" € T.
r={b|"¢(a,b)" € T and a € d} exists by replacement. [

Victoria Gitman Choice schemes for Kelley-Morse set theory Colloquium Logicum 8 /30



Strength of KM: existence of truth predicate (continued)

Theorem: If M = (M, €,S) = KM, then S has a truth predicate for (M, €).

Proof:
@ M satisfies the second-order assertion:
3¥J-truth predicate and Vn € w 3 ¥ 0-truth predicate — 3 ):9,+1—truth predicate).
o (by induction) M satisfies the second-order assertion:
Vn € w3 X,-truth predicate.
o (by comprehension) M satisfies:
dCVn € w G, is the X,-truth predicate.

Cp = {x | (n, x) € C} is the slice on coordinate n of C. The ¥ p-truth predicate is unique in M. O
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Strength of KM: existence of transitive models of ZFC

Theorem: If M = (M, €,S) = KM, then M is the union of an elementary chain of its
rank initial segments V-

Vag < Vag <o = VGL <o < M,

and M thinks that each VD’Z = ZFC.

Proof:

Let T € S be the truth predicate for (M, €).
ZFCM C T.

Let (VQM, e, Tn VaM> <5, (M, €, T) (using reflection).
(VM e, Tn VQM> =“TnN VM is a truth predicate”.
VaM < M (Tarski-Vaught criteria).

M satisfies that V' = ZFCM. O

Note: Full reflection holds in models of KM!
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Second-order set theories

Strength of KM: below an inaccessible cardinal

Corollary: KM is stronger than the iterated Con-hierarchy of Con(ZFC).
Theorem: KM is weaker than the assertion that there exists an inaccessible cardinal.

Proof:
Suppose V' |= ZFC and & is inaccessible in V.

o (Vi,€, Visr) = KM.
@ There are many KM models in Vﬁ (take a countable elementary substructure of V,; | 1).
o Con(Con(KM)) holds. O

Note: It suffices to assume V |= ZF, k is inaccessible, V; = ZFC.
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Choice schemes

Choice schemes for second-order set theory

The choice scheme and its variants are choice/collection principles for classes.

Choice scheme: If ¢ is a second-order formula and A is a class, then
Vx3AXp(x, X, A) = FZVx o(x, Zy, A).
Zy = {z | (x,z) € Z} is the slice of Z on coordinate x.

o If for every set, there is a class witnessing a given property, then there is a
choice/collecting class of witnesses.

o First studied by Marek and Mostowski in the 1970s?

Set-sized choice scheme: If ¢ is a second-order formula, a is a set and A is a class, then
Vx € adXp(x, X, A) = 3ZVx € ap(x, Z, A).

¥ !_choice scheme: bounds the complexity of (.

Parameterless choice scheme: no parameters in .
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Choice schemes and GBC

Observation: The Y3-choice scheme for w-many choices can fail in a model of GBC.

Proof:
@ Suppose M is a transitive model of V = L.
e M = (M,€,S) = GBC, where S is the definable classes of M.
® M =Vn € w3 X,-truth predicate (vecause M is standard).
o If there is Z such that Z, is the X ,-truth predicate, then truth is definable from Z! [J
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Choice schemes and KM

A model of KM + choice scheme
If V |=ZFC and & is inaccessible in V/, then
(Vs €, Vier1) = KM + choice scheme.

Question: Does (some fragment of) the choice scheme follow from KM?
Question: Does the set-sized choice scheme imply the (full) choice scheme over KM?

Candidate counterexamples: (Vi €, V.11), where

o V = ZF and k is inaccessible in V/,
@ choice holds in V,,

@ choice fails for objects of size k.
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Choice schemes

Choice schemes for second-order arithmetic

There are deep analogies between second-order set theory and second-order arithmetic.

Primer:

Two sorts of objects: numbers and sets of numbers.
Syntax: two-sorted logic.

Semantics: A model of second-order arithmetic is: (M, +, x,<,0,1,S),
where M is numbers and S is sets.

Analogues of GBC and KM are ACAy and Zo».

First-order axioms: Peano Arithmetic (PA).

Differ in set existence principles (and restrictions on induction).

ACAq: Comprehension (and induction) for first-order formulas with set parameters.
Z: Comprehension (and induction) for second-order formulas with set parameters.
If V |= ZF, then (w,+, X, <,0,1, P(w)) | Zo.

The choice scheme: if ¢ is a second-order formula and A is a set, then

Vn3Xe(n, X, A) = 3Z¥n(n, Z,, A).
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Choice schemes

Choice schemes and Z»

Question: Does (some fragment of) the choice scheme follow from Z»?
Theorem: Z, proves the Y 3-choice scheme.
Proof: Suppose M = (M, +, x,<,0,1,S) = Z» and M = VnIXp(n, X), where ¢ is 3.
(We ignore parameters for simplicity.)
o If o is an ordinal coded in S, then S has a set coding L,.
@ M has its own constructible universe L1

@ M satisfies Shoenfield Absoluteness:
If 1 is a 3-assertion, then

. M
M = iff LM = o,
In LM, ) is interpreted as an assertion about numbers and sets of numbers.
o L has a witness to every ¥}-assertion 3X¢(n, X).

@ Choose the [™-least X and use comprehension to collect! [

Victoria Gitman Choice schemes for Kelley-Morse set theory Colloquium Logicum 16 / 30



Choice schemes

The Feferman-Lévy model

Properties:
o N = ZF,
@ each Nﬁ is countable (RL is the nth uncountable cardinal of L),

n

o Nt = RV is the first uncountable cardinal.

Construction:

o Force with finite-support product P = MN,<., Coll(w, X,) over L to collapse
the first w-many successor cardinals of w to w.

o Let G C P be L-generic and G, = G | My<m Coll(w, Ry).

e N C L[G] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A € V[Gp] for some m.
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Choice schemes

Failure of Mi-choice for Z,

Theorem: (Feferman, Lévy) M3-choice scheme can fail in a model of Z,.
Proof: Consider M = (w, 4+, x,<,0,1, P(w))" = Z,.

o Every Ly, is coded in M, but Ly, is not coded in M.

@ We cannot collect the (codes of) Ly, .

@ The assertion
VniX = Ly, — 32VYn Z, = Ly,

fails in M.

@ The assertion X = L}zn is n% (itis I'I% whether a set of numbers codes an ordinal). O
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Choice schemes

Generalization of the Feferman-Lévy model

Properties
o N |EZF, & is inaccessible in N, vl = ZFC,
@ each (I‘C+n)L has size k (ML is the nth successor cardinal of x in L),

o (kM) = (M)

Construction:
@ Suppose k is inaccessible in L.

@ Force with finite-support product IP = M,<,, Coll(k, k™") over L to collapse
the first w-many successor cardinals of x to k.

o Let G C P be L-generic and G = G | Myepm Coll(w, x™7).

e N C L[G] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A € V[G] for some m.
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Failure of Mi-choice for KM

Theorem: M}-choice scheme for w-many choices can fail in a model of KM.
Proof: Consider M = (V,,, €, V.. 11)" = KM.

o Every L, +n is coded in M, but L+ is not coded in M.

@ We cannot collect the (codes of) L, +n.

@ The assertion
VnewdX =L 40— 3IZVnEwX =L, 4n

fails in M.

@ The assertion X = L,.+n is ] (s M whether a class codes an ordinal). [
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Failure of I_I(l)—choice for KM

Question: Does KM prove Mg-choice?

Theorem: (G., Johnstone, Hamkins) A model of KM can fail to make w-many class
choices for a M} property. A model of KM can satisfy the set-sized choice scheme, but
fail to make class many class choices for a Mg-property.

o There is a model M = KM and a M§-formula ¢ such that the assertion
Vn € w3X ¢(n, X) — 32Vn € wp(n, Z,)

fails in M.
@ There is a model M = KM in which the set-sized choice scheme holds, but the

assertion
Vx3X o(x, X) = IZVx p(x, Z),

fails in M for some Mg-formula ¢.

Proof idea: M has a collection of class trees, each of whom has branches, but we
cannot choose a single branch from every tree.
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Choice schemes

Homogeneous x-Souslin trees

Suppose V = ZFC and & is an inaccessible cardinal in V.
Definition:
o If T is a tree, a branch of T is a cofinal path through T.
o A k-tree is a sub-tree of <"2 of height .
@ A k-tree is Souslin if it has no antichains of size k and no branches.

o A k-tree T is homogeneous if for any nodes t and s on the same level of T, there is
an automorphism that maps t to s.

Homogeneous x-Souslin trees:
@ A k-Souslin tree T is a partial order and forcing with T adds a branch through T.

o T is a weakly homogeneous partial order.

A poset P is weakly homogeneous if for any conditions p, g € P, there is an automorphism 7 such that 7(p) and g are compatible.

o Weak homogeneity yields key properties of symmetric models of ZF.
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Choice schemes

Failure of I_I(l)—choice for KM: symmetric model 1

Properties:

o N [=ZF, & is inaccessible in N, V" |= ZFC,

@ N has a sequence (T, | n € w) of k-trees such that
» each T, has branches,
> there is no choice set of branches.

Construction:
Theorem: There is a model V = ZFC with an inaccessible cardinal x having a sequence
(Ta | n < w) of homogeneous k-Souslin trees such that:
@ The product forcing Mp<m T, is <k-distributive (and r-co).
@ The forcing MN,<m T, does not add branches to any T, with kK > n.
Proof: Force with full-support product My, Qpn, where @ = Q adds a homogeneous r-Souslin tree. [
@ Force with finite-support product P = IN,<,, T, to add branches to all T,.
o Let G C P be V-genericand G, = G [ Mpem Th.

e N C V[G] is a symmetric model of ZF with the property:
A'is a subset of ordinals in N iff A € V[Gp] for some m.
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Choice schemes

Failure of I_I(l)—choice for KM: w-many choices

Theorem: (G., Johnstone, Hamkins) M-choice scheme for w-many choices can fail in a
model of KM.

Proof: Consider M = (V,., €, V.11)" = KM.
@ The assertion

1/)(?) :=Vn € w3iB branch of T,, = 3Z¥n € w Z, is a branch of T,
fails in M.

@ The assertion B is a branch of T, is I (in the parameter ?) O

Note: A more complicated construction (starting with a Mahlo k) eliminates the
parameter T by forcing to code it into V. before forcing with My« Ty.
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Choice schemes

Failure of I_I(l)—choice: symmetric model 2

Properties:

o N [=ZF, & is inaccessible in N, V" |= ZFC,

@ N has a sequence (T¢ | £ < k) of k-trees such that
» each TE has branches,
> there is no choice set of branches.

Construction:
Theorem: There is a model V = ZFC with an inaccessible cardinal x having a sequence
(Te | € < k) of homogeneous k-Souslin trees such that:
@ The product forcing Me<q Te is <k-distributive (and r-cifor every a < k.
@ The forcing M¢<n T does not add branches to any Tg with 8 > «.
Proof: Force with bounded support product Mg < ,; Q¢ , where Qg = @ adds a homogeneous rs-Souslin tree. [J
@ Force with bounded support product P = lNM¢<.. T¢ to add branches to all T.
@ Let G C P be V-genericand Gy, = G | Meco Te.

e N C V[G] is a symmetric model of ZF with the property:
A'is a subset of ordinals in N iff A € V[G,] for some «.
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Failure of I_I(l)—choice for KM: ORD-many choices

Theorem: (G., Johstone, Hamkins) There is a model of KM in which the set-sized
choice scheme holds, but M3-choice scheme fails.

Proof: Consider M = (V,, €, V. 11)" = KM.
@ M satisfies the set-sized choice scheme!

o The assertion
w(7) := V¢3B branch of T — 32V Z¢ is a branch of T¢
fails in M.

Note: A more complicated construction (starting with a Mahlo k) eliminates the
parameter T by forcing to code it into V.. before forcing with Me<, Te.
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The theory KM™

Definition: The theory KM™ consists of KM together with the (full) choice scheme.

Abstract applications: KM™ proves that:

@ The Lo theorem holds for internal (and externaly ultrapowers of models of KM™.

> Suppose M = (M, €,8) =EKMT, I € M and U € M is an ultrafilter on /.
> Classes in Ult(M, U) are represented by coded functionals F = (A; | i € I) in S.

@ Second-order complexity classes are closed under first-order quantification.
Suppose that ¢(x) is equivalent to a ¥ 1 assertion, then so are
> Vxp(x),
> Ixp(x).

Concrete applications:
@ nonstandard set theory (with infinitesimals)

@ properties of class forcing extensions
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Weaknesses in KM

Absorption of first-order quantifiers

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose second-order
complexity classes are not closed under (even bounded) first-order quantification.
The to$ Theorem

Theorem: The to$ theorem for internal ultrapowers is equivalent (over KM) to the
set-sized choice scheme.

Question: How badly does the Lo$ theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal ultrapower
by an ultrafilter on w is not a model of KM.
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KMt vs. KM

Questions

Question: Is KM™ (consistency-wise) stronger than KM?

Dependent choice scheme: If ¢ is a second-order formula and A is a class, then
VEVX : 8= S 3IY o(X,Y,A) = 3Z: ORD — SVB¢(Z | B, Zs, A).
w-dependent choice scheme: If ¢ is a second-order formula and A is a class, then
VXY o(X,Y,A) = 3Z:w — S Vn € wp(Z, Zn1, A).

Question: Does KM™ prove the w-dependent choice scheme/dependent choice scheme?
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Thank you!

DA
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