Choice schemes for Kelley-Morse set theory

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

> Colloquium Logicum September 4, 2014

(ロ) (回) (三) (三)

This is joint work with Joel David Hamkins and Thomas Johnstone (CUNY).

イロン イロン イヨン イヨン

Classes in first-order set theory

The objects of first-order set theory are sets.

Suppose that $\mathcal{M} = \langle M, \in \rangle \models \text{ZFC}$.

• The classes of \mathcal{M} are the definable sub-collections of M: $A \subseteq M$ is a class of if there is a formula $\varphi(x, y)$ and $a \in M$ such that

 $A = \{x \mid \mathcal{M} \models \varphi(x, a)\}.$

- Properties of \mathcal{M} in relation to a non-definable collection can be studied by adding a unary predicate for it.
- Does ZFC continue to hold in the language with a predicate for a given non-definable collection?

Non-definable collections: two case studies

Tarski's undefinability of truth

Suppose $\mathcal{M} = \langle M, \in \rangle \models \operatorname{ZFC}$.

 $\bullet\,$ The collection of all Gödel codes of true formulas in ${\cal M}$

 $T = \{ \ulcorner \varphi(\overline{a}) \urcorner \mid \mathcal{M} \models \varphi(\overline{a}) \}$

is never definable.

• Is it possible that $\langle M, \in, T \rangle \models \text{ZFC? YES!}$

Reinhardt Axiom

Suppose $\mathcal{M} = \langle M, \in \rangle \models \text{ZFC}$.

• The ultimate large cardinal axiom: there exists an elementary embedding

 $j: M \rightarrow M.$

- An elementary embedding $j: M \rightarrow M$ is never definable. (easy proof)
- Is it possible that $\langle M, \in, j \rangle \models \text{ZFC}$? NO! (the famous Kunen's Inconsistency)

Question: What is a general setting for considering non-definable collections?

Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: two-sorted logic

- separate sorts for sets and classes
- corresponding sorts for quantifiers
- convention: uppercase letters for classes, lowercase letters for sets

Semantics:

A model is a triple $\mathcal{M} = \langle M, \in, S \rangle$, where M is the sets and S is the classes.

Alternatively, we can formalize second-order set theory in first-order logic:

- objects are classes,
- define that a set is a class that is an element of some other class.

Axiomatizing second-order set theory

Standard axiomatizations

- Gödel-Bernays (GBC)
- Kelley-Morse (KM)

Commonalities:

- First-order axioms: ZFC.
- Extensionality.
- Replacement: if F is a class function and a is a set, then $F \upharpoonright a$ is a set.
- There is a global choice function (there exists a global well-ordering).

Difference: class existence principle - comprehension axiom schemes

• GBC: Comprehension for first-order formulas. If $\varphi(x, Y)$ is a first-order formula and A is a class, then

 $\{x \mid \varphi(x, A)\}$ is a class.

• KM: Comprehension for second-order formulas. If $\varphi(x, Y)$ is a second-order formula and A is a class, then

 $\{x \mid \varphi(x, A)\}$ is a class.

Strength of GBC

Observation: If $M \models \text{ZFC}$ has a definable global well-ordering, then

 $\langle M, \in, \mathcal{S} \rangle \models \text{GBC},$

where S is the definable classes of M.

- models of V = L
- models of V = HOD

Theorem: (Solovay) Every (countable) model of ZFC can be extended to a model of GBC without adding sets.

Proof: Force to add a global well-ordering. Forcing conditions are set well-orders, ordered by extension. The forcing extension has no new sets (because the forcing is $\leq \kappa$ -closed for every cardinal κ) and the new classes satisfy GBC.

- GBC is equiconsistent with ZFC.
- GBC is conservative over ZFC: any property of sets provable in GBC is already provable in ZFC.

Strength of KM: existence of truth predicate

Suppose $\mathcal{M} = \langle \mathcal{M}, \in, \mathcal{S} \rangle \models \mathrm{KM}.$

Definition: A class $T \in S$ is a truth predicate for $\langle M, \in \rangle$ if it satisfies Tarksi's truth conditions: for every $\lceil \varphi \rceil \in M$ (φ possibly nonstandard),

- if φ is atomic, $M \models \varphi(\overline{a})$ iff $\lceil \varphi(\overline{a}) \rceil \in T$,
- $\lceil \neg \varphi(\overline{a}) \rceil \in T$ iff $\lceil \varphi(\overline{a}) \rceil \notin T$,
- $\lceil \varphi(\overline{a}) \land \psi(\overline{a}) \rceil \in T$ iff $\lceil \varphi(\overline{a}) \rceil \in T$ and $\lceil \psi(\overline{a}) \rceil \in T$,

•
$$\lceil \exists x \varphi(x, \overline{a}) \rceil \in T$$
 iff $\exists b \lceil \varphi(b, \overline{a}) \rceil \in T$

Observation: If *T* is a truth predicate, then $M \models \varphi(\overline{a})$ iff $\lceil \varphi(\overline{a}) \rceil \in T$.

Observation: If T is a truth predicate and $\lceil \varphi \rceil \in \operatorname{ZFC}^{M}(\varphi \text{ possibly nonstandard})$, then $\varphi \in T$. **Proof**:

- Is every (potentially nonstandard) instance of replacement in T?
- Suppose $\forall a \in d \exists ! b \varphi(a, b) \exists \in T$ ("!" means unique).
- $\mathcal{M} \models \forall a \in d \exists ! b \ulcorner \varphi(a, b) \urcorner \in T.$
- $r = \{b \mid \ulcorner \varphi(a, b) \urcorner \in T \text{ and } a \in d\}$ exists by replacement. \Box

Strength of KM: existence of truth predicate (continued)

Theorem: If $\mathcal{M} = \langle M, \in, \mathcal{S} \rangle \models \text{KM}$, then \mathcal{S} has a truth predicate for $\langle M, \in \rangle$. **Proof**:

• \mathcal{M} satisfies the second-order assertion:

 $\exists \Sigma_0^0$ -truth predicate and $\forall n \in \omega \ (\exists \Sigma_n^0$ -truth predicate $\rightarrow \exists \Sigma_{n+1}^0$ -truth predicate).

 \bullet (by induction) ${\cal M}$ satisfies the second-order assertion:

 $\forall n \in \omega \exists \Sigma_n$ -truth predicate.

• (by comprehension) ${\cal M}$ satisfies:

 $\exists C \forall n \in \omega C_n$ is the Σ_n -truth predicate.

 $C_n := \{x \mid (n, x) \in C\}$ is the slice on coordinate *n* of *C*. The Σ_n -truth predicate is unique in \mathcal{M} .

Strength of KM: existence of transitive models of ZFC

Theorem: If $\mathcal{M} = \langle M, \in, \mathcal{S} \rangle \models \text{KM}$, then M is the union of an elementary chain of its rank initial segments $V_{\alpha}^{\mathcal{M}}$:

$$V^M_{\alpha_0} \prec V^M_{\alpha_1} \prec \cdots \prec V^M_{\alpha_{\xi}} \prec \cdots \prec M,$$

and \mathcal{M} thinks that each $V_{\alpha_{\xi}}^{\mathcal{M}} \models \text{ZFC}$.

Proof:

- Let $T \in S$ be the truth predicate for $\langle M, \in \rangle$.
- $ZFC^M \subseteq T$.
- Let $\langle V_{\alpha}^{M}, \in, T \cap V_{\alpha}^{M} \rangle \prec_{\Sigma_{2}} \langle M, \in, T \rangle$ (using reflection).
- $\langle V^M_{\alpha}, \in, T \cap V^M_{\alpha} \rangle \models "T \cap V^M_{\alpha}$ is a truth predicate".
- $V^M_{\alpha} \prec M$ (Tarski-Vaught criteria).
- \mathcal{M} satisfies that $V_{\alpha}^{\mathcal{M}} \models \operatorname{ZFC}^{\operatorname{M}}$. \Box

Note: Full reflection holds in models of KM!

Strength of KM: below an inaccessible cardinal

Corollary: KM is stronger than the iterated Con-hierarchy of Con(ZFC).

Theorem: KM is weaker than the assertion that there exists an inaccessible cardinal.

Proof:

Suppose $V \models \text{ZFC}$ and κ is inaccessible in V.

• $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{KM}.$

• There are many KM models in V_{κ} (take a countable elementary substructure of $V_{\kappa+1}$).

• Con(Con(KM)) holds. \Box

Note: It suffices to assume $V \models \text{ZF}$, κ is inaccessible, $V_{\kappa} \models \text{ZFC}$.

Choice schemes for second-order set theory

The choice scheme and its variants are choice/collection principles for classes. **Choice scheme**: If φ is a second-order formula and A is a class, then

 $\forall x \exists X \varphi(x, X, A) \to \exists Z \forall x \varphi(x, Z_x, A).$

 $Z_X := \{z \mid (x, z) \in Z\}$ is the slice of Z on coordinate x.

- If for every set, there is a class witnessing a given property, then there is a choice/collecting class of witnesses.
- First studied by Marek and Mostowski in the 1970s?

Set-sized choice scheme: If φ is a second-order formula, *a* is a set and *A* is a class, then

$$\forall x \in a \exists X \varphi(x, X, A) \to \exists Z \forall x \in a \varphi(x, Z_x, A).$$

 Σ_n^1 -choice scheme: bounds the complexity of φ .

Parameterless choice scheme: no parameters in φ .

Choice schemes and GBC

Observation: The Σ_0^1 -choice scheme for ω -many choices can fail in a model of GBC. **Proof**:

- Suppose M is a transitive model of V = L.
- $\mathcal{M} = \langle M, \in, \mathcal{S} \rangle \models \text{GBC}$, where \mathcal{S} is the definable classes of M.
- $\mathcal{M} \models \forall n \in \omega \exists \Sigma_n$ -truth predicate (because *M* is standard).
- If there is Z such that Z_n is the Σ_n -truth predicate, then truth is definable from Z! \Box

Choice schemes and KM

A model of ${\rm KM}$ + choice scheme

If $V \models \text{ZFC}$ and κ is inaccessible in V, then

 $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{KM} + \text{choice scheme.}$

Question: Does (some fragment of) the choice scheme follow from KM?

Question: Does the set-sized choice scheme imply the (full) choice scheme over KM?

Candidate counterexamples: $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle$, where

- $V \models \text{ZF}$ and κ is inaccessible in V,
- choice holds in V_{κ} ,
- choice fails for objects of size κ.

Choice schemes for second-order arithmetic

There are deep analogies between second-order set theory and second-order arithmetic.

Primer:

- Two sorts of objects: numbers and sets of numbers.
- Syntax: two-sorted logic.
- Semantics: A model of second-order arithmetic is: ⟨M, +, ×, <, 0, 1, S⟩, where M is numbers and S is sets.
- \bullet Analogues of ${\rm GBC}$ and ${\rm KM}$ are ${\rm ACA}_0$ and ${\rm Z}_2.$
- First-order axioms: Peano Arithmetic (PA).
- Differ in set existence principles (and restrictions on induction).
- ACA₀: Comprehension (and induction) for first-order formulas with set parameters.
- $\bullet~Z_2$: Comprehension (and induction) for second-order formulas with set parameters.
- If $V \models \text{ZF}$, then $\langle \omega, +, \times, <, 0, 1, P(\omega) \rangle \models \text{Z}_2$.
- $\bullet\,$ The choice scheme: if φ is a second-order formula and A is a set, then

 $\forall n \exists X \varphi(n, X, A) \to \exists Z \forall n \varphi(n, Z_n, A).$

Choice schemes and Z_2

Question: Does (some fragment of) the choice scheme follow from Z_2 ?

Theorem: Z_2 proves the Σ_2^1 -choice scheme.

Proof: Suppose $\mathcal{M} = \langle M, +, \times, <, 0, 1, S \rangle \models \mathbb{Z}_2$ and $\mathcal{M} \models \forall n \exists X \varphi(n, X)$, where φ is Σ_2^1 . (We ignore parameters for simplicity.)

- If α is an ordinal coded in S, then S has a set coding L_{α} .
- \mathcal{M} has its own constructible universe $L^{\mathcal{M}}$!
- \mathcal{M} satisfies Shoenfield Absoluteness: If ψ is a Σ_2^1 -assertion, then

 $\mathcal{M} \models \psi$ iff $\mathcal{L}^{\mathcal{M}} \models \psi$.

In ${\cal L}^{\cal M}$, ψ is interpreted as an assertion about numbers and sets of numbers.

- $L^{\mathcal{M}}$ has a witness to every Σ_2^1 -assertion $\exists X \varphi(n, X)$.
- Choose the $L^{\mathcal{M}}$ -least X and use comprehension to collect! \Box

The Feferman-Lévy model

Properties:

- $N \models ZF$,
- each \aleph_n^L is countable (\aleph_n^L is the n^{th} uncountable cardinal of L),
- $\aleph_{\omega}^{L} = \aleph_{1}^{N}$ is the first uncountable cardinal.

Construction:

- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} \operatorname{Coll}(\omega, \aleph_n)$ over *L* to collapse the first ω -many successor cardinals of ω to ω .
- Let $G \subseteq \mathbb{P}$ be *L*-generic and $G_m = G \upharpoonright \prod_{n < m} \operatorname{Coll}(\omega, \aleph_n)$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.

Failure of Π_2^1 -choice for Z_2

Theorem: (Feferman, Lévy) Π_2^1 -choice scheme can fail in a model of \mathbb{Z}_2 .

Proof: Consider $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, P(\omega) \rangle^{N} \models \mathbb{Z}_{2}$.

- Every L_{\aleph_n} is coded in \mathcal{M} , but L_{\aleph_ω} is not coded in \mathcal{M} .
- We cannot collect the (codes of) L_{\aleph_n} .
- The assertion

$$\forall n \exists X = L_{\aleph_n} \to \exists Z \forall n Z_n = L_{\aleph_n}$$

fails in \mathcal{M} .

• The assertion $X = L_{\aleph_n}$ is Π_2^1 (it is Π_1^1 whether a set of numbers codes an ordinal).

Generalization of the Feferman-Lévy model

Properties

- $N \models \text{ZF}$, κ is inaccessible in N, $V_{\kappa}^{N} \models \text{ZFC}$,
- each $(\kappa^{+n})^{L}$ has size κ $((\kappa^{+n})^{L}$ is the *n*th successor cardinal of κ in *L*),
- $(\kappa^{+\omega})^L = (\kappa^+)^N$.

Construction:

- Suppose κ is inaccessible in *L*.
- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} \operatorname{Coll}(\kappa, \kappa^{+n})$ over *L* to collapse the first ω -many successor cardinals of κ to κ .
- Let $G \subseteq \mathbb{P}$ be *L*-generic and $G_m = G \upharpoonright \prod_{n < m} \operatorname{Coll}(\omega, \kappa^{+n})$.
- $N \subseteq L[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.

Failure of Π_1^1 -choice for KM

Theorem: Π_1^1 -choice scheme for ω -many choices can fail in a model of KM. **Proof**: Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^N \models \text{KM}.$

- Every $L_{\kappa^{+n}}$ is coded in \mathcal{M} , but $L_{\kappa^{+\omega}}$ is not coded in \mathcal{M} .
- We cannot collect the (codes of) $L_{\kappa^{+n}}$.
- The assertion

$$\forall n \in \omega \exists X = L_{\kappa^{+n}} \to \exists Z \forall n \in \omega X = L_{\kappa^{+n}}$$

fails in \mathcal{M} .

• The assertion $X = L_{\kappa^{+n}}$ is Π^1_1 (it is Π^1_0 whether a class codes an ordinal). \Box

Failure of Π_0^1 -choice for KM

Question: Does KM prove Π_0^1 -choice?

Theorem: (G., Johnstone, Hamkins) A model of KM can fail to make ω -many class choices for a Π_0^1 property. A model of KM can satisfy the set-sized choice scheme, but fail to make class many class choices for a Π_0^1 -property.

• There is a model $\mathcal{M} \models \mathrm{KM}$ and a Π_0^1 -formula φ such that the assertion

$$\forall n \in \omega \exists X \varphi(n, X) \to \exists Z \forall n \in \omega \varphi(n, Z_n)$$

fails in \mathcal{M} .

 $\bullet\,$ There is a model $\mathcal{M}\models \mathrm{KM}$ in which the set-sized choice scheme holds, but the assertion

 $\forall x \exists X \varphi(x, X) \to \exists Z \forall x \varphi(x, Z_x),$

fails in \mathcal{M} for some Π_0^1 -formula φ .

Proof idea: \mathcal{M} has a collection of class trees, each of whom has branches, but we cannot choose a single branch from every tree.

Homogeneous κ -Souslin trees

Suppose $V \models \text{ZFC}$ and κ is an inaccessible cardinal in V.

Definition:

- If T is a tree, a branch of T is a cofinal path through T.
- A κ -tree is a sub-tree of ${}^{<\kappa}2$ of height κ .
- A κ -tree is Souslin if it has no antichains of size κ and no branches.
- A κ -tree T is homogeneous if for any nodes t and s on the same level of T, there is an automorphism that maps t to s.

Homogeneous κ -Souslin trees:

- A κ -Souslin tree T is a partial order and forcing with T adds a branch through T.
- T is a weakly homogeneous partial order.

A poset \mathbb{P} is weakly homogeneous if for any conditions $p, q \in \mathbb{P}$, there is an automorphism π such that $\pi(p)$ and q are compatible.

• Weak homogeneity yields key properties of symmetric models of ZF.

Failure of Π_0^1 -choice for KM: symmetric model 1

Properties:

- $N \models \text{ZF}$, κ is inaccessible in N, $V_{\kappa}^{N} \models \text{ZFC}$,
- *N* has a sequence $\langle T_n \mid n \in \omega \rangle$ of κ -trees such that
 - each T_n has branches,
 - there is no choice set of branches.

Construction:

Theorem: There is a model $V \models \text{ZFC}$ with an inaccessible cardinal κ having a sequence $\langle T_n \mid n < \omega \rangle$ of homogeneous κ -Souslin trees such that:

- The product forcing $\prod_{n < m} T_n$ is $<\kappa$ -distributive (and κ -cc).
- The forcing $\prod_{n < m} T_n$ does not add branches to any T_k with $k \ge n$.

Proof: Force with full-support product $\Pi_{n \in \omega} \mathbb{Q}_n$, where $\mathbb{Q}_n = \mathbb{Q}$ adds a homogeneous κ -Souslin tree. \Box

- Force with finite-support product $\mathbb{P} = \prod_{n < \omega} T_n$ to add branches to all T_n .
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_m = G \upharpoonright \prod_{n < m} T_n$.
- $N \subseteq V[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_m]$ for some m.

Failure of Π_0^1 -choice for KM: ω -many choices

Theorem: (G., Johnstone, Hamkins) Π_0^1 -choice scheme for ω -many choices can fail in a model of KM.

Proof: Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^{N} \models \mathrm{KM}.$

• The assertion

$$\psi(\overrightarrow{T}) := orall n \in \omega \exists B$$
 branch of $T_n o \exists Z orall n \in \omega Z_n$ is a branch of T_n

fails in \mathcal{M} .

• The assertion *B* is a branch of T_n is Π_0^1 (in the parameter \vec{T}). \Box

Note: A more complicated construction (starting with a Mahlo κ) eliminates the parameter \overrightarrow{T} by forcing to code it into V_{κ} before forcing with $\prod_{n < \omega} T_n$.

Failure of Π_0^1 -choice: symmetric model 2

Properties:

- $N \models \text{ZF}$, κ is inaccessible in N, $V_{\kappa}^{N} \models \text{ZFC}$,
- N has a sequence $\langle T_{\xi} \mid \xi < \kappa
 angle$ of κ -trees such that
 - each T_{ξ} has branches,
 - there is no choice set of branches.

Construction:

Theorem: There is a model $V \models \text{ZFC}$ with an inaccessible cardinal κ having a sequence $\langle T_{\xi} | \xi < \kappa \rangle$ of homogeneous κ -Souslin trees such that:

- The product forcing $\prod_{\xi < \alpha} T_{\xi}$ is $<\kappa$ -distributive (and κ -cc) for every $\alpha < \kappa$.
- The forcing $\prod_{\xi < \alpha} T_{\xi}$ does not add branches to any T_{β} with $\beta \ge \alpha$.

Proof: Force with bounded support product $\Pi_{\xi < \kappa} \mathbb{Q}_{\xi}$, where $\mathbb{Q}_{\xi} = \mathbb{Q}$ adds a homogeneous κ -Souslin tree. \Box

- Force with bounded support product $\mathbb{P} = \prod_{\xi < \kappa} T_{\xi}$ to add branches to all T_{ξ} .
- Let $G \subseteq \mathbb{P}$ be V-generic and $G_{\alpha} = G \upharpoonright \prod_{\xi < \alpha} T_{\xi}$.
- $N \subseteq V[G]$ is a symmetric model of ZF with the property: A is a subset of ordinals in N iff $A \in V[G_{\alpha}]$ for some α .

イロン イロン イヨン イヨン

Failure of Π_0^1 -choice for KM: ORD-many choices

Theorem: (G., Johstone, Hamkins) There is a model of KM in which the set-sized choice scheme holds, but Π_0^1 -choice scheme fails.

- **Proof**: Consider $\mathcal{M} = \langle V_{\kappa}, \in, V_{\kappa+1} \rangle^{N} \models \mathrm{KM}.$
 - $\bullet~\mathcal{M}$ satisfies the set-sized choice scheme!
 - The assertion

$$\psi(\overrightarrow{\mathcal{T}}) := orall \xi \exists B$$
 branch of $\mathcal{T}_{\xi} o \exists Z orall \xi Z_{\xi}$ is a branch of \mathcal{T}_{ξ}

fails in \mathcal{M} .

Note: A more complicated construction (starting with a Mahlo κ) eliminates the parameter \overrightarrow{T} by forcing to code it into V_{κ} before forcing with $\prod_{\xi < \kappa} T_{\xi}$.

The theory KM^+

Definition: The theory KM^+ consists of KM together with the (full) choice scheme.

Abstract applications: KM⁺ proves that:

- The Loś theorem holds for internal (and external) ultrapowers of models of $\rm KM^+.$
 - ▶ Suppose $\mathcal{M} = \langle M, \in, S \rangle \models KM^+$, $I \in M$ and $U \in M$ is an ultrafilter on I.
 - ▶ Classes in Ult(M, U) are represented by coded functionals $\mathcal{F} = \langle A_i | i \in I \rangle$ in S.
- Second-order complexity classes are closed under first-order quantification. Suppose that φ(x) is equivalent to a Σ¹_n-assertion, then so are
 - ∀xφ(x),
 - ► $\exists x \varphi(x).$

Concrete applications:

- nonstandard set theory (with infinitesimals)
- properties of class forcing extensions

Weaknesses in KM

Absorption of first-order quantifiers

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose second-order complexity classes are not closed under (even bounded) first-order quantification.

The Łoś Theorem

Theorem: The Loś theorem for internal ultrapowers is equivalent (over KM) to the set-sized choice scheme.

Question: How badly does the Łoś theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal ultrapower by an ultrafilter on ω is not a model of KM.

Questions

Question: Is KM^+ (consistency-wise) stronger than KM?

Dependent choice scheme: If φ is a second-order formula and A is a class, then

 $\forall \beta \forall X : \beta \to S \exists Y \varphi(X, Y, A) \to \exists Z : \text{ORD} \to S \forall \beta \varphi(Z \upharpoonright \beta, Z_{\beta}, A).$

 $\omega\text{-}\mathbf{dependent}$ choice scheme: If φ is a second-order formula and A is a class, then

 $\forall X \exists Y \varphi(X, Y, A) \rightarrow \exists Z : \omega \rightarrow S \ \forall n \in \omega \varphi(Z_n, Z_{n+1}, A).$

Question: Does KM^+ prove the ω -dependent choice scheme/dependent choice scheme?

Thank you!

▲□→ ▲圖→ ▲温→ ▲温→