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Second-order set theories

Classes in first-order set theory

The objects of first-order set theory are sets.

Suppose that M = 〈M,∈〉 |= ZFC.

The classes of M are the definable sub-collections of M:
A ⊆ M is a class of if there is a formula ϕ(x , y) and a ∈ M such that

A = {x | M |= ϕ(x , a)}.

Properties of M in relation to a non-definable collection can be studied
by adding a unary predicate for it.

Does ZFC continue to hold in the language with a predicate for a given
non-definable collection?
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Second-order set theories

Non-definable collections: two case studies

Tarski’s undefinability of truth

Suppose M = 〈M,∈〉 |= ZFC.

The collection of all Gödel codes of true formulas in M

T = {pϕ(a)q | M |= ϕ(a)}

is never definable.

Is it possible that 〈M,∈,T 〉 |= ZFC? YES!

Reinhardt Axiom

Suppose M = 〈M,∈〉 |= ZFC.

The ultimate large cardinal axiom: there exists an elementary embedding

j : M → M.

An elementary embedding j : M → M is never definable. (easy proof)

Is it possible that 〈M,∈, j〉 |= ZFC? NO! (the famous Kunen’s Inconsistency)

Question: What is a general setting for considering non-definable collections?
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Second-order set theories

Second-order set theory

Second-order set theory has two sorts of objects: sets and classes.

Syntax: two-sorted logic

separate sorts for sets and classes

corresponding sorts for quantifiers

convention: uppercase letters for classes, lowercase letters for sets

Semantics:

A model is a triple M = 〈M,∈,S〉, where M is the sets and S is the classes.

Alternatively, we can formalize second-order set theory in first-order logic:

objects are classes,

define that a set is a class that is an element of some other class.
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Second-order set theories

Axiomatizing second-order set theory
Standard axiomatizations

Gödel-Bernays (GBC)

Kelley-Morse (KM)

Commonalities:

First-order axioms: ZFC.

Extensionality.

Replacement: if F is a class function and a is a set, then F � a is a set.

There is a global choice function (there exists a global well-ordering).

Difference: class existence principle - comprehension axiom schemes

GBC: Comprehension for first-order formulas.
If ϕ(x ,Y ) is a first-order formula and A is a class, then

{x | ϕ(x ,A)} is a class.

KM: Comprehension for second-order formulas.
If ϕ(x ,Y ) is a second-order formula and A is a class, then

{x | ϕ(x ,A)} is a class.
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Second-order set theories

Strength of GBC

Observation: If M |= ZFC has a definable global well-ordering, then

〈M,∈,S〉 |= GBC,

where S is the definable classes of M.

models of V = L

models of V = HOD

Theorem: (Solovay) Every (countable) model of ZFC can be extended to a model of
GBC without adding sets.

Proof: Force to add a global well-ordering. Forcing conditions are set well-orders, ordered by extension. The forcing

extension has no new sets (because the forcing is <κ-closed for every cardinal κ) and the new classes satisfy GBC. �

GBC is equiconsistent with ZFC.

GBC is conservative over ZFC:
any property of sets provable in GBC is already provable in ZFC.
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Second-order set theories

Strength of KM: existence of truth predicate

Suppose M = 〈M,∈,S〉 |= KM.

Definition: A class T ∈ S is a truth predicate for 〈M,∈〉 if it satisfies Tarksi’s truth
conditions: for every pϕq ∈ M (ϕ possibly nonstandard),

if ϕ is atomic, M |= ϕ(a) iff pϕ(a)q ∈ T ,

p¬ϕ(a)q ∈ T iff pϕ(a)q /∈ T ,

pϕ(a) ∧ ψ(a)q ∈ T iff pϕ(a)q ∈ T and pψ(a)q ∈ T ,

p∃xϕ(x , a)q ∈ T iff ∃b pϕ(b, a)q ∈ T .

Observation: If T is a truth predicate, then M |= ϕ(a) iff pϕ(a)q ∈ T .

Observation: If T is a truth predicate and pϕq ∈ ZFCM
(ϕ possibly nonstandard), then ϕ ∈ T .

Proof:

Is every (potentially nonstandard) instance of replacement in T?

Suppose p∀a ∈ d∃!b ϕ(a, b)q ∈ T (“!” means unique) .

M |= ∀a ∈ d∃!b pϕ(a, b)q ∈ T .

r = {b | pϕ(a, b)q ∈ T and a ∈ d} exists by replacement. �
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Second-order set theories

Strength of KM: existence of truth predicate (continued)

Theorem: If M = 〈M,∈,S〉 |= KM, then S has a truth predicate for 〈M,∈〉.

Proof:

M satisfies the second-order assertion:

∃Σ0
0-truth predicate and ∀n ∈ ω (∃Σ0

n-truth predicate→ ∃Σ0
n+1-truth predicate).

(by induction) M satisfies the second-order assertion:

∀n ∈ ω ∃Σn-truth predicate.

(by comprehension) M satisfies:

∃C ∀n ∈ ω Cn is the Σn-truth predicate.

Cn := {x | (n, x) ∈ C} is the slice on coordinate n of C . The Σn -truth predicate is unique in M.�
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Second-order set theories

Strength of KM: existence of transitive models of ZFC

Theorem: If M = 〈M,∈,S〉 |= KM, then M is the union of an elementary chain of its
rank initial segments VM

α :

VM
α0
≺ VM

α1
≺ · · · ≺ VM

αξ ≺ · · · ≺ M,

and M thinks that each VM
αξ |= ZFC.

Proof:

Let T ∈ S be the truth predicate for 〈M,∈〉.
ZFCM ⊆ T.

Let 〈VM
α ,∈,T ∩ VM

α 〉 ≺Σ2 〈M,∈,T 〉 (using reflection).

〈VM
α ,∈,T ∩ VM

α 〉 |=“T ∩ VM
α is a truth predicate”.

VM
α ≺ M (Tarski-Vaught criteria).

M satisfies that VM
α |= ZFCM. �

Note: Full reflection holds in models of KM!
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Second-order set theories

Strength of KM: below an inaccessible cardinal

Corollary: KM is stronger than the iterated Con-hierarchy of Con(ZFC).

Theorem: KM is weaker than the assertion that there exists an inaccessible cardinal.

Proof:
Suppose V |= ZFC and κ is inaccessible in V .

〈Vκ,∈,Vκ+1〉 |= KM.

There are many KM models in Vκ (take a countable elementary substructure of Vκ+1).

Con(Con(KM)) holds. �

Note: It suffices to assume V |= ZF, κ is inaccessible, Vκ |= ZFC.
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Choice schemes

Choice schemes for second-order set theory

The choice scheme and its variants are choice/collection principles for classes.

Choice scheme: If ϕ is a second-order formula and A is a class, then

∀x∃Xϕ(x ,X ,A)→ ∃Z∀x ϕ(x ,Zx ,A).

Zx := {z | (x, z) ∈ Z} is the slice of Z on coordinate x .

If for every set, there is a class witnessing a given property, then there is a
choice/collecting class of witnesses.

First studied by Marek and Mostowski in the 1970s?

Set-sized choice scheme: If ϕ is a second-order formula, a is a set and A is a class, then

∀x ∈ a∃Xϕ(x ,X ,A)→ ∃Z∀x ∈ aϕ(x ,Zx ,A).

Σ1
n-choice scheme: bounds the complexity of ϕ.

Parameterless choice scheme: no parameters in ϕ.
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Choice schemes

Choice schemes and GBC

Observation: The Σ1
0-choice scheme for ω-many choices can fail in a model of GBC.

Proof:

Suppose M is a transitive model of V = L.

M = 〈M,∈,S〉 |= GBC, where S is the definable classes of M.

M |= ∀n ∈ ω∃Σn-truth predicate (because M is standard).

If there is Z such that Zn is the Σn-truth predicate, then truth is definable from Z ! �
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Choice schemes

Choice schemes and KM

A model of KM + choice scheme

If V |= ZFC and κ is inaccessible in V , then

〈Vκ,∈,Vκ+1〉 |= KM + choice scheme.

Question: Does (some fragment of) the choice scheme follow from KM?

Question: Does the set-sized choice scheme imply the (full) choice scheme over KM?

Candidate counterexamples: 〈Vκ,∈,Vκ+1〉, where

V |= ZF and κ is inaccessible in V ,

choice holds in Vκ,

choice fails for objects of size κ.
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Choice schemes

Choice schemes for second-order arithmetic

There are deep analogies between second-order set theory and second-order arithmetic.

Primer:

Two sorts of objects: numbers and sets of numbers.

Syntax: two-sorted logic.

Semantics: A model of second-order arithmetic is: 〈M,+,×, <, 0, 1,S〉,
where M is numbers and S is sets.

Analogues of GBC and KM are ACA0 and Z2.

First-order axioms: Peano Arithmetic (PA).

Differ in set existence principles (and restrictions on induction).

ACA0: Comprehension (and induction) for first-order formulas with set parameters.

Z2: Comprehension (and induction) for second-order formulas with set parameters.

If V |= ZF, then 〈ω,+,×, <, 0, 1,P(ω)〉 |= Z2.

The choice scheme: if ϕ is a second-order formula and A is a set, then

∀n∃Xϕ(n,X ,A)→ ∃Z∀nϕ(n,Zn,A).
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Choice schemes

Choice schemes and Z2

Question: Does (some fragment of) the choice scheme follow from Z2?

Theorem: Z2 proves the Σ1
2-choice scheme.

Proof: SupposeM = 〈M,+,×, <, 0, 1,S〉 |= Z2 andM |= ∀n∃Xϕ(n,X ), where ϕ is Σ1
2.

(We ignore parameters for simplicity.)

If α is an ordinal coded in S, then S has a set coding Lα.

M has its own constructible universe LM!

M satisfies Shoenfield Absoluteness:
If ψ is a Σ1

2-assertion, then
M |= ψ iff LM |= ψ.

In LM , ψ is interpreted as an assertion about numbers and sets of numbers.

LM has a witness to every Σ1
2-assertion ∃Xϕ(n,X ).

Choose the LM-least X and use comprehension to collect! �
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Choice schemes

The Feferman-Lévy model

Properties:

N |= ZF,

each ℵLn is countable (ℵL
n is the nth uncountable cardinal of L),

ℵLω = ℵN1 is the first uncountable cardinal.

Construction:

Force with finite-support product P = Πn<ω Coll(ω,ℵn) over L to collapse
the first ω-many successor cardinals of ω to ω.

Let G ⊆ P be L-generic and Gm = G � Πn<m Coll(ω,ℵn).

N ⊆ L[G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gm] for some m.
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Choice schemes

Failure of Π1
2-choice for Z2

Theorem: (Feferman, Lévy) Π1
2-choice scheme can fail in a model of Z2.

Proof: Consider M = 〈ω,+,×, <, 0, 1,P(ω)〉N |= Z2.

Every Lℵn is coded in M, but Lℵω is not coded in M.

We cannot collect the (codes of) Lℵn .

The assertion
∀n∃X = Lℵn → ∃Z∀n Zn = Lℵn

fails in M.

The assertion X = Lℵn is Π1
2 (it is Π1

1 whether a set of numbers codes an ordinal). �
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Choice schemes

Generalization of the Feferman-Lévy model

Properties

N |= ZF, κ is inaccessible in N, V N
κ |= ZFC,

each (κ+n)L has size κ ((κ+n)L is the nth successor cardinal of κ in L),

(κ+ω)L = (κ+)N .

Construction:

Suppose κ is inaccessible in L.

Force with finite-support product P = Πn<ω Coll(κ, κ+n) over L to collapse
the first ω-many successor cardinals of κ to κ.

Let G ⊆ P be L-generic and Gm = G � Πn<m Coll(ω, κ+n).

N ⊆ L[G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gm] for some m.
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Choice schemes

Failure of Π1
1-choice for KM

Theorem: Π1
1-choice scheme for ω-many choices can fail in a model of KM.

Proof: Consider M = 〈Vκ,∈,Vκ+1〉N |= KM.

Every Lκ+n is coded in M, but Lκ+ω is not coded in M.

We cannot collect the (codes of) Lκ+n .

The assertion
∀n ∈ ω∃X = Lκ+n → ∃Z∀n ∈ ω X = Lκ+n

fails in M.

The assertion X = Lκ+n is Π1
1 (it is Π1

0 whether a class codes an ordinal). �

Victoria Gitman Choice schemes for Kelley-Morse set theory Colloquium Logicum 20 / 30



Choice schemes

Failure of Π1
0-choice for KM

Question: Does KM prove Π1
0-choice?

Theorem: (G., Johnstone, Hamkins) A model of KM can fail to make ω-many class
choices for a Π1

0 property. A model of KM can satisfy the set-sized choice scheme, but
fail to make class many class choices for a Π1

0-property.

There is a model M |= KM and a Π1
0-formula ϕ such that the assertion

∀n ∈ ω∃X ϕ(n,X )→ ∃Z∀n ∈ ω ϕ(n,Zn)

fails in M.

There is a model M |= KM in which the set-sized choice scheme holds, but the
assertion

∀x∃X ϕ(x ,X )→ ∃Z∀x ϕ(x ,Zx),

fails in M for some Π1
0-formula ϕ.

Proof idea: M has a collection of class trees, each of whom has branches, but we
cannot choose a single branch from every tree.
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Choice schemes

Homogeneous κ-Souslin trees

Suppose V |= ZFC and κ is an inaccessible cardinal in V .

Definition:

If T is a tree, a branch of T is a cofinal path through T .

A κ-tree is a sub-tree of <κ2 of height κ.

A κ-tree is Souslin if it has no antichains of size κ and no branches.

A κ-tree T is homogeneous if for any nodes t and s on the same level of T , there is
an automorphism that maps t to s.

Homogeneous κ-Souslin trees:

A κ-Souslin tree T is a partial order and forcing with T adds a branch through T .

T is a weakly homogeneous partial order.
A poset P is weakly homogeneous if for any conditions p, q ∈ P, there is an automorphism π such that π(p) and q are compatible.

Weak homogeneity yields key properties of symmetric models of ZF.
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Choice schemes

Failure of Π1
0-choice for KM: symmetric model 1

Properties:

N |= ZF, κ is inaccessible in N, V N
κ |= ZFC,

N has a sequence 〈Tn | n ∈ ω〉 of κ-trees such that
I each Tn has branches,
I there is no choice set of branches.

Construction:

Theorem: There is a model V |= ZFC with an inaccessible cardinal κ having a sequence
〈Tn | n < ω〉 of homogeneous κ-Souslin trees such that:

The product forcing Πn<mTn is <κ-distributive (and κ-cc).

The forcing Πn<mTn does not add branches to any Tk with k ≥ n.

Proof: Force with full-support product Πn∈ωQn , where Qn = Q adds a homogeneous κ-Souslin tree. �

Force with finite-support product P = Πn<ωTn to add branches to all Tn.

Let G ⊆ P be V -generic and Gm = G � Πn<mTn.

N ⊆ V [G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gm] for some m.
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Choice schemes

Failure of Π1
0-choice for KM: ω-many choices

Theorem: (G., Johnstone, Hamkins) Π1
0-choice scheme for ω-many choices can fail in a

model of KM.

Proof: Consider M = 〈Vκ,∈,Vκ+1〉N |= KM.

The assertion

ψ(
−→
T ) := ∀n ∈ ω∃B branch of Tn → ∃Z∀n ∈ ω Zn is a branch of Tn

fails in M.

The assertion B is a branch of Tn is Π1
0 (in the parameter

−→
T ). �

Note: A more complicated construction (starting with a Mahlo κ) eliminates the

parameter
−→
T by forcing to code it into Vκ before forcing with Πn<ωTn.
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Choice schemes

Failure of Π1
0-choice: symmetric model 2

Properties:

N |= ZF, κ is inaccessible in N, V N
κ |= ZFC,

N has a sequence 〈Tξ | ξ < κ〉 of κ-trees such that
I each Tξ has branches,
I there is no choice set of branches.

Construction:

Theorem: There is a model V |= ZFC with an inaccessible cardinal κ having a sequence
〈Tξ | ξ < κ〉 of homogeneous κ-Souslin trees such that:

The product forcing Πξ<αTξ is <κ-distributive (and κ-cc)for every α < κ.

The forcing Πξ<αTξ does not add branches to any Tβ with β ≥ α.

Proof: Force with bounded support product Πξ<κQξ , where Qξ = Q adds a homogeneous κ-Souslin tree. �

Force with bounded support product P = Πξ<κTξ to add branches to all Tξ.

Let G ⊆ P be V -generic and Gα = G � Πξ<αTξ.

N ⊆ V [G ] is a symmetric model of ZF with the property:
A is a subset of ordinals in N iff A ∈ V [Gα] for some α.
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Choice schemes

Failure of Π1
0-choice for KM: ORD-many choices

Theorem: (G., Johstone, Hamkins) There is a model of KM in which the set-sized
choice scheme holds, but Π1

0-choice scheme fails.

Proof: Consider M = 〈Vκ,∈,Vκ+1〉N |= KM.

M satisfies the set-sized choice scheme!

The assertion

ψ(
−→
T ) := ∀ξ∃B branch of Tξ → ∃Z∀ξ Zξ is a branch of Tξ

fails in M.

Note: A more complicated construction (starting with a Mahlo κ) eliminates the

parameter
−→
T by forcing to code it into Vκ before forcing with Πξ<κTξ.
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KM+ vs. KM

The theory KM+

Definition: The theory KM+ consists of KM together with the (full) choice scheme.

Abstract applications: KM+ proves that:

The  Loś theorem holds for internal (and external) ultrapowers of models of KM+.
I Suppose M = 〈M,∈,S〉 |= KM+, I ∈ M and U ∈ M is an ultrafilter on I .
I Classes in Ult(M,U) are represented by coded functionals F = 〈Ai | i ∈ I 〉 in S.

Second-order complexity classes are closed under first-order quantification.
Suppose that ϕ(x) is equivalent to a Σ1

n-assertion, then so are
I ∀xϕ(x),
I ∃xϕ(x).

Concrete applications:

nonstandard set theory (with infinitesimals)

properties of class forcing extensions
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KM+ vs. KM

Weaknesses in KM

Absorption of first-order quantifiers

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose second-order
complexity classes are not closed under (even bounded) first-order quantification.

The  Loś Theorem

Theorem: The  Loś theorem for internal ultrapowers is equivalent (over KM) to the
set-sized choice scheme.

Question: How badly does the  Loś theorem fail for ultrapowers of KM models?

Theorem: (G., Johnstone, Hamkins) There is a model of KM whose internal ultrapower
by an ultrafilter on ω is not a model of KM.
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KM+ vs. KM

Questions

Question: Is KM+ (consistency-wise) stronger than KM?

Dependent choice scheme: If ϕ is a second-order formula and A is a class, then

∀β∀X : β → S ∃Y ϕ(X ,Y ,A)→ ∃Z : ORD→ S ∀β ϕ(Z � β,Zβ ,A).

ω-dependent choice scheme: If ϕ is a second-order formula and A is a class, then

∀X∃Y ϕ(X ,Y ,A)→ ∃Z : ω → S ∀n ∈ ω ϕ(Zn,Zn+1,A).

Question: Does KM+ prove the ω-dependent choice scheme/dependent choice scheme?
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KM+ vs. KM

Thank you!
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