
LOGIC I

VICTORIA GITMAN

1. The Completeness Theorem

The Completeness Theorem was proved by Kurt Gödel in 1929. To state the theorem we must
formally define the notion of proof. This is not because it is good to give formal proofs, but
rather so that we can prove mathematical theorems about the concept of proof.
–Arnold Miller

1.1. On consequences and proofs. Suppose that T is some first-order theory.
What are the consequences of T? The obvious answer is that they are statements
provable from T (supposing for a second that we know what that means). But there
is another possibility. The consequences of T could mean statements that hold true
in every model of T . Do the proof theoretic and the model theoretic notions of
consequence coincide? Once, we formally define proofs, it will be obvious, by the
definition of truth, that a statement that is provable from T must hold in every
model of T . Does the converse hold? The question was posed in the 1920’s by
David Hilbert (of the 23 problems fame). The answer is that remarkably, yes, it
does! This result, known as the Completeness Theorem for first-order logic, was
proved by Kurt Gödel in 1929. According to the Completeness Theorem provability
and semantic truth are indeed two very different aspects of the same phenomena.

In order to prove the Completeness Theorem, we first need a formal notion of
proof. As mathematicians, we all know that a proof is a series of deductions, where
each statement proceeds by logical reasoning from the previous ones. But what do
we start with? Axioms! There are two types of axioms. First, there are the axioms
of logic that are same for every subject of mathematics, and then there are the
axioms particular to a given subject. What is a deduction? Modus ponens.

The first-order theory we are working over is precisely what corresponds to the
axioms of a given subject. For the purposes of this section, we shall extend the
notion of a theory from a collection of sentences (formulas without free variables)
to a collection of formulas (possibly with free variables). What is a model for a
collection of formulas? We shall say that a pair 〈M, i〉, where M is a structure of
the language of T and i is a map from the variables {x1, . . . , xn, . . .} into M , is a
model of T if M is a model of T under the interpretation i of the free variables.1

Example 1.1. Let L be the language {<} and T consist of a single formula ϕ :=
x1 < x2. Then N is an L-structure with the natural interpretation for <. Let
i(xi) = i − 1. Then 〈N, i〉 is a model of T . On the other hand, if we define j such
that j(x1) = 2 and j(x2) = 0, then the pair 〈N, j〉 is not a model of T .

Next, we must decide on what are the axioms of logic. The naive approach would
be to say that an axiom of logic is any logical validity: a formula that is true in
all models under all interpretations. This is what Arnold Miller calls the Mickey
Mouse proof system and it would be the first step toward equating the two notions

1A good source for material in this section is [AZ97].

1

2 VICTORIA GITMAN

of consequence.2 The Mickey Mouse proof system surely captures everything we
would ever need, but how do we check whether a given statement in a proof belongs
to this category? This question, known as the Entscheidungsproblem, was posed
by Hilbert and his student Wilhelm Ackermann. It was answered by the great Alan
Turing, who showed that, indeed, there is no ‘reasonable’ way of checking whether
a formula is a logical validity (we will prove this in Section 7). Since being able to
verify a claim to be a proof is a non-negotiable requirement, we want a different
approach. What we want is a sub-collection of the logical validities that we can
actually describe, thus making it possible to check whether a statement in the proof
belongs to this collection, but from which all other logical validities can be deduced.
Here is our attempt:

Fix a first-order language L. First let’s recall the following definition. We define
the terms of L inductively as follows. Every variable xn and constant c is a term.
If t1, . . . , tn are terms and f(x1, . . . , xn) is a function in L, then f(t1, . . . , tn) is
a term. Next, we define that the universal closure with respect to the variables
{x1, . . . , xn} of a formula ϕ is the formula ∀x1, . . . , xnϕ.

The axioms of logic for L are the closures of the following formula schemes3 with
respect to all variables:

1. Axioms of Propositional Logic.
For any formulas ϕ, ψ, θ:

ϕ→ (ψ → ϕ)

[ϕ→ (ψ → θ)]→ [(ϕ→ ψ)→ (ϕ→ θ)]

(¬ψ → ¬ϕ)→ (ϕ→ ψ)

2. Axioms of equality.
For any terms t1, t2, t3:

t1 = t1

t1 = t2 → t2 = t1

t1 = t2 → (t2 = t3 → t1 = t3)

For every relation symbol r and every function symbol f ,

t1 = s1 ∧ · · · ∧ tn = sn → (r(t1, . . . , tn)→ r(s1, . . . , sn))

t1 = s1 ∧ · · · ∧ tm = sm → f(t1, . . . , tm) = f(s1, . . . , sm)

3. Substitution axioms.
For any formula ϕ, variable x and term t such that the substitution ϕ(t/x)
is proper4:

∀xϕ→ ϕ(t/x)

4. Axioms of distributivity of a quantifier.
For any formulas ϕ, ψ, and any variable x:

∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

2One surprising logical validity is (ϕ→ ψ) ∨ (ψ → ϕ). Either ϕ implies ψ or ψ implies ϕ!
3A formula scheme is a (possibly infinite) collection of formulas matching a given pattern.
4A substitution of a term t for a variable x in a formula ϕ is proper if ‘you are not affecting

bound variables’. More precisely, if ϕ is an atomic formula, then any substitution is proper; if

ϕ = ¬ψ, then a substitution is proper for ϕ if and only if it is proper for ψ; if ϕ = ψ ∧ θ, then a
substitution is proper for ϕ if and only if it is proper for both ψ and θ; finally, if ϕ = ∀yψ, then a

substitution is proper if x 6= y, y does not appear in t, and the substitution is proper for ψ.

LOGIC I 3

5. Adding a redundant quantifier.
For any formula ϕ and any x not occurring in ϕ:

ϕ→ ∀xϕ
Let us call LOGL the collection of axioms of logic for L. The following result is
clear.

Theorem 1.2. Every L-structure is a model of LOGL.

We are now ready to formally define the notions of proof and theorem of an
L-theory T .

A proof p from T is a finite sequence of formulas 〈ϕ1, . . . , ϕn〉 such that ϕi ∈
LOG, or ϕi ∈ T or there are j, k < i such that ϕj = ϕk → ϕi (ϕi is derived by
modus ponens). If there is a proof of a formula ϕ from T , we shall denote this by
T ` ϕ. The theorems of T is the smallest set of formulas containing T ∪ LOG and
closed under modus ponens. Equivalently, the set T ∗ of theorems of T is defined
by induction as

T ∗ =
⋃
n

Tn,

where
T0 = T ∪ LOG,

and
Tn+1 = Tn ∪ {ψ | ∃ϕ(ϕ ∈ Tn and ϕ→ ψ ∈ Tn)}.

Whenever we will want to conclude a statement about all theorems of T , we shall
argue by induction on the theorems of T : we will show that it is true of formulas
in T , of logical axioms, and whenever it is true of ϕ and ϕ → ψ, then it is true of
ψ.

Theorem 1.3 (Soundness). Suppose that T is an L-theory. If T ` ϕ, then every
model of T satisfies ϕ.

In the next section, we begin to build up the machinery necessary to prove,
the converse, the Completeness Theorem. Once in possession of the Completeness
Theorem, we will be able to forget all about provability, which we shall soon see is
a very desirable thing to do! But before we are allowed to forget provability...

1.2. Formal provability. Here are some examples of proofs, of analyzing prov-
ability, and of results we will need to prove the Completeness Theorem. In the
background of all these results is some first-order language L.

Theorem 1.4. For every formula ϕ, we have ` ϕ→ ϕ.

Proof. The formulas:
ψ1 := ϕ→ [(ϕ→ ϕ)→ ϕ]

ψ2 := {ϕ→ [(ϕ→ ϕ)→ ϕ]} → {[ϕ→ (ϕ→ ϕ)]→ (ϕ→ ϕ)}
are in LOGL. Applying modus ponens, we get:

ψ3 := [ϕ→ (ϕ→ ϕ)]→ (ϕ→ ϕ)

Also,
ψ4 := ϕ→ (ϕ→ ϕ)

is in LOGL, and so applying modus ponens, we derive ϕ→ ϕ. Thus, the sequence

〈ψ1, ψ2, ψ3, ψ4, ϕ→ ϕ〉

4 VICTORIA GITMAN

is a proof of the formula ϕ→ ϕ. �

Theorem 1.5 (Deduction theorem). For every theory T and formula ϕ, we have
T, ϕ ` ψ if and only if T ` ϕ→ ψ.

Proof. If T ` ϕ→ ψ, then it is clear that T, ϕ ` ψ from the definition of provability.
For the other direction, we shall argue that T, ϕ ` ψ implies that T ` ϕ → ψ by
induction on the theorems ψ of T ∪ {ϕ}. If ψ ∈ T ∪ LOGL, then T ` ψ and also
ψ → (ϕ→ ψ) is an axiom of logic. Thus, T ` ϕ→ ψ by modus ponens. If ψ = ϕ,
then by Theorem 1.4, we have T ` ϕ → ϕ. Finally, suppose that the conclusion
holds for theorems θ and θ → ψ. Thus, we have

T ` ϕ→ θ and T ` ϕ→ (θ → ψ)

Now we apply the axiom of logic [ϕ → (θ → ψ)] → [(ϕ → θ) → (ϕ → ψ)] and
modus ponens twice. �

The next few theorem will be stated without proofs because the proofs get more
tedious by the theorem. For those who would like to inflict this pain on themselves
please consult [AZ97] for details. We will need these results for the proof of the
Completeness Theorem.

We shall say that a theory T is consistent if for no statement ϕ do we have that
T ` ϕ and T ` ¬ϕ. Otherwise, we shall say that T is inconsistent.

Theorem 1.6. If T is inconsistent, then T ` ψ for every formula ψ.

Theorem 1.7 (Reductio ad absurdum). If T ∪ {¬ϕ} is inconsistent, then T ` ϕ.

We shall say that a theory T is complete if for every formula ϕ, we have either
T ` ϕ or T ` ¬ϕ. We show below, using Zorn’s Lemma, that every consistent
theory can be extended to a complete consistent theory. Recall that Zorn’s Lemma
states that whenever you have a nonempty partially ordered set such that every
linearly ordered subset has an upper bound, then there is a maximal element. Zorn’s
Lemma (1935) is equivalent to the Axiom of Choice.

Theorem 1.8. Every consistent theory T has a complete consistent extension T ∗.

Proof. Let P be the partially ordered set consisting of all consistent extensions of
T ordered by inclusion, so that if T1, T2 ∈ P, then T1 ≤ T2 if and only if T1 ⊆ T2.
Clearly, P is nonempty since T ∈ P. If X ⊆ P is linearly ordered, then U =

⋃
{S |

S ∈ X} is an extension of T . We shall argue that it is consistent and hence in
P. If U was inconsistent, then there would be an inconsistent {ϕ1, . . . , ϕn} ⊆ U .
Let each ϕi ∈ Si in X and let Sj be the largest of the Si by linearity. Then all
ϕi ∈ Sj which contradicts that it is consistent. Thus, U is consistent and hence in
P. By Zorn’s Lemma, we let T ∗ ∈ P be some maximal element. By the Reductio
ad absurdum theorem, it follows that T ∗ must be complete. �

The usefulness of the next series of theorems will not become apparent until we
get to the proof of the Completeness Theorem.

Theorem 1.9 (The generalization rule). If a variable x does not occur in any
formula ϕ ∈ T , then T ` ϕ implies T ` ∀xϕ.

Proof. We shall argue by induction on the theorems ϕ of T . If ϕ ∈ LOGL, then
∀xϕ ∈ LOGL since we assumed that all universal closures of formulas in LOGL

LOGIC I 5

are also in LOGL. If ϕ ∈ T , then x does not occur in ϕ by assumption and so
ϕ → ∀xϕ is an axiom of logic. Applying modus ponens, it follows that T ` ∀xϕ.
Now we suppose that the assumption holds for ψ → ϕ and ψ: T ` ∀xψ and
T ` ∀x(ψ → ϕ). The formula ∀x(ψ → ϕ)→ (∀xψ → ∀xϕ) is an axiom of logic and
so ∀xϕ now follows by modus ponens. �

Theorem 1.10. Suppose that T is a theory and that a constant c does not occur in
any formula of T . If T ` ϕ, then T ` ∀yϕ(y/c) for some variable y, and moreover,
there is a proof from T of the formula ∀yϕ(y/c) in which the constant c does not
occur.

Sketch of proof. We fix a proof of ϕ, choose a variable y not occurring in the proof
and argue that the sequence which results by replacing every occurrence of c by y
is a proof of ϕ(y/c). Now use the generalization rule. �

Corollary 1.11 (Elimination of constants). Suppose T is a theory and a constant
c does not occur in any formula of T . If c does not occur in ϕ, then T ` ϕ(c/x)
implies that T ` ∀xϕ.

Sketch of proof. By Theorem 1.10, we have T ` ∀yϕ(y/x) for some variable y not
occurring in ϕ. Now argue that ∀yϕ(y/x) and ∀xϕ are logically equivalent (this is
obvious but tedious to argue). �

Corollary 1.12. Suppose T is a theory in a language L, L∗ is some expansion of
L by adding constants, and ϕ is a formula in L. If T ` ϕ in L∗, then T ` ϕ in L.

Proof. Let c1, . . . , cm be all new constants occurring in the proof of ϕ from T in L∗.
By the proof of Theorem 1.10, there is a proof of ∀y1, . . . , ymϕ(y1/c1, . . . , ym/cm),
for some variables yi not occurring in ϕ, from T in L. Since ϕ is a formula of L,
we have that ϕ(y1/c1, . . . , ym/cm) is the same as ϕ. Thus, T ` ∀y1, . . . , ymϕ in L.
Now since the yi do not appear in ϕ, we use the axiom of logic ∀xψ → ψ(t/x) with
any term t to conclude that T ` ϕ. �

Corollary 1.13. Suppose L∗ is an expansion of the language L by adding constants.
If T is consistent in L, then T is consistent in L∗.

Proof. If T were inconsistent in L∗, then for any formula ϕ of L, we would have
proofs of ϕ and ¬ϕ from T in L∗ by Theorem 1.6. But then by Corollary 1.12,
there would be proofs of ϕ and ¬ϕ in L. �

1.3. The Completeness Theorem. We are now in possession of all the machin-
ery needed to prove the Completeness Theorem. The proof we will give is due to
Leon Henkin (1949). Henkin’s construction has many applications, some of which
we will encounter later on in the course.

Theorem 1.14. Every consistent theory has a model.

Corollary 1.15 (The Completeness Theorem). If T is a theory and every model
of T satisfies ϕ, then T ` ϕ.

Proof. If T does not prove ϕ, then T ∪{¬ϕ} is consistent by Reductio ad absurdum
theorem. �

6 VICTORIA GITMAN

Our proof strategy will consist of two parts:
Part 1: We shall say that a theory S in a language L has the Henkin property
if whenever ϕ is a formula and x is a variable, then for some constant c ∈ L, the
theory S contains the formula:

ψϕ,x := ∃xϕ→ ϕ(c/x).

That is, every existential formula is witnessed by a constant in the theory S! We
will show that every complete consistent theory with the Henkin property has a
model. Intuitively, since every existential formula is witnessed by some constant,
we can hope to build the model out of the constants of L.
Part 2: We will show that every consistent theory T in a language L can be
extended to a complete consistent theory T ∗ with the Henkin property in some
extended language L∗.

Now for the details.

Proof of Theorem 1.14.
Part 1: Suppose that a theory S in a language L is consistent, complete and has
the Henkin property. We will assume for ease of presentation that S contains only
sentences. We can also assume without loss of generality that for every ϕ, we have
ϕ ∈ S or ¬ϕ ∈ S, by extending S to contain all its consequences. Let X consist of
all constant symbols in L. As we mentioned earlier, it seems reasonable to try to
build the requisite model out of X. We cannot quite let X be the universe of our
proposed model because constants do not necessarily represent distinct elements.
It could be that the sentence c = d is in S for some distinct constants c and d in
L, and so they should represent the same element of a model of S. We can easily
overcome this obstacle though by accordingly defining an equivalence relation on
the constants and letting our model consist of the equivalence classes. We define
the relation ∼ on X by c ∼ d if and only if the sentence c = d is in S. Using
the equality axioms of logic and the fact that S is both consistent and complete, it
immediately follows that ∼ is an equivalence relation. Thus, we let M = X/ ∼ be
the set of all equivalence classes.

For a relation r(x1, . . . , xn) of L, we define thatM |= r([c1], . . . , [cn]) if r(c1, . . . , cn) ∈
S. It follows from the equality axioms and the completeness and consistency of
S that this is well-defined. For a function f(x1, . . . , xm) of L, we define that
M |= f([c1], . . . , [cm]) = [c] if f(c1, . . . , cm) = c ∈ S. This is again clearly well-
defined, but we also have to argue that such a constant c exists. For some constant
c, the sentence

∃xf(c1, . . . , cm) = x→ f(c1, . . . , cm) = c

is in S by the Henkin property, and so it suffices to argue that ∃xf(c1, . . . , cm) =
x is in S as well. If it were not, then by completeness of S, we would have
∀x¬f(c1, . . . , cm) = x in S. But this cannot be since

∀x¬f(c1, . . . , cm) = x→ ¬f(c1, . . . , cm) = f(c1, . . . , cm)

is an axiom of logic, as well as

f(c1, . . . , cm) = f(c1, . . . , cm).

Thus, our satisfaction definition for functions makes sense. Finally, we define that
M |= c = [c].

Now that we have a proposed model M , we will argue that M |= ϕ(c1, . . . , cn) if
and only if ϕ(c1, . . . , cn) is in S. We start by showing, by induction on complexity

LOGIC I 7

of terms t, that we have M |= t = c if and only if t = c is in S. So consider
a term t = f(t1, . . . , tn). By the same argument as above, there is a constant c
and constants c1, . . . , cn such that f(t1, . . . , tn) = c and ti = ci are all in S. By
the inductive assumption, we have that M |= ti = ci and M |= f(c1, . . . , cn) = c.
It follows that M |= f(t1, . . . , tn) = d if and only if M |= c = d if and only if
f(t1, . . . , tn) = d is in S. Next, we argue that for atomic formulas ϕ, we have
M |= ϕ if and only if ϕ ∈ S. Suppose ϕ has the form r(t1, . . . , tn) for some terms
ti. By what we already showed, there are constants ci such that ti = ci are all in S
and M |= ti = ci. Thus, M |= r(t1, . . . , tn) if and only if M |= r(c1, . . . , cn) if and
only if r(c1, . . . , cn) is in S if and only if r(t1, . . . , tn) is in S. Suppose next that ϕ
has the form t = s. Again, there are constants c, d such that t = c and s = d are in
S and M |= t = c, s = d. Thus, M |= t = s if and only if M |= c = d if and only if
c = d is in S if and only if t = s is in S. This completes the argument for atomic
formulas. Now suppose inductively that M |= ϕ,ψ if and only ϕ,ψ ∈ S. Thus, we
have that M |= ¬ϕ if and only if M is not a model of ϕ if and only if ϕ /∈ S if and
only if ¬ϕ ∈ S. We also have that M |= ϕ ∧ ψ if and only if M |= ϕ and M |= ψ if
and only if ϕ and ψ are in S if and only if ϕ∧ψ is in S. The most involved argument
is the quantifier case. So suppose that M |= ∃xϕ(x). It follows that M |= ϕ(c)
for some constant c and hence by the inductive assumption, we have ϕ(c) in S. If
∃xϕ(x) were not in S, then ∀x¬ϕ(x) would be in S by completeness, and thus so
would ¬ϕ(c) ∈ S, meaning that S is inconsistent. Thus, ∃xϕ(x) ∈ S. Now suppose
that ∃xϕ(x) is in S. By the Henkin property, it follows that ∃xϕ→ ϕ(c/x) is in S
for some constant c. Thus, by completeness, we have ϕ(c) is in S and hence by the
inductive assumption, M |= ϕ(c), which implies that M |= ∃xϕ(x). This completes
the proof that M is a model of S.

To modify the proof for the case of formulas, we would need to provide an
interpretation of the variables xn by the elements of M . For each variable xi, there
is a constant c such that xi = c is in S. So we interpret xi by [c] in M .
Part 2: It remains to show that any consistent theory T in a language L can be
extended to a theory T ∗ in some language L∗ such that T ∗ is a complete consistent
theory with the Henkin property in L∗. Let T = T0 and L = L0. Let the language
L1 be the expansion of L0 by adding constants cϕ,x for every formula ϕ in L0 and
every variable x. Let T ′1 consist of T0 together with the formulas

ψϕ,x := ∃xϕ→ ϕ(cϕ,x/x)

for every formula ϕ of L0 and every variable x. Let us argue that theory T ′1 is
consistent in L1. Enumerate the formulas ψϕ,x as {ψ1, ψ2, . . . , ψn, . . .} and let
Sm = T ∪ {ψ1, . . . , ψm}. Clearly it suffices to show that all Sm are consistent
in L1. The theory S0 = T is consistent in the language L0 and hence in L1 as
well by Corollary 1.13. So we assume that Sm is consistent for some m. Then
Sm+1 = Sm ∪ {ψm+1}, where

ψm+1 := ∃xϕ→ ϕ(c/x).

If Sm+1 were inconsistent, then we would have Sm ` ¬(∃xϕ→ ϕ(c/x)) by Reductio
ad absurdum. Thus, Sm ` ∃xϕ ∧ ¬ϕ(c/x). But since c does not appear in Sm,
it follows that Sm ` ∀x¬ϕ, meaning that Sm was inconsistent, a contradiction.
This completes the proof that T ′1 is consistent. Next, we extend T ′1 to a complete
consistent theory T1 in L1 by Theorem 1.8. Now inductively, we define Tn and Ln

8 VICTORIA GITMAN

as above and let
T ∗ =

⋃
n

Tn and L∗ =
⋃
n

Ln.

It should be clear that T ∗ is a complete consistent theory in L∗ with the Henkin
property. �

The Compactness Theorem, due to Gödel (1930) for countable theories and to
Malcev (1936) for uncountable theories, is an immediate corollary of the Complete-
ness Theorem.

Corollary 1.16 (Compactness Theorem). If every finite subset of a theory T has
a model, then T has a model.

Proof. If every finite subset of a theory T has a model, then it is consistent, but
then it has a model by the Completeness Theorem! �

Giving our thanks to the Completeness Theorem, we will endeavor, for the re-
mainder of course, to forget all about formal provability. In the future, whenever
we will be required to show that a theory T ` ϕ, we will argue that every model of
T is a model of ϕ.

1.4. Homework.
Sources

(1) Arnold Miller’s Logic Course Notes [Mil]
(2) Logic of Mathematics [AZ97]

Question 1.1. Prove that if T,¬G ` ¬F , then T ` F → G.

Question 1.2. Suppose we adopt the Mickey Mouse proof system (where the
axioms of logic are all logical validities). Under this assumption, show that the
Completeness Theorem follows from the Compactness Theorem.

Question 1.3. The alphabet of propositional logic consists of a countable set
of propositional variables P = {P0, P1, . . . , Pn, . . .}, the logical connectives ∧, ∨,
¬, and → and grammar symbols (,). The propositional formulas are defined
inductively in the same manner as those of first-order logic. The semantics of
propositional logic is a truth valuation function v : I → {T, F} assigning truth
values to all propositional variables. The truth valuation extends to all formulas as
in first-order logic. A collection of formulas Σ of propositional logic is said to be
realizable if there is a truth valuation such that all formulas in Σ evaluate to T . A
collection of formulas is said to be finitely realizable if every finite sub-collection of
it is realizable. Prove the Compactness Theorem for propositional logic.

2. Models of Peano Arithmetic

“...it’s turtles all the way down.”

2.1. Peano’s Axioms. In 1889, more than two millennia after ancient Greeks
initiated a rigorous study of number theory, Guiseppe Peano introduced the first
axiomatization for the theory of the natural numbers. Incidentally, Peano is also
famous for his space filling curve, a continuous surjection from the unit interval onto
the unit square. Peano originally formulated his axioms in second-order logic, but
in the next century, Peano’s axioms were reformulated and studied in the context of
first-order logic, the newly accepted language of formal mathematics. Proving the

LOGIC I 9

consistency of Peano Arithmetic (PA), as the first-order reformulation of Peano’s
axioms become known, by ‘finitary’ means was the second of Hilbert’s famous 23
problems for the 20th-century.5

The language of PA is LA = {+, ·, <, 0, 1}, where +, · are 2-ary functions, < is a
2-ary relation, and 0, 1 are constant symbols.

Here is the theory Peano Arithmetic.6

Ax1-Ax5 express the associativity and commutativity of +, · and the distributive
law.

Ax1: ∀x, y, z((x+ y) + z = x+ (y + z))
Ax2: ∀x, y(x+ y = y + x)
Ax3: ∀x, y, z((x · y) · z = x · (y · z))
Ax4: ∀x, y(x · y = y · x)
Ax5: ∀x, y, z(x · (y + z) = x · y + x · z)

The group Ax6-Ax7 expresses that 0 is the identity for + and zero for ·, and 1 is
the identity for ·.

Ax6: ∀x(x+ 0 = x) ∧ (x · 0 = 0)
Ax7: ∀x(x · 1 = x)

The group Ax8-Ax10 expresses that ≤ (x ≤ y ↔ x < y ∨ x = y) is a linear order.

Ax8: ∀x, y, z((x < y ∧ y < z)→ x < z)
Ax9: ∀x¬x < x

Ax10: ∀x, y(x < y ∨ x = y ∨ y < x)

The group Ax11-Ax12 expresses that the functions + and · respect the order <.

Ax11: ∀x, y, z(x < y → x+ z < y + z)
Ax12: ∀x, y, z(0 < z ∧ x < y → x · z < y · z)

The axiom Ax13 expresses that we can define subtraction.

Ax13: ∀x, y(x < y → ∃z x+ z = y)

The group Ax14-Ax15 expresses that 0 is the least element and the ordering < is
discrete.

Ax14: 0 < 1 ∧ ∀x(x > 0→ x ≥ 1)
Ax15: ∀x(x ≥ 0)

So far we have written down finitely many axioms, 15 to be precise. The theory
consisting of these is known as PA−. Now we will write down the axiom scheme

5A discussion of the meaning of ’finitary’ consistency proofs will have to wait until Section 5.
6A good source for material in this section is [Kay91].

10 VICTORIA GITMAN

expressing induction. If ϕ(x, y) is an LA-formula7, then the axiom of induction for
ϕ on x is:

∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y)→ ϕ(x+ 1, y))→ ∀xϕ(x, y)).

Can every property of the natural numbers be proved from the PA?

Question 2.1. Is Peano Arithmetic complete?

Gödel showed in his famous First Incompleteness Theorem (1931) that Peano
Arithmetic is not complete, albeit through no fault of its own. Indeed, the First
Incompleteness Theorem shows that no ‘reasonably defined’ theory extending Peano
Arithmetic could ever be complete! We will learn all about the First Incompleteness
Theorem in Section 4.

By design, the natural numbers (N,+, ·, 0, 1) is a (countable) model of PA. It is
known as the standard model of PA.

Question 2.2. Are there countable nonstandard models of PA? What do they look
like?

We will find out more about this in the next few sections.

Question 2.3. Are there uncountable models of PA?

Yes, surprising as it may seem, there are uncountable models of our familiar
number theory! Here is one way to argue it. Let us expand LA to the language L′A
by adding uncountably many new constants. Next, let us extend PA to the theory
PA′ in L′A by adding the sentences c 6= d for every two new distinct constants
c, d ∈ L′A. Clearly PA′ is finitely realizable (in N) and thus has a model by the
Compactness Theorem and clearly this model must be uncountable.

2.2. The Arithmetical Hierarchy. Before we dive deeper into the world of mod-
els of PA, we will introduce a structure on LA-formulas known as the arithmetical
hierarchy.

Let ∀x < y(. . .) be an abbreviation for the LA formula ∀x(x < y → . . .) and
∃x < y(. . .) be an abbreviation for the LA-formula ∃x(x < y∧ . . .). We will say that
such quantifiers are bounded. An LA-formula is said to be ∆0 if all its quantifiers
are bounded. The ∆0-formulas are at the bottom of the arithmetical hierarchy.
For convenience, we shall also call ∆0-formulas Σ0-formulas and Π0-formulas. Now
we define inductively that an LA-formula is Σn+1 if it has the form ∃yϕ with ϕ a
Πn-formula. A Σn-formula looks like

∃x1∀x2∃x3 . . . Qxn ϕ(x1, . . . , xn, y)︸ ︷︷ ︸
∆0

.

We further define that a formula is Πn+1 if it has the form ∀yϕ with ϕ a Σn-formula.
A Πn-formula looks like

∀x1∃x2∀x3 . . . Qxn ϕ(x1, . . . , xn, y)︸ ︷︷ ︸
∆0

.

We allow blocks of quantifiers to be empty, so that every Σn-formula is both Σm
and Πm for every m ≥ n+ 1. In this way, we obtain the arithmetical hierarchy of
formulas.

7The notation y is a shorthand for a tuple of elements y1, . . . , yn.

LOGIC I 11

If T is an LA-theory, then a formula is said to be Σn(T) or Πn(T) if it is equivalent
over T to a Σn-formula or a Πn-formula respectively. A formula is said to be ∆n(T)
if it is both Σn(T) and Πn(T). Similarly, if M is an LA-structure, then a formula
is said to be Σn(M) or Πn(M) if it is equivalent over M to such a formula and it
is said to be ∆n(M) if it is both Σn(M) and Πn(M).

Over PA, we can show that a Σn-formula that is followed by a bounded quantifier
is equivalent to a Σn-formula, that is, we can ‘push the bounded quantifier inside’
and similarly for Πn-formulas.

Theorem 2.4. Suppose that ϕ(y, x, z) is a Σn-formula and ψ(y, x, z) is a Πn-
formula. Then the formulas ∀x < z ϕ(y, x, z) and ∃x < z ψ(y, x, z) are Σn(PA) and
Πn(PA) respectively.

The proof is left as homework.

2.3. What PA proves. Let’s prove a few basic theorems of PA. For the future,
your general intuition should be that pretty much anything you are likely to en-
counter in a number theory course is a theorem of PA. All our ‘proofs’ from PA−

will be carried out model theoretically, using the Completeness Theorem. First, we
get some really, really basic theorems out of the way.

Theorem 2.5. PA− proves that the ordering < is discrete: PA− ` ∀x, y(x < y →
x+ 1 ≤ y).

Proof. Suppose that M |= PA− and a < b in M . By Ax13, there is z such that
a+ z = b and by Ax9, ¬a = b. Thus, z 6= 0, and so by Ax14, Ax15, we have z ≥ 1.
Now finally, by Ax11, we have a+ 1 ≤ a+ z = b. �

Let us call 0 the constant term 0 and n the term 1 + · · ·+ 1︸ ︷︷ ︸
n times

(by Ax1, we don’t

have to worry about parenthesization). We think of the terms n as representing
the natural numbers in a model of PA−. Indeed, we show below that the terms n
behave exactly as though they were natural numbers.

Theorem 2.6. If n,m, l ∈ N and n+m = l, then PA− ` n+m = l.

Proof. Suppose that M |= PA−. We shall show by an external induction on m that
M |= m+n = l whenever m+n = l in N. If m = 0, then n = l and so it follows by
Ax6 that M |= 0 + n = n. So assume inductively that M |= n + m = l, whenever
n + m = l in N. Now suppose that n + (m + 1) = l and let n + m = k. By the
inductive assumption, M |= n+m = k. By Ax1, M |= n+m+ 1 = (n+m) + 1 =
k + 1 = k + 1 = l, and thus M |= n+m+ 1 = l. �

Similarly, we have:

Theorem 2.7. If n,m, l ∈ N and n ·m = l, then PA− ` n ·m = l.

Next, we have:

Theorem 2.8. If n,m ∈ N and n < m, then PA− ` n < m.

Finally, we have:

Theorem 2.9. For all n ∈ N, PA− ` ∀x(x ≤ n→ (x = 0 ∨ x = 1 ∨ · · · ∨ x = n))

12 VICTORIA GITMAN

Proof. Suppose that M |= PA−. Again, we argue by an external induction on
n. If n = 0, then M |= ∀x(x ≤ 0 → x = 0) by Ax15. So assume inductively
that M |= ∀x(x ≤ n → (x = 0 ∨ x = 1 ∨ · · · ∨ x = n)). Now observe that if
x ≤ n+ 1 = n+ 1 in M , then x ≤ n ∨ x = n+ 1 = n+ 1 by Theorem 2.5. �

Combining these results, we make a first significant discovery about model of PA.
But first, we need to review (introduce) some definitions and notation. If M and
N are LA-structures, then we say that M embeds into N if there is a an injective
map f : M → N such that f(0M) = 0N , f(1M) = 1N , f(a+M b) = f(a) +N f(b),
f(a ·M b) = a ·N b, and finally a <M b → f(a) <N f(b). If the embedding is the
identity map, we say that M is a submodel of N , and denote it by M ⊆ N . If
M ⊆ N and whenever x ∈ M and y < x, then y ∈ M , we say that M is an initial
segment of N or that N is an end-extension of M and denote it by M ⊆e N .

Theorem 2.10. The standard model (N,+, ·, 0, 1) embeds as an initial segment
into every model of PA− via the map f : n 7→ n.

By associating N with its image, we will view it as a submodel of every model of
PA−. So from now on, we will drop the notation n and simply use n. Because N is
an initial segment submodel of every a model M of PA−, we can make a stronger
statement about its connection to these M .

If M ⊆ N , we say that M is a ∆0-elementary submodel of N , denoted by
M ≺∆0

N , if for any ∆0-formula ϕ(x) and any tuple a ∈M , we have M |= ϕ(a)↔
N |= ϕ(a). We similarly define M ≺Σn

N .

Theorem 2.11. The standard model N is a ∆0-elementary submodel of every M |=
PA−.

Proof. We argue by induction on the complexity of ∆0-formulas. Since N is a
submodel of M , the statement is true of atomic formulas. Clearly, if the statement
is true of ϕ and ψ, then it is true of ¬ϕ, ϕ∧ ψ, ϕ∨ ψ. So suppose inductively that
the statement is true of ϕ(x, y, z) and consider the formula ∃x < y ϕ(x, y, z). Let
a, b ∈ N. If N |= ∃x < aϕ(x, a, b), then there is n < a such that N |= ϕ(n, a, b)
and so by our inductive assumption, M |= ϕ(n, a, b) from which it follows that
M |= ∃x < aϕ(x, a, b). If M |= ∃x < aϕ(x, a, b), then there is n < a such that
M |= ϕ(n, a, b). Since n < a is in N, by our inductive assumption, N |= ϕ(n, a, b)
and hence N |= ∃x < aϕ(x, a, b). �

An identical proof gives the following more general result.

Theorem 2.12. If M,N |= PA− and M ⊆e N , then M ≺∆0 N .

Thus, we have our first glimpse into the structure of models of PA:

p−p−p−p−p− · · ·)
N

?

To finish off the section, let us prove a first day undergraduate number theory
theorem using PA.

Theorem 2.13 (Division Algorithm). Let M |= PA and a, b ∈ M with a 6= 0.
Then there exist unique elements q, s ∈M such that M |= b = aq + r ∧ r < a.

LOGIC I 13

Proof. First we prove existence. We will use induction to show that the formula
ϕ(b) := ∃q, r(b = aq + r ∧ r < a) holds for all b in M . Clearly we have 0 =
a · 0 + 0 ∧ 0 < a in M since a 6= 0. So suppose that b = aq + r ∧ r < a in M . Then
b + 1 = aq + (r + 1) and either r + 1 < a or r + 1 = a. If r + 1 < a, we are done.
Otherwise, we have b + 1 = aq + a = a(q + 1) + 0 and we are also done. Now we
prove uniqueness. Suppose that b, q, r, q′, r′ ∈ M with b = aq + r = aq′ + r′ with
r < a and r′ < a. If q < q′, then b = aq + r < a(q + 1) ≤ aq′ + r′ = b, which is
impossible. Once we have that q′ = q, it is easy to see that r′ = r as well. �

In Theorem 2.13, we made our first use of an induction axiom. Standard proofs
of the division algorithm in Number Theory texts also use induction in the guise
of the Least Number Principle, a scheme equivalent to induction which asserts that
every definable subset has a least element. Indeed, PA− is not sufficient to prove the
division algorithm. For instance, consider the ring Z[x] with the following ordering.
First, we define that a polynomial p(x) > 0 if its leading coefficient is positive.
Now we define that polynomials p(x) > q(x) if p − q > 0. It is not difficult to
verify that the non-negative part of Z[x] is a model of PA− but the polynomial
p(x) = x is neither even nor odd: there is no polynomial q(x) such that x = 2q(x)
or x = 2q(x) + 1.

Remark 2.14. Suppose that ϕ is a formula where every quantifier is bounded by
a term, ∃x < t(y) or ∀x < t(y). Over PA such formulas are equivalent to ∆0-
formulas. The argument is a tedious carefully crafted induction on complexity of
∆0-formulas, where for every complexity level, we argue by induction on complexity
of terms that we can transform one additional quantifier bounded by a term. We
will not give the complete proof here but only hint at the details. Consider, for
instance, a formula ∃x < t(y)ψ(x, y), where t(y) = t1(y) + t2(y). Then the formula

∃x < t1(y) + t2(y)ψ(x, y)

is equivalent over PA− to the formula

∃b < t2(y)ψ(b, y)∨
∃a < t1(y)ψ(a, y)∨
∃a < t1(y)∃b < t2(y)ψ(a+ b+ 1, y).

Notice that both the new quantifiers are bounded by terms of lower complexity and
even though we potentially introduced a new quantifier bounded by a+ b+ 1 into
the formula ψ, if we assume inductively that we can remove all such quantifiers
from formulas of the complexity of ψ, then we would still have that ψ(a+ b+ 1, y)
is equivalent to a ∆0-formula. The issue that must be addressed though is that
when we try to apply the inductive assumption on complexity of terms to

∃a < t1(y)∃b < t2(y)ψ(a+ b+ 1, y)

we encounter a formula having one more quantifier (∃b), then the formula complex-
ity for which we have the inductive assumption. This is where a carefully crafted
inductive assumption comes into play.

Now suppose that s = t1 · t2. It follows from PA (Theorem 2.13) that every
x < t1 · t2 has the form bt1 + a (unless t1 = 0). Thus, the formula

∃x < t1(y) · t2(y)ψ(x, y)

14 VICTORIA GITMAN

is equivalent over PA to the formula

∃a < t1(y)∃b < t2(y) + 1ψ(bt1 + a, y).

2.4. Nonstandard models of PA. The first nonstandard model of PA was con-
structed by Thoralf Skolem in the early 1930’s as a definable ultrapower of N. A
definable ultrapower of a model M is constructed only out of functions that are
definable over the model, thus ensuring that this version of the ultrapower has the
same cardinality as the original model. Because it follows from PA that every de-
finable subset has a least element, the Loś Theorem holds for definable ultrapowers.
Here, we will construct a countable nonstandard model of PA using our proof of
the Completeness Theorem.

Let L′A be the language of arithmetic expanded by adding a constant symbol
c. Let PA′ be the theory PA together with the sentences c > n for every n ∈ N.
The theory PA′ is finitely realizable (in N) and hence consistent. Thus, we can run
the construction of the proof the Completeness Theorem to build a model of PA′.
By carefully examining the construction, we see that the language L∗ of that proof
is countable and thus so is the model M consisting of the equivalence classes of
constants in L∗. What does this model M (or any other countable model of PA for
that matter) look like order-wise?

By construction, there is an element c above all the natural numbers.

p−p−p−p−p− · · ·)
N

p
c

We know that for every n ∈ N, we must have elements c+ n and c− n. It follows
that the element c sits inside a Z-block, let’s call it Z(c).

p−p−p−p−p− · · ·)
N

(· · · −p−p−p
c
−p−p− · · ·)

The element 2c must also be somewhere. Where? Clearly 2c > c + n for every
n ∈ N and so 2c sits above the Z(c)-block. Indeed, the entire Z(2c)-block sits above
the Z(c)-block.

p−p−p−p−p− · · ·)
N

(· · · −p−p−p
c
−p−p− · · ·) (· · · −p−p−p

2c
−p−p− · · ·)

More generally, this shows that for every Z-block, there is a Z-block above it. Let’s
assume without loss of generality that c is even (if not we can take c + 1). The
element c

2 must be somewhere. Where? Clearly c
2 < c−n for every n ∈ N and so c

2
sits below the Z(c)-block. Indeed, the entire Z(c2)-block sits below the Z(c)-block,
but above N.

p−p−p−p−p− · · ·)
N

(· · · −p−p−p
c
2

−p−p− · · ·) (· · · −p−p−p
c
−p−p− · · ·) (· · · −p−p−p

2c
−p−p− · · ·)

More generally, this shows that for every Z-block, there is a Z-block below it but
above N. The element 3c

2 must also be somewhere (we assumed that c was even).

Where? The Z(3c
2)-blocks sits between the Z(c) and Z(2c) blocks.

p−p−p−p−p− · · ·)
N

(· · · −p−p−p
c
2

−p−p− · · ·) (· · · −p−p−p
c
−p−p− · · ·) (· · · −p−p−p

3c
2

−p−p− · · ·) (· · · −p−p−p
2c
−p−p− · · ·)

More generally, given blocks Z(c) and Z(d), the block Z(c+d2) (assuming without
loss of generality that c+ d is even) sits between them. Thus, the Z-blocks form a
dense liner order without endpoints.

LOGIC I 15

Now we have the answer. Order-wise, a countable nonstandard model of PA
looks like N followed by densely many copies of Z without a largest or smallest
Z-block.

Can we similarly determine how addition and multiplication works in these non-
standard models? The answer is NO! This is the famous Tennenbaum’s Theorem
(1959) and we will get to it in Section 7.

For a quick glimpse into the strangeness that awaits us as we investigate the
properties of the nonstandard elements of a model M |= PA, we end the section
with the following observation.

Theorem 2.15. Suppose that M |= PA is nonstandard. Then there is a ∈M such
that for all n ∈ N, we have that n is a divisor of a.

Proof. We shall use induction to argue that for every b ∈ M , there is a ∈ M that
is divisible by all elements ≤ b. Thus, we show by induction on b that the formula

ϕ(b) := ∃a∀x ≤ b∃c a = cx

holds for all b ∈ M . Obviously ϕ(0) holds. So suppose inductively that there is
a ∈ M that is divisible by all elements ≤ b. But then a(b + 1) is divisible by all
elements ≤ b + 1. Now, by choosing b to be nonstandard, it will follow that a is
divisible by all n ∈ N. �

2.5. Definability in models of PA. Suppose that M is a first-order structure.
For n ∈ N, we let Mn denote the n-ary product M × · · · ×M︸ ︷︷ ︸

n times

. A set X ⊆ Mn is

said to be definable (with parameters) over M if there is a formula ϕ(x, y) and a
tuple of elements a in M such that M |= ϕ(x, a) if and only if x ∈ X. A function
f : Mn → M is said to be definable over M if its graph is a definable subset of
Mn+1. Let’s look at some examples of sets and functions definable over a model
M |= PA.

Example 2.16. The set of all even elements of M is definable by the formula

ϕ(x) := ∃y ≤ x 2y = x.

Example 2.17. The set of all prime elements of M is definable by the formula

ϕ(x) := ¬x = 1 ∧ ∀y ≤ x (∃z ≤ x y · z = x→ (y = 1 ∨ y = x)).

Can N be a definable subset of M? It should be obvious after a moment’s thought
that this is impossible because any formula ϕ(x, a) defining N would have the prop-
erty that it is true of 0 and whenever it is true of x, it is also true of x+ 1, meaning
that it would have to be true of all x in the nonstandard M . This observation leads
to a widely applied theorem known as the Overspill Principle.

Theorem 2.18 (The Overspill Principle). Let M |= PA be nonstandard. If M |=
ϕ(n, a) for all n ∈ N, then there is a c > N such that

M |= ∀x ≤ c ϕ(x, a).

Proof. Suppose not, then for every c > N, there is x ≤ c such that M |= ¬ϕ(x, a).
But then we could define n ∈ N if and only if ∀x ≤ nϕ(x, a). �

Example 2.19. Every polynomial function f(x) = anx
n + · · · + a1x + a0 (with

parameters a0, . . . , an ∈M) is definable over M .

16 VICTORIA GITMAN

Addition and multiplication are part of the language of arithmetic. What about
exponentiation? Do we need to expand our language by an exponentiation function?
Or...

Question 2.20. Suppose that M |= PA. Is there always a function that extends
standard exponentiation and preserves its properties that is definable over M?

For instance, it will follow from results in Section 4 that multiplication cannot be
defined from addition in N. A curious result due to Julia Robinson is that addition
is definable in N from the successor operation s(x) = x + 1 and multiplication.
Robinson observed that in N, we have that

a+ b = c

if and only if the triple 〈a, b, c〉 satisfies the relation

(1 + ac)(1 + bc) = 1 + c2(1 + ab).

There are two ways that exponentiation is usually presented in a standard math
textbook. One way uses the intuitive ... notation (2n = 2 · 2 · . . . · 2︸ ︷︷ ︸

n

) and the more

rigorous approach relies on induction (a0 = 1 and ab+1 = ab · a). Neither approach
is immediately susceptible to the formalities of first-order logic, but with a decent
amount of work, the inductive definition will formalize.

Suppose someone demanded of you a formal argument that 24 = 16. You might
likely devise the following explanation. You will write down a sequence of numbers:
the first number in the sequence will be 1 (because 20 = 1), each successive number
in the sequence will be the previous number multiplied by 2, and the 5th number
better be 16. This is our key idea! An exponentiation calculation is correct if there
is a witnessing computation sequence. If s is a sequence, then we let (s)n denote
the nth element s. Clearly it holds that ab = c if and only if there is a witnessing
computation sequence s such that (s)0 = 1, for all x < b, we have (s)x+1 = a · (s)x,
and (s)b = c. Here is a potential formula defining ab = c:

ϕ(a, b, c) := ∃s (s)0 = 1 ∧ ∀x < b (s)x+1 = a · (s)x ∧ (s)b = c.

Unfortunately, this makes no sense over a model of PA. Or does it? For it to
make sense, an element of a model of PA would have be definably interpretable as
a sequence of elements.

2.6. Coding in models of PA. Let’s first think about how a natural number can
be thought of as coding a sequence of natural numbers. Can this be done in some
reasonable way? Sure! For instance, we can use the uniqueness of primes decom-
position. Let pn denote the nth prime number. We code a sequence a0, . . . , an−1

with by the number

pa0+1
0 · pa1+1

1 · . . . · pan−1+1
n−1 .

We need to add 1 to the exponents because otherwise we cannot code 0. Notice
that under this coding only some natural numbers are codes of sequences.

Example 2.21. The sequence 〈5, 1, 2〉 gets coded by the number 26 · 32 · 53.

Example 2.22. The number 14 = 2 · 7 does not code a sequence because its
decomposition does not consist of consecutive prime numbers.

LOGIC I 17

This coding is relatively simple (although highly inefficient), but it does not suit
our purposes because it needs exponentiation. We require a clever enough coding
that does not already rely on exponentiation. The way of coding we are about to
introduce relies on the Chinese Remainder Theorem (from number theory) and is
due to Gödel.

Let’s introduce some standard number theoretic notation. We abbreviate by b|a
the relation b divides a. We abbreviate by (ab) the remainder of the division of a by
b. We abbreviate by (a, b) = c the relation expressing that c is the largest common
devisor of a and b.

Theorem 2.23 (Chinese Remainder Theorem). Suppose m0, . . . ,mn−1 ∈ N are
pairwise relatively coprime. Then for any sequence a0, . . . , an−1 of elements of N,
the system of congruences

x ≡ a0(mod m0)

x ≡ a1(mod m1)

...

x ≡ an−1(mod mn−1)

has a solution.

Example 2.24. The system of congruences

x ≡ 2(mod 3)

x ≡ 1(mod 5)

has a solution x = 11.

The next theorem, which makes up the second piece of the coding puzzle, states
that there are easily definable arbitrarily long sequences of coprime numbers whose
first element can be made arbitrarily large.

Theorem 2.25. For every n, k ∈ N, there is m > k such that elements of the
sequence

m+ 1, 2m+ 1, . . . , nm+ 1

are pairwise relatively coprime.

Hint of proof. Let m be any multiple of n! chosen so that m > k. �

Now suppose we are given a sequence of numbers a0, . . . , an−1. Here is the coding
algorithm:
1. We find m > max{a0, . . . , an−1} so that

m+ 1, 2m+ 1, . . . , nm+ 1

are relatively coprime.
2. By the Chinese Remainder Theorem, there is a ∈ N such that for 0 ≤ i < n, we
have

a ≡ ai(mod (i+ 1)m+ 1)

3. Since ai < (i+ 1)m+ 1 for all 0 ≤ i < n, it follows that

ai =

(
a

(i+ 1)m+ 1

)
.

4. The pair (a,m) codes the sequence a0, . . . , an−1!

18 VICTORIA GITMAN

Most significantly, the decoding mechanism is expressible using only operations of
addition and multiplication. Also, conveniently, we may view every pair of numbers
(a,m) as coding a sequence s, whose ith-element is

(s)i =

(
a

(i+ 1)m+ 1

)
.

Armed with the Chinese Remainder Theorem coding algorithm, we can now code
any finite sequence of numbers by a pair of numbers. This is good enough for the
purpose of defining exponentiation over N using just addition and multiplication.
The quantifier ∃s would be replaced by ∃a,m and the expression (s)i would be

replaced with
(

a
(i+1)m+1

)
, which is easily expressible in LA. But with a minor

bit more work, we can see how to code pairs of numbers by a single number, so
that every number codes a pair of numbers. One way to accomplish this is using
Cantor’s pairing function

〈x, y〉 =
(x+ y)(x+ y + 1)

2
+ y.

Theorem 2.26. Cantor’s pairing function 〈x, y〉 is a bijection between N2 and N.

The proof is left to the homework. Cantor’s pairing function z = 〈x, y〉 is definable
over N by the quantifier-free formula

2z = (x+ y)(x+ y + 1) + 2y.

It also easy to see that the code of a pair is at least as large as its elements,
x, y ≤ 〈x, y〉. Using Cantor’s pairing function, we can inductively define, for every
n ∈ N, the bijection 〈x1, . . . , xn〉 : Nn → N by 〈x1, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉.
Arguing inductively, it is easy to see that functions z = 〈x1, . . . , xn〉 are all ∆0-
definable over N. Supposing that z = 〈x1, . . . , xn〉 is ∆0-definable, we define z =
〈x1, . . . , xn, xn+1〉 by the ∆0-formula

∃w ≤ z w = 〈x2, . . . , xn+1〉 ∧ 2z = (x1 + w)(x1 + w + 1) + 2w.

So far we have worked exclusively with the natural numbers and so it remains
to argue that this coding method works in an arbitrary model of PA. Once that is
done, we will have that any element of a model of PA may be viewed as a sequence
of elements of a model of PA and with some additional arguments (using induction)
we will be able to show that elements coding sequences witnessing exponentiation
(and other fun stuff) exist.

LOGIC I 19

The full details of formalizing the coding arguments over a model of PA will be
left as homework. Here we just give a brief overview of how they proceed.

First, we show that Theorem 2.25, asserting that easily definable arbitrarily long
sequences of coprime elements exist, is provable from PA.

Theorem 2.27.

PA ` ∀k, n∃m(m > k ∧ ∀i, j < n(i 6= j → ((i+ 1)m+ 1, (j + 1)m+ 1) = 1)).

Hint of proof. Suppose that M |= PA and k, n ∈ M . We let m′ be any element of
M that is divisible by all x ≤ n. The element m′ plays the role of n!. Now we let
m be any multiple of m′ chosen so that m > k.

�

We cannot hope to express the Chinese Remainder Theorem in LA until we
develop the sequence coding machinery, so luckily we do not need its full power for
our purposes. Instead, we will argue that given a,m coding a sequence s and an
element b, there are a′,m′ coding s extended by b. This property will allow us to
argue inductively that a code of some desired sequence exists. The next result is
an auxiliary theorem for that argument. We show that whenever an element z is
relatively coprime with elements of the form (i+ 1)m+ 1 for all i < n, then there
is an element w that is relatively coprime with z and which divides all (i+ 1)m+ 1
for i < n.

Theorem 2.28.

PA ` ∀m,n, z(∀i < n ((i+1)m+1, z) = 1→ ∃w((w, z) = 1∧∀i < n ((i+1)m+1)|w)).

Hint of proof: We argue by induction on k up to n in the formula

∃w(w, z) = 1 ∧ ∀i < k ((i+ 1)m+ 1)|w,

using that if w worked for stage k, then w((k+1)m+1) will work for stage k+1. �

Theorem 2.29. PA ` ∀a,m, b, n∃a′,m′

∀i < n

(
a′

(i+ 1)m′ + 1

)
=

(
a

(i+ 1)m+ 1

)
∧
(

a′

(n+ 1)m′ + 1

)
= b

Hint of proof: We choose m′ > max{b,m} satisfying Theorem 2.25. First, we show
by induction on k up to n that

M |= ∀k ≤ n∃c∀i < k

(
c

(i+ 1)m′ + 1

)
=

(
a

(i+ 1)m+ 1

)
(this uses Theorem 2.28). Finally, we construct a′ from c using the same argument
as for the inductive step of above. �

Theorem 2.30. PA proves that Cantor’s pairing function 〈x, y〉 is a bijection:

(1) ∀z∃x, y 〈x, y〉 = z,
(2) ∀x, y, u, v(〈x, y〉 = 〈u, v〉 → x = y ∧ y = v).

Thus, every model M |= PA has ∆0-definable bijections z = 〈x1, . . . , xn〉 between
M and Mn.

20 VICTORIA GITMAN

Remark 2.31. Contracting Quantifiers
Using the function 〈x1, . . . , xn〉, we show that every Σm+1-formula with a block
of existential quantifiers ∃y1, . . . , yn ϕ(y1, . . . , yn) is equivalent over PA to a Σm+1-
formula with a single existential quantifier

∃y ∃y1, . . . , yn ≤ y y = 〈y1, . . . , yn〉 ∧ ϕ(y1, . . . , yn)︸ ︷︷ ︸
Πm

.

The same holds for Πm+1-formulas as well.

Now finally, given any x, i ∈M , we define that

(x)i =

(
a

m(i+ 1) + 1

)
where x = 〈a,m〉. The relationship (x)i = y is expressible by the ∆0-formula

∃a,m ≤ x

 (a+m)(a+m+ 1) + 2m = 2x∧
∃q ≤ a a = q((i+ 1)m+ 1) + y∧
y < (i+ 1)m+ 1

 .

The function (x)i is better know as the Gödel β-function, β(x, i).
The next theorem summarizes the coding properties we have proved.

Theorem 2.32. PA proves that

(1) ∀a∃x (x)0 = a
(2) ∀x, a, b∃y(∀i < a (x)i = (y)i ∧ (y)a = b)
(3) ∀x, i (x)i ≤ x.

Example 2.33. Suppose that M |= PA. In M , consider the definable relation

exp(a, b, c) := ∃s((s)0 = 1 ∧ ∀x < b (s)x+1 = a(s)x ∧ (s)b = c).

We shall argue that exp defines a total function on M , meaning that for every
a, b ∈ M , there is a c ∈ M such that M |= exp(a, b, c) and such c is unique. To
prove uniqueness, we suppose that there are two witnessing sequences s and s′ and
argue by induction up to b that (s)x = (s′)x for all x ≤ b. To prove existence, we
fix a ∈ M and argue by induction on b. By Theorem 2.32, there is s ∈ M such
that (s)0 = 1, which witnesses that a0 = 1. So suppose inductively that there is
s ∈ M witnessing that exp(a, b, c) holds for some c. By Theorem 2.32, there is s′

such that (s)x = (s′)x for all x ≤ b and (s′)b+1 = a · (s)b. Thus, s′ is a sequence
witnessing that exp(a, b+1, ac) holds. Similarly, using induction, we can show that
exp satisfies all expected properties of exponentiation. Finally, we argue that for
a, b ∈ N, if ab = c, then M |= exp(a, b, c) and thus exp extends true exponentiation
to all of M . Suppose that ab = c, then there is a sequence s ∈ N witnessing this
and since N ≺∆0 M , the model M must agree.

Example 2.34. Suppose that M |= PA. In M , the relation

∃s((s)0 = 1 ∧ ∀x < a(s)x+1 = (x+ 1)(s)x ∧ (s)a = b)

defines a total function extending the factorial function to M and satisfying all its
expected properties.

Our sequences are still missing one useful feature, namely length. Given an
element x, we know how to obtain the ith-element coded by x, but we don’t know
how many of the elements x codes are meaningful. Up to this point, we did not

LOGIC I 21

require this feature but it is feasible that it might yet prove useful. To improve our
coding by equipping sequences with length, we simply let (x)0 tell us how many
elements of x we are interested in. Given x, let us adopt the convention that (x)0

is the length of x and for all i < len(x), we denote by [x]i = (x)i+1 the ith-element
of x. It will also be convenient to assume that [x]i = 0 for all i ≥ len(x).

One other potential deficiency of our coding is that a given sequence does not
have a unique code. But this is also easily remedied. Let us define a predicate
Seq(s) that will be true only of s that are the smallest possible codes of their
sequences

Seq(s) := ∀s′ < s (len(s′) 6= len(s) ∨ ∃i < len(s)[s]i 6= [s′]i).

Now every sequence s has a unique code s′: ∀s∃s′(Seq(s′)∧∀i < len(s)([s]i = [s′]i)).
Finally, here is a coming attraction. So far using coding, we gained the ability to

definably extend to models of PA, recursively expressible functions on the natural
numbers. What else can coding be used for? Here is something we can code:
languages! Letters of the alphabet can be represented by numbers, words can be
represented by sequences of numbers, and sentences by sequences of sequences of
numbers. If we are dealing with a formal language, we should also be able to define
whether a given number codes a letter, a word, or a sentence. In this way we should
in principle be able to code first-order languages, such as LA. Below is a preview.

Suppose that M |= PA. First, we assign number codes to the alphabet of LA in
some reasonable manner.

LA-symbol Code
0 0
1 1
+ 2
· 3
< 4
= 5
∧ 6
∨ 7
¬ 8
∃ 9
∀ 10
(11
) 12
xi 〈13, i〉

This allows us to define the alphabet of LA as

A(x) := x ≤ 12 ∨ ∃y x = 〈13, y〉.

Using A(x), we next definably express whether an element of M codes a term of
LA. Loosely, an element t ∈ M codes a term of LA if it is a sequence consisting
of elements satisfying A(x) and there is a term building sequence s witnessing its
construction from basic terms. An element of s is either a singleton sequence coding
one of the basic terms 0, 1, xi, or it is a sequence coding one of the expressions x+y,
x·y where x, y previously appeared in s, and the last element of s is t. Notice that for
the natural numbers, this definition holds exactly of those numbers coding terms,
but if M is nonstandard, then the definition also holds of nonstandard terms, such

22 VICTORIA GITMAN

as 1 + · · ·+ 1︸ ︷︷ ︸
a

for some nonstandard a ∈ M . Similarly, we define that an element

of M codes a formula of LA if there is a formula building sequence witnessing this.
We can also definably express whether the code of a formula represents a Peano
Axiom. In this way, we have made a model of PA reason about models of PA. This
sort of self-reference is bound to get us into some variety of trouble. Stay tuned for
the Gödel Incompleteness Theorems. In a similar way, we can code finite (and even
certain infinite) languages inside models of PA and make these models reason about
the properties of formulas of such a language. Indeed, as we will see in Section 5,
models of PA can even prove the Completeness Theorem!

2.7. Standard Systems. One of the central concepts in the study of models of PA
is that of a standard system. Suppose that M |= PA is nonstandard. The standard
system of M , denoted by SSy(M), is the collection of all subsets of N that arise as
traces of definable subsets of M on the natural numbers. More precisely

SSy(M) = {A ∩ N | A is a definable subset of M}.

Example 2.35. All sets that are ∆0-definable over N are in the standard system
of every nonstandard M |= PA. Suppose that A ⊆ N is definable over N by a
∆0-formula ϕ(x) and M |= PA is nonstandard. If A′ ⊆ M is defined by ϕ(x) over
M , then, since N ≺∆0 M , we have A = A′ ∩ N. Thus, in particular, the following
sets are in SSy(M) of every nonstandard M |= PA:

(1) the set of all even numbers,
(2) the set of all prime numbers,
(3) N (definable by ϕ(x) := x = x).

Example 2.36. All sets that are definable over N by a ∆1(PA)-formula are in
the standard system of every M |= PA. Suppose that A ⊆ N is definable over N
by a Σ1-formula ∃yϕ(x, y), where ϕ(x, y) is ∆0, that is equivalent over PA to a
Π1-formula ∀yψ(x, y), where ψ(x, y) is ∆0. Let A′ be the set definable over M by
the formula ∃yϕ(x, y). We shall argue that A = A′ ∩N. Suppose that n ∈ A. Then
N |= ∃yϕ(n, y), and so there is m ∈ N such that N |= ϕ(n,m). Since N ≺∆0

M ,
it follows that M |= ϕ(n,m), and thus M |= ∃yϕ(n, y). This demonstrates that
n ∈ A′. Now suppose that n ∈ N ∩ A′. Then M |= ∃yϕ(n, y) and, since ∃yϕ(x, y)
is equivalent over PA to ∀yψ(x, y), we have that M |= ∀yψ(n, y). In particular, for
every m ∈ N, we have that M |= ψ(n,m). Thus, by ∆0-elementarity, it follows that
N |= ∀yψ(n, y). But then, N |= ∃yϕ(n, y). This demonstrates that n ∈ A.

In Section 3, we will generalize Example 2.36 to show that every subset of N that
is definable by a ∆1(N)-formula is in SSy(M) of every nonstandard M |= PA.
This is not an immediate consequence of Example 2.36 because a formula that is
equivalent over N to both a Σ1 and a Π1-formula has no a priori reason to have
similar equivalent variants over some nonstandard M |= PA.

Question 2.37. What are other general properties of standard systems?

In Section 7, we will show that standard systems of countable models of PA are
completely characterized by three properties, meaning that any standard system
must possess those properties and any collection of subsets of N that possesses those
properties is the standard system of some model M |= PA. The question of whether
the same characterization holds for uncountable models of PA has been open for

LOGIC I 23

over half a century! Two of these properties are presented below, but the third will
have to wait until Section 7. First though, it is useful to observe that in studying
SSy(M), we do not need to examine all definable subsets of a model M |= PA, but
merely its ∆0-definable subsets.

Let us say that A ⊆ N is coded in a nonstandard M |= PA, if there is a ∈ M
such that n ∈ A if and only if M |= (a)n 6= 0.

Theorem 2.38. Suppose that M |= PA is nonstandard. Then SSy(M) is the
collection of all subsets of N that are coded in M .

Proof. First, suppose that A ⊆ N is coded in M . Then there is a ∈ M such that
n ∈ A if and only if M |= (a)n 6= 0. Let ϕ(x, a) := (a)x 6= 0, and observe that the
intersection of the set defined by ϕ(x, a) with N is exactly A. Now suppose that
there is a formula ϕ(x, y) and b ∈ M such that A = {n ∈ N | M |= ϕ(n, b)}. Let
c ∈M be nonstandard. We argue by induction on y up to c in the formula

ψ(y, b) := ∃a∀x ≤ y (a)x 6= 0↔ ϕ(x, b)

that there is a ∈ M such that for all x ≤ c, we have M |= (a)x 6= 0 ↔ ϕ(x, b).
Define that ix = 1 if M |= ϕ(x, b) and ix = 0 otherwise. By Theorem 2.32, there is
a ∈ M such that (a)0 = i0. So suppose inductively that there is a ∈ M such that
for all x ≤ y, we have M |= (a)x 6= 0↔ ϕ(x, b). By Theorem 2.32, there is a′ ∈M
such that for all x ≤ y, we have (a)x = (a′)x and (a′)y+1 = iy+1. �

Now back to properties of standard systems. The following result follows almost
immediately from the definition of standard systems.

Theorem 2.39 (Property (1) of standard systems). Suppose that M |= PA is
nonstandard. Then SSy(M) is a Boolean algebra of subsets of N.

To introduce the second property of standard systems, we first need some back-
ground on finite binary trees.

Let Bin denote the collection of all finite binary sequences. Using, the Chinese
Remainder Theorem coding developed in the previous section, every finite binary
sequence has a unique natural number code, that is the least natural number coding
that sequence. Via this coding, we shall view every subset of Bin as a subset of N.

A subset T of Bin is called a (binary) tree if whenever s ∈ T , then so are all
its initial segments (if k ≤ len(s), then s � k ∈ T). We will refer to elements of
T as nodes and define the level n of T to consist of all nodes of length n. The
collection Seq is itself a binary tree, called the full binary tree. A tree T comes
with a natural partial ordering defined by s ≤ u in T if u � len(s) = s. A set b ⊆ T
is a called a branch of T if b is a tree and and its nodes are linearly ordered. Below
is a visualization of a (upside down) binary tree.

Theorem 2.40 (König’s Lemma, 1936). Every infinite binary tree has an infinite
branch.

24 VICTORIA GITMAN

Proof. Suppose that T is an infinite binary tree. We define the infinite branch b
by induction. Let s0 = ∅. Next, observe that since T is infinite, either the node
〈0〉 or the node 〈1〉 has infinitely many nodes in T above it. If 〈0〉 has infinitely
many nodes above it, we let s1 = 〈0〉, otherwise, we let s1 = 〈1〉. Now suppose
inductively that we have chosen sn on level n of T with infinitely many nodes in
T above it. Again either snˆ0 or snˆ1 has infinitely many nodes in T above it.
If snˆ0 has infinitely many nodes above it, we let sn+1 = snˆ0, otherwise, we let
sn+1 = snˆ1. It is clear that b = {sn | n ∈ N} is an infinite branch of T . �

The second property of standard systems assets that whenever a tree T is an
element of a standard system, then at least one of its infinite branches must end
up in the standard system as well. All infinite trees in a standard systems have
branches there!

Theorem 2.41 (Property (2) of standard systems). Suppose that M |= PA is
nonstandard. If T ∈ SSy(M) is an infinite binary tree, then there is an infinite
branch B of T such that B ∈ SSy(M).

Proof. First, we define that s is an M -finite binary sequence if

M |= Seq(s) ∧ ∀i < len(s) ([s]i = 0 ∨ [s]i = 1).

It is clear that (the code of) every finite binary sequence is an M -finite binary
sequence and, indeed, any M -finite binary sequence of length n for some n ∈ N is
(the code of a) finite binary sequence.

Now suppose that T ∈ SSy(M) is an infinite binary tree. Let

n ∈ T ↔M |= ϕ(n, b).

Since N is not definable in M , it is not possible that ϕ(x, b) looks like a tree
only on the natural numbers. The tree properties of ϕ(x, b) must overspill into
the nonstandard part, meaning that there will be an M -finite binary sequence a
satisfying ϕ(x, b) such that all its initial segments also satisfy ϕ(x, b). But then the
truly finite initial segments of a form a branch through T . Now for the details.

Since T has a node on every level n ∈ N, we have that, for every n ∈ N, there is
m ∈ N such that M satisfies

(1) (the sequence coded by) m has length n,
(2) ϕ(m, b) holds,
(3) ϕ(x, b) holds of all initial segments of (the sequence coded by) m.

By the Overspill Principle, there must be some nonstandard a, c ∈M such that M
satisfies

(1) (the sequence coded by) a has length c,
(2) ϕ(a, b) holds,
(3) ϕ(x, b) holds of all initial segments of (the sequence coded by) a.

Let ψ(x, a) define the set of all initial segments of a and let B be the intersection
of this set with N. By our earlier observations, B consists precisely of all initial
segments of a of length n for n ∈ N. Thus, B ∈ SSy(M) and B ⊆ T is an infinite
branch as desired. �

LOGIC I 25

2.8. Homework.
Sources:

(1) Models of Peano Arithmetic [Kay91]

Question 2.1. Prove the Chinese Remainder Theorem in N.

Question 2.2. Prove Theorem 2.25 in N.

Question 2.3. Prove Theorem 2.27.

Question 2.4. Prove Theorem 2.28.

Question 2.5. Prove Theorem 2.29.

Question 2.6. Prove Theorem 2.4.

3. Recursive Functions

“To understand recursion, you must understand recursion.”

3.1. On algorithmically computable functions. In his First Incompleteness
Theorem paper (see Section 4), Gödel provided the first explicit definition of the
class of primitive recursive functions on the natural numbers (Nk → N). Properties
of functions on the natural numbers defined by the process of recursion have been
studied at least since the middle of the 19th century by the likes of Dedekind and
Peano, and then in the early 20th century by Skolem, Hilbert, and Ackermann. In
the 20th century, the subject began to be associated with the notion of effective, or
as we will refer to it here, algorithmic computability. Algorithmically computable
functions, those that can be computed by a finite mechanical procedure8, came to
play a role in mathematics as early as in Euclid’s number theory. Attempts to
study them formally were made by Leibniz (who built the first working calculator),
Babbage (who attempted to build a computational engine), and later by Hilbert
and Ackermann. But it was Gödel’s definition of primitive recursive functions
that finally allowed mathematicians to isolate what they believed to be precisely
the class of the algorithmically computable functions and precipitated the subject
of computability theory. Realizing along with several other mathematicians that
there were algorithmically computable functions that were not primitive recursive,
Gödel extended the class of primitive recursive functions to the class of recursive
functions. Led by Alonzo Church, mathematicians began to suspect that the re-
cursive functions were precisely the algorithmically computable functions. Several
radically different definitions for the class of algorithmically computable functions,
using various models of computation, were proposed close to the time of Gödel’s
definition of the recursive functions. All of them, including the physical modern
computer, proved to compute exactly the recursive functions. The assertion that
any reasonably defined model of computation will compute exactly the recursive
functions became known as Church’s Thesis. In this section we will study the prim-
itive recursive and recursive functions, while in Section 7, we will encounter another
model of computation, the Turing machines, introduced by the great Alan Turing.

8Traditionally the notion of algorithmic computability applies to functions on the natural

numbers and we will study it only in this context. It should nevertheless be mentioned that
there is much fascinating work extending the algorithmic computability to functions on the real

numbers.

26 VICTORIA GITMAN

3.2. Primitive recursive functions. Since the recursive functions purport to be
exactly the algorithmically computable functions, it is often instructive to retrans-
late the definitions we are about to give into familiar programming concepts. After
all, we are claiming that any function computable by any program in any program-
ming language must turn out to be one of the class we are about to define in this
and the next section.9

The primitive recursive functions consist of the so-called basic functions together
with two closure operations.

Basic Functions

(1) Constant zero function: Z : N→ N, Z(x) = 0
(2) Projection functions: Pni : Nn → N, Pni (x1, . . . , xn) = xi
(3) Successor function: S : N→ N, S(x) = x+ 1.

Closure Operations

(1) Composition
Suppose that gi : Nm → N, for 1 ≤ i ≤ n, and h : Nn → N. We define a
new function f : Nm → N by composition:

f(x) = h(g1(x), . . . , gn(x)).

(2) Primitive Recursion
Suppose that h : Nn+2 → N and g : Nn → N. We define a new function
f : Nn+1 → N by primitive recursion:

f(y, 0) = g(y)

f(y, x+ 1) = h(y, x, f(y, x)).

Here, we allow n = 0, in which case, we have

f(0) = k for some fixed k ∈ N
f(x+ 1) = h(x, f(x)).

A function f : Nn → N is said to be primitive recursive if it can be built in
finitely many steps from the basic functions using the operations of composition
and primitive recursion. Thus, the class of primitive recursive functions is the
smallest class containing the basic functions that is closed under the operations of
composition and primitive recursion. The next several examples will illustrate that
many familiar functions are primitive recursive.

Let Zn : Nn → N denote the n-ary constant zero function, Zn(x1, · · · , xn) = 0.

Example 3.1. The functions Zn are primitive recursive for every n ∈ N since

Zn(x1, . . . , xn) = Z(Pn1 (x1, . . . , xn)).

Let Cni : Nn → N denote the n-ary constant function with value i, Cni (x1, . . . , xn) = i.

Example 3.2. The functions Cni are primitive recursive for every i, n.
Using projections, it suffices to show all C1

i are primitive recursive. We argue by
induction on i. The function C1

0 (x) = Z(x) is primitive recursive. So suppose
inductively that C1

i is primitive recursive. Then

C1
i+1(x) = S(C1

i (x))

is primitive recursive as well.

9A good source for material in this section is [Coo04].

LOGIC I 27

Example 3.3. Addition Add(m,n) = m+ n is primitive recursive.
We define Add by primitive recursion, using that m + 0 = m and m + (n + 1) =
(m+ n) + 1, as

Add(m, 0) = P 1
1 (m),

Add(m,n+ 1) = S(P 3
3 (m,n,Add(m,n))).

We must make use of projections to satisfy the formalism that h must be a 3-ary
function.

Example 3.4. Multiplication Mult(m,n) = m · n is primitive recursive.
We define Mult by primitive recursion, using that m · 0 = 0 and m · (n + 1) =
(m · n) +m, as

Mult(m, 0) = Z(m),

Mult(m,n+ 1) = Add(P 3
3 (m,n,Mult(m,n)), P 3

1 (m,n,Mult(m,n))).

Again, we use projections to stay within the formalism of primitive recursion.

Example 3.5. Exponentiation Exp(m,n) = mn is primitive recursive.

Example 3.6. The factorial function Fact(m) = m! is primitive recursive.

Example 3.7. The predecessor function Pred(n) = n−̇1, where

n−̇1 =

{
n− 1 if n > 0,
0 if n = 0,

is primitive recursive.
We define Pred by primitive recursion, using that Pred(0) = 0 and Pred(n+1) = n,
as

Pred(0) = 0,

Pred(n+ 1) = P 2
1 (n,Pred(n)).

Example 3.8. The truncated subtraction function Sub(m,n) = m−̇n, where

m−̇n =

{
m− n if m ≥ n,
0 if m < n,

is primitive recursive.
We define Sub by primitive recursion, using that Sub(m, 0) = m and Sub(m,n+1) =
Pred(Sub(m,n)), as

Sub(m, 0) = m,

Sub(m,n+ 1) = Pred(P 3
3 (m,n,Sub(m,n))).

The next two technical functions will prove very useful.

Example 3.9. The functions

sg(n) =

{
0 if n = 0,
1 if n 6= 0

and

sg(n) =

{
1 if n = 0,
0 if n 6= 0

are primitive recursive.

28 VICTORIA GITMAN

Example 3.10. If f(m,n) is primitive recursive, then so is the bounded sum

s(m, k) = Σn<kf(m,n), 10

and the bounded product

p(m, k) = Πn<kf(m,n).11

If we intend to capture all algorithmically computable functions, then it seems
necessary that we are able to compute a definition by cases, as for example the
function

f(m,n) =

{
m+ n if m < n,
m · n otherwise.

In programming languages this is handled by the ‘if, else’ construct. If a function is
defined by cases, then computing its value depends on computing the truth value of
the relations on which the cases are based. So, we begin by introducing the notion
of a primitive recursive relation. A relation R(x) is said to be primitive recursive
if its characteristic function

χR(x) =

{
1 if R(x) holds,
0 otherwise

is primitive recursive.

Example 3.11. The relation m = n is primitive recursive since

χ=(m,n) = sg((m−̇n) + (n−̇m)).

The relation m < n is also primitive recursive since

χ<(m,n) = sg(n−̇m).

Theorem 3.12. The primitive recursive relations are closed under complement,
union, and intersection.

Proof. Suppose that R and S are primitive recursive relations of the same arity.

χR∩S = χR · χS
χR∪S = sg(χR + χS)

χ¬R = 1−̇χR
�

Theorem 3.13 (Definition by Cases). Suppose that g(x) and h(x) are primitive
recursive functions and R(x) is a primitive recursive relation. Then the function

f(x) =

{
g(x) if R(x) holds,
h(x) otherwise

is primitive recursive.

Proof.
f(x) = χR(x) · g(x) + χ¬R(x) · h(x)

�

As in programming, once you have the basic ‘if, else’, you automatically get the
‘if, else if’ construct.

10If k = 0, then the value of the bounded sum is defined to be 0.
11If k = 0, then the value of the bounded product is defined to be 1.

LOGIC I 29

Corollary 3.14. Suppose that gi(x), for 1 ≤ i ≤ n, are primitive recursive func-
tions and Ri(x), for 1 ≤ i < n, are primitive recursive relations such that exactly
one of the Ri holds for any tuple x. Then the function

f(x) =

g1(x) if R1(x) holds,
g2(x) if R2(x) holds,
...
gn−1(x) if Rn−1(x) holds,
gn(x) otherwise

is primitive recursive.

Primitive recursive functions also allow bounded conditional loops. As we will
see soon, what they do not allow is unbounded conditional loops!

Theorem 3.15. Suppose that g(u, y) is a primitive recursive function. Then the
bounded search function

f(x, y) = µuu<x[g(u, y) = 0] =

{
min{u < x | g(u, y) = 0} if u exists,
x otherwise

is primitive recursive.

Proof. First, we observe that the relation g(u, y) = 0 is primitive recursive since

χg=0(u, y) = sg(g(u, y)).

Next, we let
p(x, y) = Πu≤xχ¬g=0(u, y).

Suppose that b is fixed and a is least such that g(a, b) = 0. Then p(x, b) = 1 for all
x < a and p(x, b) = 0 for all x ≥ a. Now observe that to compute µuu<x[g(u, y) =
0], we simply add up p(u, b) for all u < x,

f(x, y) = Σu<xp(u, y).

�

We can replace the relation g(u, y) = 0 by any primitive recursive relation R(u, y)
since we have R(u, y) if and only if sg(χR(u, y)) = 0. This gives us a more general
version of the bounded search function

f(x, y) = µuu<x[R(u, y)] =

{
min{u < x | R(u, y) holds} if u exists,
x otherwise.

The general intuition one should have is that any function computable by an
algorithm requiring only bounded searches is primitive recursive. Also, using com-
position, the search can be bounded by some primitive recursive function h(x, y).

3.3. Recursive functions. Even before Gödel formally defined primitive recursive
functions, mathematicians realized that such a class failed to capture algorithmic
computability. In the 1920’s Wilhelm Ackermann defined a 3-argument function
computable by an explicit algorithmic procedure and showed that it was not prim-
itive recursive. Ackermann’s function is best expressed using Knuth’s modern up-
arrow operators. Let us define that a ↑ b = ab, a ↑↑ b = a ↑ (a ↑ (. . . ↑ a))︸ ︷︷ ︸

b-copies of a

, and

more generally a ↑n+1 b = a ↑ (a ↑n (. . . ↑n a))︸ ︷︷ ︸
b-copies of a

.

30 VICTORIA GITMAN

Example 3.16. We have that 2 ↑ 3 = 8 and 2 ↑ (2 ↑ 2) = 222

= 24 = 16.

The up-arrow operators extend the pattern that multiplication is iterated addition
and exponentiation is iterated multiplication by defining iterated exponentiation,
iterated iterated exponentiation, and so on, ad infinitum. Ackermann defined his
3-argument function a(n,m, p) as follows:

a(n,m, 0) = n+m,
a(n,m, 1) = nm,
a(n,m, 2) = nm,
a(n,m, p) = n ↑p−1 (m+ 1) for p > 2.

A modern reformulation of Ackermann’s function, A(n,m), which we will refer
to as the Ackermann function, is defined by the following three recursion equations:

(1) A(0,m) = m+ 1,
(2) A(n+ 1, 0) = A(n, 1),
(3) A(n+ 1,m+ 1) = A(n,A(n+ 1,m)).

Let’s compute A(n,m) for n < 4.
By definition we have: A(0,m) = m+ 1.

0 1 2 3 4 . . . m

0 1 2 3 4 5 . . . m+ 1

Next, we compute some values of A(1,m):

A(1, 0) = A(0, 1) = 2,

A(1, 1) = A(0, A(1, 0)) = A(0, 2) = 3,

A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 4,

and guess that general formula is: A(1,m) = m+ 2 = 2 + (m+ 3)− 3.

0 1 2 3 4 . . . m

0 1 2 3 4 5 . . . m+ 1
1 2 3 4 5 6 . . . m+ 2

Next, we compute some values of A(2,m):

A(2, 0) = A(1, 1) = 3,

A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5,

A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7,

and guess that the general formula is: A(2,m) = 2m+ 3 = 2(m+ 3)− 3.

0 1 2 3 4 . . . m

0 1 2 3 4 5 . . . m+ 1
1 2 3 4 5 6 . . . m+ 2
2 3 5 7 9 11 . . . 2m+ 3

Finally, we compute some values of A(3,m):

A(3, 0) = A(2, 1) = 5,

A(3, 1) = A(2, A(3, 0)) = A(2, 5) = 13,

LOGIC I 31

A(3, 2) = A(2, A(3, 1)) = A(2, 13) = 29,

and guess that the general formula is: A(3,m) = 2m+3 − 3.

0 1 2 3 4 . . . m

0 1 2 3 4 5 . . . m+ 1
1 2 3 4 5 6 . . . m+ 2
2 3 5 7 9 11 . . . 2m+ 3
3 5 13 29 61 125 . . . 2n+3 − 3

It can be shown that the function A(4,m) = 22..
.2︸ ︷︷ ︸

m+3

−3 and more generally, that

A(n,m) = 2 ↑n−2 (m+ 3)− 3.
Obviously, the Ackermann function grows very quickly! It is also intuitively clear

that each computation terminates in finitely many steps. In the next theorem, we
give a formal proof of this.

Theorem 3.17. Every computation of the Ackermann function terminates after
finitely many steps.

Proof. Let us define a linear ordering on N × N by (n,m) ≤ (n′,m′) if n < n′ or
n = n′ and m ≤ m′. We shall argue that ≤ is a well-order, namely, that every
nonempty subset of N×N has a least element under it. Suppose that A is a subset
of N × N. Let n = a be the smallest such that (n,m) ∈ A and let A′ consist of
all pairs of A with first coordinate a. Next, we let m = b be the smallest such
that (a,m) in A′. Then (a, b) is the least element of A. Now suppose towards
a contradiction that there is A(n,m) whose computation does not terminate in
finitely many steps, and let A(a, b) be such that (a, b) is least with this property.
Note that a cannot be 0 and thus a = a′ + 1. First, suppose that b = 0. Then
A(a, b) = A(a′ + 1, 0) = A(a′, 1). But since (a′, 1) < (a, b), we have that the
computation of A(a′, 1) terminates in finitely many steps, contradicting that the
computation of A(a, b) does not terminate. So suppose that b = b′ + 1. Then
A(a, b) = A(a′+1, b′+1) = A(a′, A(a′+1, b′)). But since (a′+1, b′) < (a′+1, b′+1),
we have that the computation of A(a′+ 1, b′) terminates in finitely many steps. So
let c = A(a′+1, b′). Now since (a′, c) < (a′+1, b′+1), we have that the computation
of A(a′, c) terminates in finitely many steps, contradicting that the computation of
A(a, b) does not terminate. �

Despite the fact that the horizontal rows represent faster and faster growing func-
tions, they all turn out be primitive recursive.

Theorem 3.18. Each function An(m) = A(n,m) is primitive recursive.

Proof. We argue by induction on n. Clearly A0(m) = m+ 1 is primitive recursive.
Inductively, suppose that An is primitive recursive. Let An+1(0) = c. We argue
that An+1 is definable using primitive recursion from An. Observe that

An+1(m+1) = A(n+1,m+1) = A(n,A(n+1,m)) = An(A(n+1,m)) = An(An+1(m)).

Thus, we have
An+1(0) = c,

An+1(m+ 1) = An(An+1(m)).

�

32 VICTORIA GITMAN

But the diagonal function AD(n) = A(n, n) is not primitive recursive!

Theorem 3.19. The Ackermann function A(n,m) is not primitive recursive and
the diagonal Ackermann function AD(n) = A(n, n) is not primitive recursive.

The proof of Theorem 3.19 is a homework project.
To extend primitive recursive functions to recursive functions, we add one more

closure operation: the unbounded search.
Closure Operation

(3) µ-Operator
Suppose that g : Nm+1 → N. We define a new function f : Nm → N using
the µ-operator:

f(y) = µx[g(x, y) = 0] =

{
min{x | g(x, y) = 0} if exists,
undefined otherwise.

A function f : Nn → N is said to be (partial) recursive if it can be built in finitely
many steps from the basic functions using the operations of composition, primitive
recursion, and the µ-operator. We shall say that a relation is recursive if its char-
acteristic function is recursive. We shall also say that A ⊆ N is recursive if the
relation n ∈ A is recursive.

Because of the µ-operator, recursive functions are potentially partial, their do-
main may not be all of N. This is the same behavior exhibited by a computer
program using a conditional loop such as a while loop, which may not produce
a value for a given input because it cannot escape the loop. Indeed, a function
g(x, y) to which we apply the µ-operator may already be partial and so we need to
be more careful in defining what it means for x to be the minimum value such that
g(x, y) = 0. Let us define more precisely that µx[g(x, y) = 0] = z if and only if
g(x, y) is defined for all x ≤ z and z is least such that g(z, y) = 0. We will show in
Section 7 that the alternatively defined µ-operator, where we would allow g(x, y)
to be undefined for some x < z, does not always yield a recursive function.

We can replace the relation g(x, y) = 0 by any recursive relation R(x, y) since
we have R(x, y) if and only if sg(χR(x, y)) = 0.

We will see in the next section that the Ackermann function is recursive.

3.4. Recursive functions and definability over N. The next several theorems
provide a characterization of recursive functions and relations in terms of definabil-
ity over N. Let us say that a function or relation on the natural numbers is ΣN

n or
ΠN
n if it is definable over N by a Σn-formula or a Πn-formula respectively. Let us

say that a function or a relation is ∆N
n if it is defined by a formula that is ∆n(N).

Theorem 3.20. ∆N
0 -relations are primitive recursive.

Proof. We argue by induction on the complexity of ∆0-formulas. Let t(x) and
s(x) be LA-terms. Since + and · are primitive recursive and primitive recursive
functions are closed under composition, it follows that the functions f(x) = t(x)
and g(x) = s(x) are primitive recursive. Since the relations = and < are primitive
recursive, it follows that the relations t = s and t < s are primitive recursive. Thus,
relations defined by atomic formulas are primitive recursive. So assume inductively
that relations defined by ϕ and ψ are primitive recursive. Then, by Theorem 3.12,
the relations ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ are primitive recursive as well. Now suppose

LOGIC I 33

that the relation defined by ϕ(x, y, z) is primitive recursive and let χϕ(x, y, z) be
its characteristic function. Consider the relation defined by

ψ(y, z) := ∃x < y ϕ(x, y, z).

Then the characteristic function of ψ is

χψ = sg(Σx<yχϕ(x, y, z)).

�

At this point, it is easy to fall into the trap of thinking that every ∆N
0 -function is

primitive recursive. But while we just showed that the graph of every ∆0-function
viewed as a relation is primitive recursive, the function itself need not be. The
difference being that an output might be very difficult to compute and at the same
time it can be very easy, when already given the output, to verify that it is the
correct one. For instance, the Ackermann function is not primitive recursive but it
is primitive recursive to check whether a particular value is the correct output of the
Ackermann function given a sequence containing all Ackermann computations con-
taining needed to compute it. Let us say that a sequence s witnesses an Ackermann
computation for (l, p) if for every Ackermann computation A(n,m) required in the
computation of A(l, p), we have that [s]〈n,m〉 = A(n,m) (where 〈n,m〉 is the result
of applying Cantor’s pairing function to (n,m)) and if A(a, b) is not required in the
computation of A(l, p), then [s]〈a,b〉 is allowed to be either A(a, b) or 0. However,
if [s]〈a,b〉 = A(a, b), then the sequence must have all A(n,m) needed to compute it.
More precisely, we define that a sequence s witnesses the Ackermann computation
for (l, p) if:

len(s) = k ∧ ∃x < k(x = 〈l, p〉 ∧ [s]x 6= 0)∧
∀x < k [s]x 6= 0→

∀n,m ≤ x

 x = 〈0,m〉 → [s]x = m+ 1∧
x = 〈n+ 1, 0〉 → ∃z < k(z = 〈n, 1〉 ∧ [s]x = [s]z)∧
x = 〈n+ 1,m+ 1〉 → ∃z, w < k(z = 〈n+ 1,m〉 ∧ w = 〈n, [s]z〉 ∧ [s]x = [s]w)

 .

Now consider the function f(n,m) = y which on input (n,m) outputs the pair
〈s, a〉, where s is the smallest sequence witnessing an Ackermann computation for
〈n,m〉 and a = [s]〈n,m〉. The function f is defined by the ∆0-formula

ϕ(n,m, y) := ∃s, a ≤ y

 y = 〈s, a〉∧
s is least witnessing the Ackermann computation for (m,n)∧
a = [s]〈n,m〉

 .

But if f was primitive recursive, then we would be able to compute the Ackermann
function using a bounded search to find a such that f(n,m) = 〈s, a〉. To make
this precise, it remains to argue that function the g(x) = m where x = 〈n,m〉 is
primitive recursive. First, we observe that the graph of g(x) is ∆0-definable by the
formula

ϕ(x,m) := ∃n ≤ xx = 〈n,m〉
and hence primitive recursive. Thus,

g(x) := µm<b[ϕ(x,m)]

is primitive recursive as well. This completes the argument that f(n,m) is ∆N
0 and

not primitive recursive. It is true though that every ∆N
0 -function and indeed every

ΣN
1 -function must be recursive. Remarkably, the ΣN

1 -functions are precisely the

34 VICTORIA GITMAN

recursive functions! This fact provides a surprising and crucial connection between
algorithmic computability and first-order definability over N.

Theorem 3.21. Every ΣN
1 -function is recursive.

Proof. Suppose that f(x) is defined by the Σ1-formula ϕ(x, y) := ∃z ψ(x, z, y),
where ψ is ∆0. Let

ψ′(x,w) := ∃z, y ≤ ww = 〈z, y〉 ∧ ψ(x, z, y).

Then ψ′ is ∆0 and hence primitive recursive by Theorem 3.20. We define g(x) by

g(x) = µw[ψ′(x,w)].

Thus, g is recursive and we have

g(x) =

{
〈z, y〉 such that ψ(x, z, y) if exists,
undefined otherwise.

It remains to retrieve the value y from the pair 〈z, y〉 and we already showed about
that this is even primitive recursive. �

Theorem 3.22. Every recursive function is ΣN
1 .

Proof. The zero function Z(x) is defined by ϕ(x, y) := y = 0. The projection
function Pni (x1, . . . , xn) is defined by ϕni (x1, . . . , xn, y) := y = xi. The successor
function S(x) is defined by ϕ(x, y) := y = x+ 1. Thus, the basic functions are ΣN

1 .
Now suppose that the functions gi(x), for 1 ≤ i ≤ n, are defined by Σ1-formulas
ϕi(x, y) and the function h(x1, . . . , xn) is defined by the Σ1-formula ψ(x1, . . . , xn, y).
Then the composition function h(g1(x), . . . , gn(x)) is defined by the formula

δ(x, y) := ∃y1, . . . , yn(ϕ1(x, y1) ∧ · · ·ϕn(x, yn) ∧ ψ(y1, . . . , yn, y))

Next, we check that a function obtained by primitive recursion from ΣN
1 -functions

is ΣN
1 . This done using, once again, the existence of computation witnessing se-

quences. So suppose that the function g(x) is defined by the Σ1-formula ϕ(x, y)
and the function h(x, z, w) is defined by the Σ1-formula ψ(x, z, w, y). The recur-
sively defined function f(x, z) such that

f(x, 0) = g(x),

f(x, z + 1) = h(x, z, f(x, z))

is defined by the formula

δ(x, z, y) := ∃s

 ∃y1(ϕ(x, y1) ∧ y1 = (s)0)∧
∀x < z(∃y2(ψ(x, x, (s)x, y2) ∧ (s)x+1 = y2))∧
(s)z = y

Finally, we check that a function obtained by the µ-operator from ΣN

1 -functions is
ΣN

1 . First, observe that if a function f(x) is defined by the Σ1-formula ϕ(x, y) :=
∃z ψ(x, z, y), where ψ is ∆0, then it is also defined by the Π1-formula ϕ′(x, y) :=
∀z∀w(ψ(x, z, w)→ y = w). Thus any function that is ΣN

1 is also ΠN
1 and hence ∆N

1 .
Now suppose that g(x, y) is defined by the Σ1-formula ϕ(x, y, z) and the function
f(y) is obtained from g via the µ-operator

f(y) = µx[g(x, y) = 0] =

{
min{x | g(x, y) = 0} if exists,
undefined otherwise.

LOGIC I 35

The function f(y) is defined by the formula

δ(y, w) := ϕ(w, y, 0) ∧ ∀u < w¬ϕ′(u, y, 0).

where ϕ′ is the Π1-definition of g. �

Corollary 3.23. A function is recursive if and only if it is ∆N
1 .

Note that, while every ΣN
1 -function is ΠN

1 , the converse does not hold, namely,
there are ΠN

1 -functions which are not ΣN
1 . We will encounter an example of such a

function in Section 7.

Example 3.24. The Ackermann function is recursive since it is defined by the
Σ1-formula ϕ(n,m, y) :=

∃s, k

 len(s) = k∧
∃x < k(x = 〈n,m〉 ∧ [s]x = y∧
s witnesses an Ackermann computation for x)

 .

Theorem 3.25. A relation is recursive if and only if it is ∆N
1 .

Proof. Suppose that R(x) is a recursive relation. Then by Theorem 3.22 and our
earlier observation, its characteristic function χR(x, y) is defined by a Σ1-formula
ϕ(x, y) and by a Π1-formula ϕ′(x, y). Thus, R(x) is defined by the Σ1-formula
ϕ(x, 1) and the Π1-formula ϕ′(x, 1).

Now suppose that a relation R(x) is defined by the Σ1-formula ϕ(x) and the
Π1-formula ψ(x). The characteristic function χR(x, y) is defined by

(ϕ(z, x) ∧ y = 1) ∨ (¬ψ(x) ∧ y = 0).

Thus, χR(x) is recursive by Theorem 3.21 and hence R(x) is recursive. �

Unlike ΣN
1 -functions, there are ΣN

1 -relations that are not ΠN
1 . Such relations are

called recursively enumerable, and we will study them in great detail in Section 7.

3.5. Recursive functions and models of PA. Another of the remarkable facts
about recursive functions (and relations) is that every model of PA (even PA−)
agrees with N on most of the information about them. This statement is made
precise using the definitions below.

We say that a relation R(x1, . . . , xn) on Nn is represented in some theory T of
LA if there is an LA-formula ϕ(x1, . . . , xn) such that for all m1, . . . ,mn ∈ N, we
have

(1) R(m1, . . . ,mn)↔ T ` ϕ(m1, . . . ,mn),
(2) ¬R(m1, . . . ,mn)↔ T ` ¬ϕ(m1, . . . ,mn).

We say that a function f : Nn → N is represented in some theory T of LA if there
is an LA-formula ϕ(x1, . . . , xn, y) such that for all m,m1, . . . ,mn ∈ N, we have

(1) f(m1, . . . ,mn) = m→ T ` ϕ(m1, . . . ,mn,m),
(2) T ` ∃!y ϕ(m1, . . . ,mn, y)12.

Theorem 3.26. Every total recursive function is represented in PA−.

12The notation ∃!y(. . .) is an abbreviation for ∃y((. . .) ∧ ∀z(z 6= y → ¬(. . .))), which expresses
that y is unique.

36 VICTORIA GITMAN

Proof. Suppose that f : Nk → N is a total recursive function. By Theorem 3.22,
f(x) is defined over N by some Σ1-formula

δ(x, y) := ∃zϕ(x, y, z),

where ϕ(x, y, z) is ∆0. Let ψ(x, y, z) be the ∆0-formula

ϕ(x, y, z) ∧ ∀u, v ≤ y + z(u+ v < y + z → ¬ϕ(x, u, v)).

The formula ψ(x, y, z) asserts that the pair y, z is, in some sense, the smallest
witnessing ϕ(x, y, z). Now we shall argue that f(x) is represented in PA− by the
formula

γ(x, y) := ∃z ψ(x, y, z).

Suppose that f(n) = m. Since f is defined by δ(x, y), there is z ∈ N such that
N |= ϕ(n,m, z) and so we let l be the least such z. If there are u, v ≤ m + l such
that ϕ(x, u, v), then it must be that u = m and so u < l. But this cannot be by our
minimality assumption on l. Thus, N |= ψ(n,m, l). Now suppose that M |= PA−.
Since N ≺∆0

M , we have that M |= ψ(n,m, l), and so M |= γ(n,m). It remains
to argue that M cannot satisfy γ(n, a) for some other a ∈ M . So suppose that
M |= γ(n, a). Thus, for some b ∈M , we have that

M |= ϕ(n, a, b) ∧ ∀u, v ≤ a+ b(u+ v < a+ b→ ¬ϕ(n, u, v)).

Observe that we cannot have m+ l < a+ b since M |= ϕ(n,m, l), and so we must
have a + b ≤ m + l. But then both a, b ∈ N, and so by ∆0-elementarity, we have
N |= ϕ(n, a, b). Thus, N |= δ(n, a), from which it follows that a = m, as desired. �

Theorem 3.27. Every recursive relation is represented in PA−.

Proof. Suppose that R(x) is recursive. Then its characteristic function χR(x) is
total recursive and therefore, by Theorem 3.26, it is represented in PA− by a formula
ϕ(x, y). We argue that R is represented by the formula ϕ(x, 1). If R(n) holds,
then χR(n) = 1 and so PA− ` ϕ(n, 1). If R(n) fails, then χR(n) = 0 and so
PA− ` ϕ(n, 0). Also, PA− ` ∃!y ϕ(n, y) and so it must be that PA− ` ¬ϕ(n, 1). �

Recall from Example 2.36 of Section 2, that all sets definable over N by a ∆1(PA)-
formula are in the standard system of every nonstandard model of PA. Now we can
extend that result to show that every recursive (∆N

1) set is in the standard system
of every nonstandard model of PA.

Theorem 3.28. Suppose that M |= PA is nonstandard. Then every recursive set
is in SSy(M).

Proof. Suppose A ⊆ N is recursive. By Theorem 3.27, there is a formula ϕ(x) such
that

(1) n ∈ A→ N |= ϕ(n)→ PA− ` ϕ(n),
(2) n /∈ A→ N |= ¬ϕ(n)→ PA− ` ¬ϕ(n).

We will show that A = {n ∈ N | M |= ϕ(n)}. Suppose that n ∈ A, then N |= ϕ(n)
and so M |= ϕ(n). Now suppose that n ∈ N and M |= ϕ(n). It must be the case
that n ∈ A, since otherwise we would have M |= ¬ϕ(n). It follows, as desired, that
A ∈ SSy(M). �

Question 3.29. Must a standard system contain anything more than the recursive
sets?

LOGIC I 37

We will argue in Section 4 that there is a recursive binary tree that has no
recursive branches. It will follow that every standard system must contain some
non-recursive set.

3.6. Homework.

Question 3.1. Show that Exp(m,n) = mn and Fact(n) = n! are primitive recur-
sive.

Question 3.2. Show that bounded sums and bounded products are primitive re-
cursive.

Question 3.3. Show that the Ackerman function is not primitive recursive and
the diagonal Ackermann function DA(n) = A(n, n) is not primitive recursive.

4. The First Incompleteness Theorem

Some people are always critical of vague statements. I tend rather to be critical of precise
statements; they are the only ones which can correctly be labeled ’wrong’.
–Raymond Smullyan

4.1. The Beginning and the End of Hilbert’s Program. At the dawn of the
20th-century formal mathematics flourished. In the preceding centuries, mathemat-
ical concepts had became simultaneously more complex and abstract, reaching a
point where their validity could no longer be justified on the intuitive ground that
they mirrored the physical universe. Formal mathematics was born toward the
end of the 19th-century, partly out of new developments in logic and the study of
collections, and partly out of the need to provide a foundation on which abstract
mathematics, divorced from physics, could safely rest. Gottlob Frege had expanded
the scope of logical reasoning for the first time since it was introduced by Aristotle
more than two millennia before. In his 1879 Begriffsschrift, Frege invented predicate
logic by introducing quantification into Aristotle’s propositional logic. Building on
Frege’s earlier work but eliminating second-order quantifiers, logicians arrived at
first-order logic, a powerful formal language for mathematical concepts. Reinter-
preted in first-order logic, Peano’s axioms became the accepted axiomatization of
number theory. In 1904, in an attempt to justify Cantor’s well-ordering principle,
Zermelo proposed an axiomatization for set theory, a potential foundation of all
known mathematics. Mathematicians were optimistic that well-chosen axiom sys-
tems expressed in first-order logic could provide an unshakable foundation for their
respective fields of mathematics. They believed that formal metamathematical ar-
guments could be devised to show the consistency of these axioms systems, making
a mathematical statement that was derived by formal logical reasoning from such
a collection of axioms incontrovertibly valid. They assumed that each such axiom
system, if properly chosen, could be shown to be both consistent and complete!
Foremost among the enthusiasts was David Hilbert. In his famous 1900 Interna-
tional Congress of Mathematicians address (in which he introduced the list of 23
problems), Hilbert proclaimed:

When we are engaged in investigating the foundations of a science, we

must set up a system of axioms which contains an exact and complete

description of the relations subsisting between the elementary ideas of

that science. The axioms so set up are at the same time the definitions of

those elementary ideas; and no statement within the realm of the science

whose foundation we are testing is held to be correct unless it can be

38 VICTORIA GITMAN

derived from those axioms by means of a finite number of logical steps.[. . .]

But above all I wish to designate the following as the most important

among the numerous questions which can be asked with regard to the

axioms: To prove that they are not contradictory, that is, that a definite

number of logical steps based upon them can never lead to contradictory

results.

The two goals became known as Hilbert’s Program and initial progress gave good
reason for optimism. In 1905, Hilbert observed that propositional logic is consistent.

Theorem 4.1. Propositional logic is consistent.

Proof. The axioms of propositional logic and every statement provable from them
share the property that they evaluate as true under every truth assignment to the
propositional variables. Since whenever a propositional statement ϕ evaluates to
true, its negation ¬ϕ must evaluate to false, it is not possible that both ϕ and ¬ϕ
are provable from the axioms of propositional logic. �

Coming tantalizingly close to Hilbert’s goal, Mojżesz Presburger showed in 1929
that Peano Arithmetic without multiplication, an axiom system which became
known as Presburger arithmetic, is consistent and complete. The language of Pres-
burger Arithmetic is LA without multiplication.

Presburger Arithmetic

Addition Axioms

Ax1: ∀x(¬x+ 1 = 0)
Ax2: ∀x∀y(x+ 1 = y + 1→ x = y)
Ax3: ∀x(x+ 0 = x)
Ax4: ∀x∀y((x+ y) + 1 = y + (x+ 1))

Induction Scheme

∀y(ϕ(0, y) ∧ ∀x(ϕ(x, y)→ ϕ(x+ 1, y))→ ∀xϕ(x, y))

Theorem 4.2. Presburger Arithmetic is consistent and complete.

The proof of Presburger’s theorem involves the technique of quantifier elimination
and is beyond the scope of these notes.

Then in 1930, Kurt Gödel ended all hope for Hilbert’s program with his First
and Second Incompleteness theorems. Gödel showed:

Theorem 4.3 (First Incompleteness Theorem). Peano Arithmetic is not complete.
Moreover, no ‘reasonable’ axiom system extending PA− can ever be complete.

Theorem 4.4 (Second Incompleteness Theorem). There cannot be a ‘finitary’ proof
of the consistency of Peano Arithmetic.

Formal statements of the incompleteness theorems will have to wait until we intro-
duce the necessary machinery in the next few sections.

4.2. Richard’s Paradox. Gödel credited the idea behind the proof of the First
Incompleteness Theorem to Richard’s Paradox, described by the French mathe-
matician Jules Richard in 1905.

Let us consider all English language expressions that unambiguously define a
property of natural numbers. Here are some examples:

LOGIC I 39

(1) x is even.
(2) x is prime.
(3) x is a sum of two squares.
(4) Goldbach’s Conjecture13 fails above x.
(5) x is definable using 25 words or less.

Each such definition, call it ϕ(x), can be assigned a unique numerical code pϕ(x)q
using some agreed upon reasonable coding. For instance, we can concatenate the
ASCII codes of the individual characters in the expression and let the resulting
(very large) number be its code. Expressions (1) and (2), from above, would end
up with the following codes.

px is evenq = 120032105115032101118101110
px is primeq = 120032105115032112114105109101

Now we make a crucial observation.

px is evenq is even
px is primeq is not prime (why?)

Generalizing this phenomena, we can ask of any property whether it is true of
its own code, whether ϕ(pϕ(x)q) holds. By coding properties as numbers and
evaluating them on their own codes, we have endowed our properties with the
ability to self-reference and such abilities hardly ever lead to any good. Indeed,
there is something suspiciously extra-ordinary about a property that holds of its
own code. Thus, we define that a number n is ordinary if

(1) n = pϕ(x)q for some property ϕ(x),
(2) ϕ(pϕ(x)q) does not hold.

It is clear (isn’t it?) that being ordinary is one of Richard’s unambiguously defined
properties of numbers. Thus, we let m = px is ordinaryq (where ‘x is ordinary’ is
an abbreviation for the rather long English expression describing ordinariness).

Question 4.5. Is m ordinary?

We have that
m is ordinary ↔
‘px is ordinaryq is ordinary’ ↔
m is not ordinary.

This is Richard’s Paradox!
An obvious objection to Richard’s argument is that there is no way to make

precise Richard’s notion of an unambiguously defined property for a non-formal
language such as English. But on a deeper level, Richard’s paradox exploits the
same phenomena which made possible Russell’s paradox of naive set theory, as well
as its ancient antecedent, the Liar Paradox. Using the trick of coding properties by
numbers, the purported property of ordinariness is defined in terms of the collection
of all properties and therefore inadvertently references itself. Because the definition
must refer to itself for its evaluation, the evaluation cannot be always carried out.
Thus ordinariness, while being a perfectly valid property of properties of numbers,
is not a property of numbers, in the sense that it can be evaluated for every number
to yield a yes or no answer. As simply illustrated in the case of the sentence ’this
sentence is false’, English language allows statements which reference themselves.

13Goldbach’s conjecture states that every even number greater than 2 can be expressed as the
sum of two primes.

40 VICTORIA GITMAN

Because of this, using coding, we can sneak in as properties of numbers, meta-
mathematical assertions: properties of properties of numbers, such as ordinariness.
Any consistent formal system should prevent such inter-level reference. So what
happens if we replace English by the formal language of first-order logic? What if
we could assign numerical codes to first-order assertions about numbers in such a
way that the model N, in particular, and nonstandard models of PA, in general,
could be made to reason about them? Then properties of properties of numbers
become properties of numbers and numerous exciting consequences follow.

4.3. The arithmetization of first-order logic. Gödel introduced the β-function
in his First Incompleteness Theorem paper, but he chose not to use it for subsequent
coding. Instead Gödel used the unique primes decomposition coding, which we
encountered in Section 2. Once in possession of the β-function, it is not difficult
(but cumbersome) to show that the primes decomposition coding machinery is
definable and indeed recursive (∆1(N)). Recall that in this coding method, we we

code a sequence 〈a0, . . . , an−1〉 by the product pa0+1
0 · pa1+1

1 · . . . · pan−1+1
n−1 , where

pi denotes the ith prime. The primes coding has the emotional advantage that it
is trivial to compute the code of a given sequence. With the β-function coding,
you convince yourself that there is the requisite code, but you would not venture to
actually compute what it is. This disadvantage though is purely emotional because
there is no reason for us to ever have to produce the physical code of a sequence.
Indeed, one should not worry about the details of the coding beyond the knowledge
that it has properties (1)-(3) of Theorem 2.32 and that its decoding properties are
recursive. In the case of the β-function, they are even ∆0. In these notes, I am
willing to take the emotional discomfort of not being able to readily produce a code
over having to prove that the primes decomposition coding machinery is recursive.
Thus, unlike Gödel, we will stick here with the old and familiar β-function coding.

As in the sneak preview of Section 2, we begin by assigning number codes to the
alphabet of LA in some reasonable manner.

LA-symbol Code
0 0
1 1
+ 2
· 3
< 4
= 5
∧ 6
∨ 7
¬ 8
∃ 9
∀ 10
(11
) 12
xi 〈13, i〉

We may now assign to every string S of LA-symbols the unique number code, which
is the least number coding, via the β-function, the string of numbers corresponding
to the elements of S. We call this unique code, the Gödel-number of S and denote

LOGIC I 41

it by pSq. The set of all Gödel-numbers is defined by the formula

Gn(x) := Seq(x) ∧ ∀i < len(x)([x]i ≤ 12 ∨ ∃z ≤ x [x]i = 〈13, z〉).

Via the coding, we will associate LA-formulas with their Gödel-numbers, LA-
theories with sets of Gödel-numbers, and proofs from an LA-theory with numbers
that code a sequence of Gödel-numbers. Our goal now is to make N and, more
generally, any model of PA− be able to understand first-order concepts such as
terms, formulas, and proofs. This will come down to showing that the relations
and functions which recognize and manipulate these concepts are recursive. By
Theorem 3.26, recursiveness guarantees that all models of PA− agree on the truth
value of formulas with natural number parameters expressing these relations and
functions. First, though, we need to define some crucial operations on sequences.

The sequence concatenation operation z = xˆy is defined by the formula

Seq(x) ∧ Seq(y) ∧ Seq(z) ∧ len(z) = len(x) + len(y)∧
∀i < len(x) [z]i = [x]i ∧ ∀j < len(y) [z]len(x)+j = [y]j .

The sequence restriction operation z = x � y is defined by the formula

Seq(x) ∧ Seq(z) ∧ len(z) = y ∧ ∀i < len(z) [z]i = [x]i.

Given two sequences x and y, we shall use the notation x ⊆ y if the sequence x
appears as a contiguous block inside the sequence y.

Example 4.6. If s = 〈5, 1, 7〉 and t = 〈17, 3, 5, 1, 7, 11〉, then s ⊆ t.

The subsequence relation x ⊆ y is defined by

Seq(x) ∧ Seq(y) ∧ len(y) ≥ len(x)∧
∃i ≤ len(y)− len(x)(∀j < len(x)([x]j = [y]i+j)).

An important property of the subsequence relation is that quantifiers of the form
∃x ⊆ y and ∀x ⊆ y do not add to the complexity of the formula following them.

Theorem 4.7. If ϕ is a Σn-formula or a Πn-formula, then the formulas ∃x ⊆ yϕ
and ∀x ⊆ yϕ are both Σn(PA) or Πn(PA)-respectively.

The proof is left as a homework exercise. Notice that all three sequence operations
we just defined are ∆0. We are now ready to define relations recognizing the
grammar of first-order logic.

In the same way that we verify the result of an exponentiation computation
by examining a sequence witnessing all its steps, we determine whether a string
of LA-symbols is a term by examining a ‘term-building’ sequence witnessing its
construction from the basic terms. The relation termseq(x), expressing that s is a
term-building sequence, is defined by the formula

∀i < len(s)

(
[s]i = p0q ∨ [s]i = p1q ∨ ∃j ≤ s([s]i = pxjq)∨
∃j, k < i([s]i = p([s]j + [s]k)q ∨ [s]i = p([s]j · [s]k)q)

)
.

Note the expression p([s]j + [s]k)q is used as a shorthand for the rather unreadable
p(q ˆ [s]j ˆ p+q ˆ [s]k ˆ p)q. We will continue to use like abbreviations in the future
without any further notice. Clearly a string of LA-symbols is a term if it appears
on some term-building sequence. The relation Term(x), expressing that x is the
Gödel-number of an LA-term, is defined by the formula

∃s(termseq(s) ∧ ∃i < len(s) [s]i = x).

42 VICTORIA GITMAN

This gives us a Σ1-definition for the Gödel-numbers of terms and now we would
like to obtain a Π1-definition as well. For this purpose, observe that x is the
Gödel-number of a term if and only if it appears on every term building sequence
consisting exactly of the sub-terms of x. More precisely, we define the relation
seqforterm(s, x), expressing that s consists precisely of the sub-terms of x, by the
formula

termseq(s) ∧ ∀i < len(s) [s]i ⊆ x∧
∀y((y ⊆ x ∧ termseq(s ˆ 〈y〉))→ ∃i < len(s) [s]i = y).

The relation seqforterm(s, x) allows us to define Term(x) by the Π1-formula

∀s(seqforterm(s, x)→ ∃i < len(s) [s]i = x).

At this point, a few technical lemmas are required to show that sequences consisting
of all sub-terms of a string x actually exist and that any two such sequences will
agree on their elements modulo the order in which they are arranged. The lemmas
do not just hold true over N, but are provable in PA. It follows that the relation
Term(x) is ∆1(PA), and, in particular, recursive. More so, PA proves that elements
satisfying Term(x) behave precisely as we expect terms to behave.

Theorem 4.8. PA proves

Term(t)↔ t = p0q ∨ t = p1q ∨ ∃j ≤ t t = pxjq∨
∃r, s ⊆ t(Term(r) ∧ Term(s) ∧ (t = p(r + s)q ∨ t = (pr · s)q).

Proofs of these results are straightforward argument using induction inside a model
of PA and will be omitted here. At this stage the reader should believe herself
expert enough to find trudging through this level of mind numbing detail to be
beneath her. Readers who are fond of mind numbing details are encouraged to
consult [Kay91]. If M |= PA is nonstandard, then it will satisfy Term(t) of exactly
those natural numbers that are Gödel-numbers of LA-terms. But Term(t) will also
hold of nonstandard elements representing ‘nonstandard’ terms such as 1 + · · ·+ 1︸ ︷︷ ︸

a times

for a nonstandard a ∈M .
We determine whether string of symbols is an LA-formula by producing a wit-

nessing ‘formula-building’ sequence. The relation formseq(s), expressing that s is
a formula-building sequence, is defined by the formula

∀i < len(s)

 ∃u, v ≤ s(Term(u) ∧ Term(v) ∧ ([s]i = p(u = v)q ∨ [s]i = p(u < v)q)∨
∃j, k < i([s]i = p([s]j ∨ [s]k)q ∨ [s]i = p([s]j ∧ [s]k)q)∨
∃j < i([s]i = p(¬[s]j)q) ∨ ∃k ≤ s([s]i = p(∃xk [s]j)q ∨ [s]i = p(∀xk [s]j)q)

 .

A string of LA-symbols is a formula if it appears on some formula-building sequence.
The relation Form(x), expressing that x is the Gödel-number of an LA-formula, is
defined by

∃s(formseq(s) ∧ ∃i < len(s) [s]i = x).

Next, we would like to obtain a Π1-definition of Form(x). As, with the relation
Term(x), we observe that x is the Gödel-number of a formula if and only if it
appears on every formula-building sequence consisting exactly of the sub-formulas
of x. More precisely, we define the relation seqforform(s, x), expressing that s
consists precisely of the sub-formulas of x, by the formula

formseq(s) ∧ ∀i < len(s) [s]i ⊆ x∧
∀y((y ⊆ x ∧ formseq(s ˆ 〈y〉))→ ∃i < len(s) [s]i = y).

LOGIC I 43

As with the relation Term(x), arguments justifying our definitions actually show
that Form(x) is ∆1(PA). Moreover, we have that:

Theorem 4.9. PA proves

Form(x)↔ ∃s, t(Term(s) ∧ Term(t) ∧ (x = s ˆ p=q ˆ t ∨ x = s ˆ p<q ˆ t))∨
∃y, z(Form(y) ∧ Form(z) ∧ (x = y ˆ p∨q ˆ z ∨ x = y ˆ p∧q ˆ z))∨
∃y(Form(y) ∧ x = p¬q ˆ y ∨ ∃k ≤ x(x = p∃xkq ˆ y ∨ x = p∀xkq ˆ y))).

If M |= PA is nonstandard, then it will satisfy Form(x) of exactly those natural
numbers that are Gödel-numbers of LA-formulas. But Form(x) will also hold of
nonstandard elements representing ‘nonstandard’ formulas having for instance a
nonstandard number many conjunctions.

There are a few more relations and functions related to the grammar of first-order
logic that we will require in future sections and we will just give brief descriptions
of these, trusting that the reader will have no trouble convincing herself that they
are recursive (and, in fact, ∆1(PA)). The function y = Neg(x) expresses that x is
the Gödel-number of a formula ϕ and y = p¬ϕq. The relation Free(x, i) expresses
that x is the Gödel-number of a formula ϕ and xi is a free variable of ϕ. The
function y = Sub(x, z, i) expresses that x is the Gödel-number of a formula ϕ, y is
the Gödel-number of a term t, and z is the Gödel-number of the formula that is
the result of the substituting t for xi in ϕ if the substitution is proper, and z = x
otherwise. Whenever we need to substitute a term of the form n = 1 + . . .+ 1︸ ︷︷ ︸

n-many

, we

will abuse notation by simply writing Sub(x, n, i), instead of the correct but much
less readable Sub(x, pnq, i).

We shall say that an LA-theory T is recursive if the set of the Gödel-numbers of
its formulas is recursive. We shall say that T is arithmetic if the set of the Gödel-
numbers of its formulas is definable over N. Using Church’s Thesis that recursive
is equivalent to algorithmically computable, it is clear that any theory composed
in a human brain must be recursive. The theories we produce are either finite or
follow a recognizable pattern, for otherwise we would not be able to express them.
Thus, whenever we used the term ‘reasonable’ with respect to a first-order theory
in previous sections, we can now replace it by ’recursive’.

Example 4.10. PA is recursive. Recall that PA consists of 15 axioms together
with the induction scheme. Let n1, . . . , n15 be the Gödel-numbers of the 15 axioms.
The Gödel-number of a Peano axiom is either one of the numbers n1 through n15,
or it has the form of an induction axiom. In the second case, there is a formula
ϕ and a sequence s of all free variables of ϕ, whose first variable is the one we
are inducting on. We then construct the induction axiom using s, [s]0, ϕ, ϕ with
0 substituted for [s]0, and ϕ with [s]0 + 1 substituted for [s]0. Now for the gory
details. We define the relation PA(x), expressing that x is the Gödel-number of a
Peano axiom by the formula

x = n1 ∨ · · · ∨ x = n15∨

∃y, s ⊆ x∃n ≤ s

Form(y) ∧ len(s) = n∧
∀i < len(n) Free(y, [s]i) ∧ ∀j ≤ y(Free(y, j)→ ∃k ≤ s [s]k = j)∧

∃t ⊆ s∃u,w

 len(t) = len(s)− 1 ∧ ∀i < len(t) [t]i = [s]i+1∧
u = Sub(y, [s]0, p0q) ∧ w = Sub(y, [s]0, p[s]0 + 1q)∧
x = p(∀t (u ∧ (∀[s]0 (y → w)→ ∀[s]0 y)))q

 .

44 VICTORIA GITMAN

Note that since Sub is a function, we may replace the quantifiers ∃u,w with ∀u,w.
Thus, PA(x) is ∆1(PA).

Example 4.11. LOGLA
is recursive and there is a predicate LOGLA

(x) defining
it which is ∆1(PA).

Suppose that T is an arithmetic theory and T (x) is the formula that holds
exactly of the Gödel-numbers of formulas in T . We define the relation ProofT (x, s),
expressing that x is the Gödel-number of a formula ϕ and s is a sequence of Gödel-
numbers of formulas representing a proof of ϕ from T , by the formula

∀i < len(s)(T ([s]i) ∨ LOGLA
([s]i) ∨ ∃j, k < i [s]k = p[s]j → [s]iq).

If T (x) is recursive (or more generally ∆1(PA)), then so is ProofT (x, s). Finally,
we define the relation PrT (x), expressing that x is the Gödel-number of a formula
provable from T , by the formula

∃sProofT (x, s).

If T is recursive, then PrT (x) is a ΣN
1 . But, we will see in Section 7 that PrPA(x)

is not ΠN
1 .

It should be noted that, aside from PrT (x), all relations we introduced in this
section are, in fact, primitive recursive. It is not difficult (but tedious) to verify
that in every case, we could bound the length of the search by a primitive recursive
function.

4.4. Truth is Undefinable. Let us suppose that N has a complete arithmetic
axiomatization T . We saw in the previous section that there is an LA-formula
PrT (x) such that N |= PrT (n) if and only if n is the Gödel-number of an LA-
sentence ϕ and T ` ϕ. Since, for every LA-sentence ϕ, we have that T ` ϕ or
T ` ¬ϕ, the formula PrT (x) holds precisely of those sentences ϕ that are true
in N. Thus, N can define its own truth! But, in this case, a formal version of
Richard’s paradox produces a contradiction in arithmetic! The argument for the
undefinability of truth was given by Alfred Tarski in 1936.

Theorem 4.12 (Undefinability of Truth). There cannot be an LA-formula Tr(x)
such that N |= Tr(n) if and only if n is the Gödel number of an LA-sentence ϕ and
N |= ϕ.

Proof. Suppose that there is such a formula Tr(x). We define the relation Ord(x),
expressing that x is the Gödel-number of a formula ϕ(y) and ¬ϕ(pϕ(y)q) holds, by
the formula

Form(y) ∧ ∃i ≤ y Free(y, i) ∧ ∀j ≤ y Free(y, j)→ j = i∧
∃u (u = Sub(x, x, i) ∧ ¬Tr(u)).

Let m = pOrd(x)q. We have that

Ord(m) ↔
Ord(pOrd(x)q) ↔
¬Tr(Ord(pOrd(x)q)) ↔
¬Tr(Ord(m)) ↔
¬Ord(m).

Thus, we have reached a contradiction showing that truth is undefinable. �

LOGIC I 45

A version of the First Incompleteness Theorem follows as an immediate corollary
of Theorem 4.4. Let us say that a theory T of LA is true if N |= T .

Corollary 4.13. Suppose that T is a true arithmetic theory. Then T is incomplete.

Thus, even if we improbably stretched our definition of a reasonable axiomatization
to include arithmetic theories, we still could not hope to axiomatize number theory.

Another immediate consequence of Theorem 4.4 is that countable models of PA
are not all elementarily equivalent, they do not share the same theory.

Corollary 4.14. There is a consistent recursive theory extending PA that is not
satisfied by N.

Proof. Let ϕ be a true sentence that does not follow from PA, then T := PA∪{¬ϕ}
is consistent. �

Because N is not a model of T , it does not follow from Theorem 4.13 that T
is incomplete. But it will follows from the full Incompleteness Theorem due to
Barkley Rosser in 1936, which states that any recursive theory (not just ’true’
theories) extending PA− must be incomplete.

4.5. Constructing true undecidable sentences. The proof of Theorem 4.13,
which we presented in the previous section, is an example of a non-constructive
existence proof. It demonstrates that there is a sentence that is not provable from,
say PA, but it cannot tell us what that sentence is. In this section, we will present
another version of the First Incompleteness Theorem that is closer to Gödel’s origi-
nal in both statement and proof. Here, we will actually construct a sentence that is
not provable from the given theory T . The proof rests on Gödel’s Diagonalization
Lemma, a generalized version of the self-referentiality we exploited in the proof of
the undefinability of truth.

Theorem 4.15 (Diagonalization Lemma). For every formula ϕ(x), there is a sen-
tence δ such that PA− ` δ ↔ ϕ(pδq).

Proof. We start by defining the relation Diag(x), expressing that x is the Gödel-
number of a formula φ(y) and ϕ(pφ(pφ(y)q)q) holds, by the formula

Form(y) ∧ ∃i ≤ xFree(x, i) ∧ ∀j ≤ xFree(x, j)→ j = i∧
u = Sub(x, x, i) ∧ ϕ(u).

Now we let δ := Diag(pDiag(y)q). Notice that this is exactly the construction of the
proof of the Undefinability of Truth theorem, where we used ϕ(x) = ¬Tr(x). Let
us argue that δ has the requisite property. Suppose that M |= PA−. Suppose that
M |= δ. Then M |= Diag(pDiag(x)q), from which it follows that M |= ϕ(u) where
u = Sub(pDiag(y)q, pDiag(y)q, y). Since the function z = Sub(x, z, i) is represented
in PA−, we have that u = pDiag(pDiag(y)q)q, and so M |= ϕ(pDiag(pDiag(y)q)q).
But this means that M |= ϕ(pδq). Now suppose that M |= ϕ(pδq). Since the rela-
tion Form(x) is represented in PA−, we have that M |= Form(pDiag(x)q) and since
y = Sub(x, z, i) is represented in PA−, we have that M |= δ = pDiag(pDiag(y)q)q =
Sub(pDiag(y)q, pDiag(y)q, y). Thus, M |= Diag(pDiag(y)q), meaning that M |= δ.
This completes the proof that PA− ` δ ↔ ϕ(pδq). �

Theorem 4.16 (First Incompleteness Theorem for true theories). Suppose that T
is a true recursive theory extending PA−. Then T is incomplete.

46 VICTORIA GITMAN

Proof. Let us apply the Diagonalization Lemma to the formula ¬PrT (x) to obtain
a sentence σ such that

PA− ` σ ↔ ¬PrT (pσq).

Intuitively, σ says ‘I am not provable’ from T ! We will argue that T does not prove
σ or its negation. Suppose towards a contradiction that T ` σ. It follows that
N |= σ and thus N |= ¬PrT (pσq). But this means that T does not prove σ, which
is the desired contradiction. Now suppose towards a contradiction that T ` ¬σ. It
follows that N |= ¬σ and thus N |= PrT (pσq). But this means that T ` σ, which is
the desired contradiction. Finally, since N |= ¬PrT (pσq), it follows that N |= σ. �

Since every Σ1-sentence that is true over N must holds in all models of PA−, it
follows that PA− proves all true Σ1-sentences. Since the sentence σ is Π1(PA), it
follows that a true recursive theory extending PA cannot decide all Π1-sentences.
Thus, we cannot even hope to axiomatize the Π1-theory of the natural numbers.

4.6. First Incompleteness Theorem. In this section, we prove another version
of the First Incompleteness Theorem due to Rosser, showing that any consistent
(not necessarily true) recursive theory T extending PA− is incomplete.

Theorem 4.17 (First Incompleteness Theorem). Suppose that T is a consistent
recursive theory extending PA−. Then T is incomplete.

Proof. Let us apply the Diagonalization Lemma to the formula

∀s(ProofT (x, s)→ ∃t < sProofT (Neg(x), t)).

We obtain the sentence τ such that

PA− ` τ ↔ ∀s(ProofT (pτq, s)→ ∃t ≤ sProofT (Neg(pτq), t)).

Intuitively, τ says that ‘whenever there is a proof of myself from T , then there is a
shorter proof of my negation from T ’. We will argue that T does not prove τ or its
negation. Suppose towards a contradiction that T ` τ . Let p ∈ N be the code of a
proof of τ from T . Thus,

(1) N |= ProofT (pτq, p),
(2) for all n < p, N |= ¬ProofT (Neg(pτq), n).

Since the relation ProofT (x, s) and the function Neg(x) are represented in PA−, we
have that

(1) PA− ` ProofT (pτq, p),
(2) for all n < p, PA− ` ¬ProofT (Neg(pτq), n).

Thus,

PA− ` ∃s(ProofT (pτq, s) ∧ ∀t < s¬ProofT (Neg(pτq), t)).

and so PA− ` ¬τ , which is the desired contradiction. Now suppose towards a
contradiction that T ` ¬τ . Let p ∈ N be the code of a proof of ¬τ from T . Thus,

(1) N |= ProofT (Neg(pτq), p),
(2) for all n ∈ N, we have N |= ¬ProofT (pτq, n).

Since the relation ProofT (x, y) and the function Neg(x) are represented in PA−, we
have that

(1) PA− ` ProofT (Neg(pτq), p),
(2) for all n ∈ N we have, PA− ` ¬ProofT (pτq, n).

LOGIC I 47

Now suppose that M |= PA−. If a ∈M such that M |= ProofT (pτq, a), then it must
be that a is nonstandard and hence a > p. Thus, M |= ∃t < aProofT (Neg(pτq), t).
Thus,

M |= ∀s(ProofT (pτq, s)→ ∃t < sProofT (Neg(pτq), t)).

It follows that

PA− ` ∀s(ProofT (pτq, s)→ ∃t < sProofT (Neg(pτq), t)).

and hence PA− ` τ . This completes that proof that T is incomplete. �

One can, at this point, ask whether it was really necessary for Rosser to use a
sentence different from Gödel’s for the proof of his theorem.

Question 4.18. Is there a consistent recursive theory T which decides Gödel’s
sentence σ?

In Section 5, we will see that the answer is yes, and so it was indeed necessary for
Rosser to invent a different sentence.

Before the discussion of the First Incompleteness Theorem ends, it should be
observed that its proof goes through for any theory T which interprets PA. We
shall say that a theory T in a language L interprets PA if there are formulas N(x),
a(x, y, z), m(x, y, z), o(x, y), 0(x), 1(x) satisfying

(1) a(x, y, z) and m(x, y, z) are binary functions on N ,
(2) o(x, y) is a binary relation on N ,
(3) 0(x) and 1(x) hold of unique elements of N ,

so that T proves that N with a interpreting +, m interpreting ·, o interpreting
order, and 0, 1 interpreting the constants is a model of PA−. Thus, for instance,
the First Incompleteness Theorem applies to the set theoretic axioms ZFC.

4.7. A recursive tree without a recursive branch. In the previous section, we
presented two versions of incompleteness. One version (Theorem 4.4), generalizing
Gödel’s argument, stated that every true arithmetic theory must be incomplete.
Rosser’s version (Theorem 4.17) stated that every consistent recursive theory ex-
tending PA− must be incomplete. The two variants of incompleteness make it
natural to wonder whether Rosser’s result can be strengthened to show that every
consistent arithmetic theory extending PA− is incomplete. But it cannot be!

Theorem 4.19. There is a complete consistent arithmetic theory extending PA.

The proof we present below is much more complicated than is required, but the
construction employed in it negatively answers Question ?? and will be used to
prove Tennebaum’s Theorem in Section 6.

Proof. First, let us define a function f on the natural numbers such that f(0) is
the least Gödel-number of an LA-sentence and f(i + 1) is the least Gödel-number
of an LA-sentence greater than f(i). The function f is a recursive enumeration of
the Gödel-numbers of LA-sentences. Let f(i) be the Gödel-number of the sentence
ϕi and define that ϕ1

i = ϕi and ϕ0
i = ¬ϕi. We shall say that a proof has size

n if its code is n. Next, let us define that a sequence 〈ϕi00 , ϕ
i1
1 , . . . , ϕ

in−1

n−1 〉, where
ij ∈ {0, 1}, is n-almost consistent if there is no proof of the sentence 0 = 1 from

PA ∪ {ϕi00 , ϕ
i1
1 , . . . , ϕ

in−1

n−1 } of size ≤ n. First, we observe that a sequence that is n-

almost consistent for every n ∈ N is consistent with PA. Also, if 〈ϕi00 , ϕ
i1
1 , . . . , ϕ

in−1

n−1 〉

48 VICTORIA GITMAN

is n-almost consistent, then any initial segment 〈ϕi00 , ϕ
i1
1 , . . . , ϕ

im−1

m−1 〉 for m < n is
m-almost consistent. Now we let T be the collection of all binary sequences s such

that 〈ϕs(0)
0 , ϕ

s(1)
1 , . . . , ϕ

s(n−1)
n−1 〉 is n-almost consistent for n = len(s). The collection

T is clearly infinite and by our previous observations, it is a binary tree. It is also
easy to see that T is ∆N

1 , and hence recursive. Finally, observe that any infinite
branch through T gives a consistent complete theory extending PA. So it remains
to show that one such branch is definable over N. But such a definition comes
directly from the proof of König’s Lemma. The branch is defined recursively so
that once bi, the element of the branch on level i, has been chosen we choose bi+1

above bi on level i+ 1 as the leftmost of the two successors having infinitely many
elements in T above it. �

By Theorem 4.17, the definable branch b cannot be recursive. Thus, as a corollary
of the proof, we have that:

Theorem 4.20. There is a recursive binary tree without a recursive branch.

Corollary 4.21. Suppose that M |= PA is nonstandard. Then SSy(M) contains
a non-recursive set.

Proof. Since SSy(M) contains all recursive sets, it must in particular contain T .
But then SSy(M) must also contain some branch of T . �

In particular, every standard system contains a complete consistent LA-theory ex-
tending PA. Corollary 4.21 will form a crucial component of the proof of Tennen-
baum’s Theorem in Section 6.

4.8. On the definability of Σn-truth. We showed in Theorem 4.4 that N (and
more generally any model of PA) cannot define its own truth. But remarkably,
every model M |= PA can define truth for every fixed level Σn (or Πn) of the
arithmetic hierarchy. Suppose that M |= PA. Earlier we established the convention
that given a ∈ M , we consider [a]i = 0 for all i ≥ len(a). We shall argue that,
for every n ∈ N, there is a formula TrΣn(x, f) such that if ϕ(xi0 , . . . , xim) is any
Σn-formula and f ∈ M , then M |= TrΣn

(pϕ(xi0 , . . . , xim)q, f) if and only if M |=
ϕ([f]i0 , . . . , [f]im). The parameter f codes an assignment of elements of M to the
free variables of ϕ. Similarly, there is such a formula TrΠn

(x, f) evaluating Πn-
formulas. Indeed, the formulas TrΣn(x, f) and TrΠn(x, f) themselves turn out to
be Σn and Πn respectively.

Because a Σn-formula consists of finitely many alterations of quantifiers followed
by a ∆0-formula, once it has been established that there is a ∆1(PA)-definable
∆0-truth predicate, the existence of the truth predicates TrΣn

(x, f) follows easily.
Let us see an example of why this is the case. Suppose that Form∆0

(x) is the
relation that holds exactly of the Gödel-numbers of ∆0-formulas. It is not difficult
to argue that, like the rest of the first-order logic grammar predicates, Form∆0(x)
is ∆1(PA). Now assume that we are given Tr∆0

(x, f). We then define TrΣ1
(x, f)

by the formula

∃z, i ≤ x

 Form∆0
(z) ∧ x = p∃xizq∧

∃a∃f ′
(

len(f ′) ≥ len(f) ∧ [f]i = a∧
∀j < len(f)(j 6= i→ [f]j = [f ′]j) ∧ Tr∆0(z, f ′)

) .

Before we can evaluate the truth of ∆0-formulas, we need to be able to compute
the value of a term. To evaluate a term for some assignment to the free variables,

LOGIC I 49

we will use a term-building sequence for that term and a parallel sequence that will
record our computation for all its sub-terms as we move along the term-building
sequence. We define the relation valseq(s, f, e), expressing that s is a term-building
sequence, f codes an assignment of elements to the free variables appearing in s,
and e is the sequence consisting of the step by step evaluation according to s of the
[s]i, by the formula

termseq(s) ∧ len(e) = len(s)∧

∀i < len(s)

([s]i = p0q ∧ [e]i = 0)∨
([s]i = p1q ∧ [e]i = 1)∨
∃j ≤ s([s]i = pxjq ∧ [e]i = [y]j)∨
∃j, k < i([s]i = p[s]j + [s]kq ∧ [t]i = [t]j + [t]k)∨
∃j, k < i([s]i = p[s]j · [s]kq ∧ [t]i = [t]j · [t]k)

 .

Now we define the relation val(x, f, y), expressing that x is the Gödel-number of a
term t(xi0 , . . . , xim) and y = t([f]i0 , . . . , [f]im), by the Σ1-formula

∃s, e valseq(s ˆ 〈x〉, f, e ˆ 〈y〉) ∨ (¬Term(x) ∧ z = 0)

Since val(x, f, y) is the graph of a function in all models of PA, it follows that it is
∆1(PA). Moreover:

Theorem 4.22. PA proves:

∀f(val(p0q, f, 0) ∧ val(p1q, f, 1)
∀f, i(i < len(f)→ val(pxiq, f, [f]i))
∀x, z, f∃y1, y2 ((val(x, f, y1) ∧ val(z, f, y2)→ val(px+ zq, f, y1 + y2))
∀x, z, f∃y1, y2 ((val(x, f, y1) ∧ val(z, f, y2)→ val(px · zq, f, y1 · y2)).

While we were able to evaluate terms linearly, evaluating a ∆0-formula is a
branching process that is similar to computing the Ackermann function. For in-
stance, when a formula is a conjunction of two formulas, the evaluation splits into
two separate evaluations and when a formula starts with an existential quantifier
bounded by some element a, the evaluation splits into a separate evaluations. Thus,
similar to the case of evaluating the Ackermann function, we need to express when
a sequence of evaluations witnesses that a given formula is true or false. We define
the relation satseq∆0

(s, e), expressing that s is a formula-building sequence and e
is a sequence witnessing the truth value of a given formula in s. Each element
[e]l of e is a triple 〈i, f, v〉, where v is the truth value (1 or 0) of the formula ϕ
coded by [s]i under the assignment f . In order to correctly witness the truth value
of [s]i, the sequence e should obey the following list of requirements. If [s]i is an
atomic formula and [e]l = 〈i, f, v〉, then the value of v is determined using val. If
[s]i = p[s]j ∧ [s]kq and [e]l = 〈i, f, v〉, then there are elements [e]lj = 〈j, f, vj〉 and
[e]lk = 〈k, f, vk〉, and v = 1 if and only if vj = 1 or vk = 1. Conjunctions and nega-
tions are handled similarly. If [s]i = p∀xh < xj [s]kq and [e]l = 〈i, f, v〉, then for all
a < [f]j , there are elements [e]ma

= 〈k, fa, va〉, where fa agrees with f everywhere
except on coordinate h and [fa]h = a. It is then the case that v = 1 if and only if
all va = 1. The bounded existential quantifier is handled similarly. It is left as a
homework project to determine the exact formula defining satseq∆0

(s, e). Finally,
we define the relation Tr∆0(x, f) by the Σ1-formula

∃s, e (satseq∆0
(s ˆ 〈x〉, e) ∧ ∃l < len(e) [e]l = 〈len(s), f, 1〉)

50 VICTORIA GITMAN

and the Π1-formula

∀s, e (∃v ≤ e∃l < len(e) ((satseq∆0
(s ˆ 〈x〉, e) ∧ ([e]l = 〈len(s), f, v〉)→ v = 1)).

It should be noted that it is far from obvious that truth-evaluating sequences e
exist in the first place and an inductive argument must be made to verify that this
is indeed the case.

Taken together the facts that truth taken as a whole is undefinable, but every
Σn-level of truth is definable implies that the arithmetic hierarchy does not collapse.

Theorem 4.23. Suppose that M |= PA. For every n ∈ N, there is a Σn-formula
that is not Πn(M).

4.9. Homework. (Source: Models of Peano Arithmetic by Richard Kaye [Kay91])

Question 4.1. Prove Theorem 4.7.

Question 4.2. Prove that if ϕ is Π1, then the δ of the Diagonalization Lemma is
Π1(PA).

Question 4.3. Provide a ∆0-definition for the relation satseq∆0
(x, f).

5. The Second Incompleteness Theorem

There is a theory which states that if ever anyone discovers exactly what the Universe is for
and why it is here, it will instantly disappear and be replaced by something even more bizarre
and inexplicable. There is another theory which states that this has already happened.
–Douglas Adams

5.1. Finitary Consistency Proofs. A subject such as set theory investigates the
properties of infinite collections vastly beyond the reach of human physical expe-
rience. But its defining properties are codified by the Zermelo-Fraenkel axioms
with the Axiom of Choice (ZFC), which are expressed in the language of first-order
logic. Other than the countably many variables it uses, the first-order language
of set theory is finite and the ZFC axioms are each a finite string of symbols in
that language. A recursive procedure determines whether a string of symbols is a
ZFC axiom and another recursive procedure determines whether a string of formu-
las in the language of set theory is a proof from ZFC. It is thus conceivable that
one may study infinite collections, without ever truly leaving the finite realm, by
simply manipulating the finite string of symbols representing the properties of sets
via recursively defined operations. Through these manipulations, and without any
reference to the infinite objects whose existence appears beyond intuitive justifica-
tion, mathematicians may be nevertheless be able to justify the existence of these
infinities by showing that ZFC axioms can never prove a contradiction. Such was
the view of David Hilbert who sought ‘finitary’ consistency proofs for among other,
PA and ZFC axioms. Hilbert believed that natural numbers and the recursive op-
erations we use to manipulate them precede any understanding we might attempt
to make of the physical world. They are the primitive notions out of which our
scientific and mathematical thoughts are constructed. Hilbert also believed that all
mathematical objects whose properties are captured by a consistent axiom system
exist in the mathematical sense.

A Hilbert style finitary consistency proof would achieve its conclusion by manip-
ulating finite strings of symbols using recursive operations. Because Peano Arith-
metic codified all rules for recursive manipulation of finite objects, it followed that
if there is indeed a finitary proof of the consistency of an axiomatic system such

LOGIC I 51

as PA or ZFC, then it should be formalizable in PA! In 1931, Gödel presented his
Second Incompleteness Theorem showing that no proof of the consistency of PA or
any recursive axiom system extending it could be formalized in PA itself. This is
made precise in the following way. Using the coding we introduced in Section 4,
any finitary proof of the consistency of PA, or a recursive theory extending it, can
be carried out inside a model of PA. Since all models of PA agree on the result of
recursive operations on the natural numbers, they should recognize that a contra-
diction cannot be obtained from the PA axioms. For a recursive theory T of LA,
let Con(T) be the arithmetic sentence expressing that there is no proof of some
formula and also a proof of its negation from T :

Con(T) := ∀x(Form(x)→ ¬(PrT (x) ∧ PrT (Neg(x)))).

Thus, every model of PA, should recognize that Con(PA) holds. But this simply
cannot be.

Theorem 5.1 (Second Incompleteness Theorem). Suppose that T is a consistent
recursive theory extending PA. Then T 0 Con(T).

Thus, there are models of PA which think that the PA-axioms are contradictory!
How is this possible? Remember that a nonstandard model M |= PA has many
nonstandard elements that it thinks are codes of PA-axioms, namely the induction
axioms for all nonstandard formulas (as well as nonstandard instances of LOGLA

-
axioms). Moreover, proofs from the perspective of M are not just finite but M -
finite sequences of elements of Form(x). This means that what M thinks is a proof
possibly has an infinite descending chain of modus ponens inferences. So that M
has ‘nonstandard’ PA-axioms as well as ‘nonstandard’ proofs from which to obtain
the erroneous contradiction.

5.2. Arithmetized Completeness Theorem. Proof-theoretic proofs of the Sec-
ond Incompleteness Theorem rely on the so-called derivability conditions capturing
the fundamental properties of the provability predicate PrT (x). We will present
a model-theoretic proof which uses that models of PA can internally carry out
Henkin’s proof of the Completeness Theorem, in the sense that if M |= Con(T)
for some definable theory T , then M can define a model of T . This result, due
to Hilbert and Paul Bernays (1939), is known as the Arithmetized Completeness
Theorem. In this section, we will formally state and prove the Arithmetized Com-
pleteness Theorem.

Suppose that L is a finite first-order language. Let us enumerate as {ri | i < m}
the relations of L and let mi be the arity of ri. Let us also enumerate as {fi | i < n}
the functions of L and let ni be arity of fi. Finally, let us enumerate as {ci | i < k}
the constants of L. We shall code the symbols of L by natural numbers as follows.
A relation symbol ri of L is coded by the number 〈0, 〈i,mi〉〉, a function symbol
fi of L is coded by the number 〈1, 〈i, ni〉〉, and a constant symbol ci of L is coded
by the number 〈2, i〉. The logical symbols of L are coded by ordered pairs with
first coordinate 3 and the variables of L are coded by ordered pairs 〈4, i〉 for i ∈ N.
Once we have specified codes for the alphabet of L, we proceed to define over a
model of PA, all logical notions concerning L precisely as we did in Section 4.
Thus, associated to the language L are definable predicates TermL(x), FormL(x),
y = SubL(x, z, i), and others we have previously encountered. Suppose now that
M is a model of PA. We shall say that a definable subset T of M is an L-theory

52 VICTORIA GITMAN

of M if FormL(x) holds of all x ∈ T . We are not insisting that all elements
of T are codes of standard, meaning actual, formulas of L. Some elements of
T might be nonstandard formulas, containing, for instance, nonstandard number
many conjunctions. Indeed, any definable T that contains infinitely many elements
coding standard formulas, must by overspill contain some nonstandard formulas
as well. Every L-theory T of M comes with the definable predicate PrT (x) and
the corresponding sentence Con(T). We shall say that T is M -consistent if M |=
Con(T). If T is M -consistent, we will show M is able to carry out the Henkin
construction of the Completeness Theorem to define a model N of the standard
formulas of T . Since the satisfaction relation for a Henkin model is completely
determined by the complete Henkin theory, the model M will be able to define a
truth predicate Tr(x, y) for N . The first parameter of Tr(x, y) will satisfy FormL(x)
and the second parameter will be an x-assignment of elements of N . The predicate
will behave precisely as the satisfaction relation for N by obeying Tarski’s rules for
the definition of truth (for standard as well as nonstandard formulas), and it will
be the true satisfaction relation on standard formulas.

Theorem 5.2 (Arithmetized Completeness Theorem). Suppose that L is a finite
first-order language and T is an L-theory. Suppose further that M |= PA has a
definable subset T containing the codes of all formulas in T such that M |= Con(T).
Then there is a definable subset N of M , definable subsets Ri ⊆ Nm

i for i < m,
definable subsets Fi ⊆ Nni for i < n, and {C0, . . . , Ck} ⊆ N such that N together
with interpretations Ri for ri, Fi for fi and Ci for ci is a model of T . Moreover,
M has a truth predicate for the model 〈N, {Ri}i<m, {Fi}i<n, {Ci}i<k〉.

To prove the theorem, we will argue that all components of the Henkin construction
formalize within a model of PA, and therefore we can definably build N out of the
Henkin constants. We will not provide all details of the proof because doing so does
not advance the cause of understanding. Indeed, even the thorough Kaye [Kay91]
refuses to provide a full proof, although Adamowicz and Zbierski [AZ97] come close.

Sketch of Proof. First, we observe that all meta-theorems about provability from
Section 1, used in Henkin’s proof of the Completeness Theorem, are formalizable
in PA, meaning that they will hold true of the predicate PrT (x) over a model
M of PA. Here are some examples. Proof by ‘induction on theorems’ holds over
M . More precisely, suppose that S(x) is a definable predicate over M such that
S(x) → FormL(x), LOGLA

(x) → S(x), T (x) → S(x), and whenever S(pψq) and
S(pψ → ϕq), then S(pϕq). It follows that PrT (x)→ S(x). The deduction theorem
(Theorem 1.5) holds over M . More precisely, we have PrT (pϕ→ ψq) if and only if
PrT ,ϕ(pψq). One by one, we can check that the theorems used in Henkin’s proof
formalize.

We can easily extend the language L to a language L∗ containing infinitely many
new constants (which we shall use as Henkin constants), by defining that every ele-
ment of the form 〈2, i〉 for i ∈M is a constant of L∗. We shall say that an L∗-theory
S of M has the Henkin property if whenever M |= FormL∗(x), then S contains some
Henkin sentence for x. We shall say that an L∗-theory S of M is M -complete if
for all x ∈ S either M |= PrS(x) or M |= PrS(Neg(x)). So suppose that S is an
M -complete M -consistent L∗-theory of M with the Henkin property. The model
M can obviously define the Henkin model N via the equivalence relation on the
constants of L∗ and verify that N satisfies ϕ(c1, . . . , cn) if and only if ϕ(c1, . . . , cn)

LOGIC I 53

is proved by S. Thus, the model M can define the truth predicate Tr(x, y) for N
from S.

It remains to argue that T can be definably extended in M to an M -complete
M -consistent L∗-theory with the Henkin property. In the proof of the Completeness
Theorem, we constructed the complete consistent theory with the Henkin property
in ω-many stages, by adding Henkin formulas and then completing the theory at
each stage. An alternative construction, which we will use here, adds all Henkin
formulas in a single strep through a careful bookkeeping of the constants and then
completes the resulting theory. First, we enumerate in M all pairs 〈x, i〉 such that
M |= FormL∗(x) and M |= FreeL∗(x, i). Now we assign to each pair 〈x, i〉, the
Henkin constant cx,i chosen as follows. At stage a, we consider the ath-pair in the
enumeration and assign to it the smallest Henkin constant that hasn’t yet been
assigned to the preceding pairs. We shall say that a ∈M is an L∗-Henkin formula
if it has the form

∃xiϕ→ ϕ(cx,i/xi),

with pϕq = x. Let T ∗ consist of T together with all L∗-Henkin formulas. Identical
arguments to those used in the proof of the Completeness Theorem verify that
M |= Con(T ∗). Next, we need to consistently complete T ∗ in M . Let {ϕa | a ∈M}
be a definable enumeration of elements satisfying FormL∗(x). Now we define an
M -complete M -consistent extension S of T ∗ as the collection {ϕ∗a | a ∈M}, where
at each stage a, we choose ϕ∗a = ϕa if it is consistent with T ∗ and all choices
made before stage a, and otherwise, we choose ϕ∗a = ¬ϕa. It should be clear that
M |= Con(S). �

Theorem 5.3. If M |= PA + Con(PA) and N |= PA is defined in M using the
Arithmetized Completeness Theorem, then M is isomorphic to an initial segment
of N .

Proof. We shall argue that M embeds into an initial segment of N via the map
i inductively defined in M by i(0) = 0N and i(a + 1) = i(a) +N 1N . Note that
if there is any embedding i : M → N , then it must satisfy the above definition.
First, we argue by induction inside M that i maps onto an initial segment of N .
It is vacuously true that for all x <N i(0) = 0N , there is b such that x = i(b).
So suppose inductively that for all x <N i(a), there is b such that x = i(b). We
need to show that for all x <N i(a + 1), there is b such that x = i(b). But if
x <N i(a + 1) = i(a) +N 1N , then x <N i(a) in which case there is a b by the
inductive assumption or else x = i(a) in which case b = a. Next, we argue, again
by induction inside M , that a < b implies that i(a) <N i(b). It is vacuously true
that b < 0 implies i(b) <N i(0). So suppose that b < a implies i(b) <N i(a).
If b < a + 1, then b ≤ a. If a < b, then by inductive assumption, we have
i(a) <N i(b) <N i(b) +N 1N = i(b+ 1), and if a = b, then i(a) = i(b) <N i(b+ 1).
The arguments to show that i(a + b) = i(a) +N i(b) and i(a · b) = i(a) ·N i(b) are
similar and are left as homework. �

The Arithmetized Completeness Theorem can be extended to theories in a re-
cursive (potentially infinite) language once that notion is carefully defined, but we
will say no more about it in these notes.

5.3. Second Incompleteness Theorem.

54 VICTORIA GITMAN

Theorem 5.4 (Second Incompleteness Theorem). Suppose that T is a consistent
recursive theory extending PA. Then T 0 Con(T).

Proof. Recall the Π1(PA)-sentence σ, used by Gödel in the proof of the First In-
completeness Theorem, that claims to be unprovable:

PA− ` σ ↔ ¬PrT (pσq).

First, we shall argue that T ` Con(T) → σ. So suppose that M |= T ∪ {Con(T)}
and let N be the model of T defined in M using the Arithmetized Completeness
Theorem. By Theorem 5.3, we may view M as an initial segment submodel of N ,
from which it follows that M ≺∆0

N . Now we assume towards a contradiction that
M |= ¬σ, and hence M |= PrT (pσq). It immediately follows that M cannot be a
model of Con(T ∪ {¬σ}). Thus, it must be that the complete consistent extension
of T with the Henkin property constructed by M in the proof of the Arithmetized
Completeness Theorem chose σ, making N |= σ. But σ is equivalent to a Π1-
formula and M ≺∆0

N , which means that M |= σ as well. Thus, we have reached
a contradiction showing that M |= σ.

Now we suppose towards a contradiction that T ` Con(T). Thus, T ` σ and
hence T ` ¬PrT (pσq). But this is not possible, since if T ` σ, we have N |=
PrT (pσq) and hence every M |= T is a also a model of PrT (pσq). Thus, we have
reached a contradiction, showing that T 0 Con(T). �

The sentence Con(PA) provides another concrete example of a statement that is
not decided by PA.

Model-theoretic proofs of the Second Incompleteness Theorem came years after
Gödel first published his result. Older proofs were chiefly proof-theoretic and relied
on general properties of the provability predicate PrT (x). Through the work of
Hilbert, Paul Bernays and Martin Löb, three key properties of PrT (x) were isolated
and became known as the Derivability Conditions. Suppose that T is a recursive
theory.
Derivability Conditions for T

(1) T ` ϕ implies T ` PrT (pϕq)
(2) T ` (PrT (pψq) ∧ PrT (pψ → ϕq))→ PrT (pϕq)
(3) T ` PrT (pϕq)→ PrT (pPrT (pϕq)q)

We argued for and made of use of condition (1) and (2) previously. It is only
condition (3) that has a tedious details-ridden proof. It is precisely to avoid proving
condition (3) that we chose to argue model-theoretically. To prove condition (3)
we would argue, by induction on complexity of formulas, that for every Σ1-formula
ϕ, we have that PA ` ϕ → PrT (pϕq). Thus, if M |= PA thinks that a Σ1-formula
is true, it can prove it!

The Second Incompleteness Theorem follows almost immediately from the Deriv-
ability Conditions.

Proof 2 of the Second Incompleteness Theorem. We will again argue that T ` Con(T)→
σ. By condition (1), we have

T ` PrT (pPrT (pσq)→ ¬σq).

Now we will combine conditions (2) and (3) to argue that

T ` PrT (pσq)→ PrT (p¬σq).

LOGIC I 55

By condition (3), T ` PrT (pσq)→ PrT (pPrT (pσq)q). Thus,

T ` PrT (pσq)→ (PrT (pPrT (pσq)q) ∧ PrT (pPrT (pσq)→ ¬σq).

From which it follows by condition (2) that T ` PrT (pσq)→ PrT (p¬σq). Thus,

T ` PrT (pσq)→ (PrT (pσq) ∧ PrT (p¬σq)),

and hence

T ` PrT (pσq)→ ¬Con(T).

So, by the defining property of σ, we have

T ` Con(T)→ σ.

�

Observe also that T ` σ → Con(T) since if Con(T) fails to hold, there is a
proof of every sentence including σ. It follows that T ` ¬Con(T) → ¬σ. Thus,
any theory which proves its own inconsistency decides σ! Are there theories which
prove their own inconsistency? Yes! Let T be the theory PA∪ {¬Con(PA)}. Since
T extends PA, we have that T ` ¬Con(T). So Rosser’s trick sentence τ was indeed
necessary.

Another important property of the provability predicate PrT (x) was discovered
by Martin Löb and became known as Löb’s Theorem.

Theorem 5.5 (Löb’s Theorem). If T ` PrT (pϕq)→ ϕ, then T ` ϕ.

Löb’s Theorem once again demonstrates the difference between true provability
and provability from the perspective of a model of PA. Intuitively, we expect that
if there is a proof of ϕ from PA, then of course, ϕ should be true, making the
hypothesis of Löb’s Theorem a tautology. But if this were the case, then PA would
prove every sentence! As Rohit Parikh pointed out: “PA could’t be more modest
about its own veracity.”

5.4. In which we show that PA ` Con(PA). The sentence Con(PA), used in
the statement of the Second Incompleteness Theorem, presupposes a previously
agreed upon predicate PA(x) (not to mention the coding used to define it). To
what extent does the Second Incompleteness Theorem depend on this seemingly
arbitrary choice? What general properties must the predicate PA(x) satisfy in
order for the Second Incompleteness Theorem to hold? At the very minimum,
in any model of PA, the predicate PA(x) must hold of n ∈ N precisely when
n is the Gödel-number of a PA-axiom. The predicate we defined in Section 4
had the additional property of being ∆1(PA), which was used in both proofs of
the Second Incompleteness Theorem. Indeed, the Second Incompleteness Theorem
holds with any predicate PA∗(x) meeting these two conditions. This analysis makes
some headway in resolving possible objections to the arbitrary choices involved in
expressing Con(PA). The objections would be entirely done away with if we could
remove the need for the second condition. But, alas, Solomon Fefferman showed
how to define a predicate PA∗(x) that for n ∈ N holds precisely of the Gödel-
numbers of PA-axioms and, yet, for which PA ` Con(PA)!

For n ∈ N, we let the theory PAn consist of all PA-axioms with Gödel-numbers
≤ n. A remarkable theorem of Mostowski shows that PA ` Con(PAn) for every

56 VICTORIA GITMAN

n ∈ N.14 Let us define the predicate PA∗(x) by

PA∗(x) := PA(x) ∧ Con(PAx).

The definition seems to be saying precisely that we only take PA-axioms which
do not lead to a contradiction. Now suppose that M |= PA. Clearly {a ∈ M |
PA∗(a)} ⊆ {a ∈M | PA(a)}. Using Mostowski’s theorem, it follows that for n ∈ N,
the predicate PA∗(x) holds in M exactly of the Gödel-codes of PA-axioms. Thus,
the difference between PA(x) and PA∗(x) is that the later has potentially fewer
nonstandard induction axioms. Now we argue that M |= Con(PA∗). Suppose that
p ∈M is a proof from PA∗(x). Let a be the largest PA∗-axiom used in p and note
that p is then a proof from PAa. Since M |= PA∗(a), it follows that M |= Con(PAa).
But since p is a proof of PAa, it cannot prove any statement of the form ψ ∧ ¬ψ.
Thus, M |= Con(PA∗)!

An immediate consequence of Mostowski’s Theorem together with the Overspill
Principle is that every M |= PA has a nonstandard a ∈ M such that it think PAa

is consistent! But, of course, PAa already includes all the (standard) PA-axioms.
Thus, M can build a model of PA using the Arithmetized Completeness Theorem!

5.5. Homework.

Question 5.1. Complete the proof of Theorem 5.3 by showing that i(a + b) =
i(a) +N i(b) and i(a · b) = i(a) ·N i(b).

Question 5.2. Prove Löb’s Theorem using the Derivability Conditions.

Question 5.3. Consider a sentence ρ asserting that it is provable:

PA− ` ρ↔ PrPA(pρq).

Show that PA ` ρ.

Question 5.4. Show that there is a sentence ϕ that is ∆1(N) but not ∆1(PA).
(Hint: use Con(PA)).

6. Tennenbaum’s Theorem

6.1. A third kind of incompleteness. Gödel’s Incompleteness Theorems estab-
lished two fundamental types of incompleteness phenomena in first-order arithmetic
(and stronger theories). The First Incompleteness Theorem showed that no recur-
sive axiomatization extending PA can decide all properties of natural numbers and
the Second Incompleteness Theorem showed that there cannot be a constructive
proof of the consistency of PA. Both results demonstrated that inherent limita-
tions latent in sufficiently complex formal systems will prevent us from acquiring
the kind of absolute knowledge sought by Hilbert and other optimists at the start
of the 20th-century. In 1959, Stanley Tennenbaum established a third type of in-
completeness, when he showed that we can never construct a nonstandard model
of PA. Let us say that a countable structure 〈M, {fi}i<n, {ri}i<m, {ci}i<k〉 of some
finite first-order language is recursive if there is a bijection F : M → N such that,
identifying M with N via F , the functions fi and the relations ri are recursive. The
notion of recursiveness for a first-order structure is intended to capture formally the
idea that a structure is ‘constructible’. Because the functions +, ·, and the relation

14The proof of Mostowski’s theorem relies on advanced proof-theoretic techniques that are
beyond the scope of these notes.

LOGIC I 57

< on N are recursive, the identity map witnesses that the structure 〈N,+, ·, <, 0, 1〉
is recursive. It is also easy to see that if M is a countable nonstandard model of
PA, then 〈M,<〉 is recursive. Tennenbaum’s Theorem showed that there cannot be
a recursive nonstandard model of PA. Essentially, there do not exist two recursive
operations +∗ and ·∗ on N, different from the standard + and ·, obeying Peano
Arithmetic. Indeed, Tennenbaum showed that if a countable M |= PA is nonstan-
dard, then, even when taken individually, neither 〈M,+〉 nor 〈M, ·〉 is recursive.
Remarkably, (up to isomorphism) 〈N,+, ·, <, 0, 1〉 is the unique recursive model of
PA.

Theorem 6.1 (Tennenbaum’s Theorem). Suppose 〈M,+, ·, <, 0, 1〉 is a countable
nonstandard model of PA, then neither 〈M,+〉 nor 〈M, ·〉 is recursive.

In fact, Tennenbaum’s Theorem holds for number theories drastically weaker
than PA. In a work published in 1985, George Wilmers showed that there are no
recursive nonstandard models of PA− together with IE1-induction. The induction
principle IE1 states that induction holds for formulas of the form

∃y < t(x) t1(x, y) = t2(x, y),

where t, t1, t2 are some LA-terms (polynomial functions with non-negative coeffi-
cients).

6.2. Proof of Tennenbaum’s Theorem. We observed in Section 4 that the stan-
dard system of any nonstandard model M of PA must contain a non-recursive set
(Corollary 4.21). To prove Tennenbaum’s Theorem, we will argue that if either
〈M,+M 〉 or 〈M, ·M 〉 were recursive, then every set in SSy(M) would be recursive
as well.

In Section 2, we showed that SSy(M) consists precisely of those subsets of N
that are coded in M (Theorem 2.38). Recall that A ⊆ N is said to be coded in a
model M |= PA if there is a ∈ M such that n ∈ A if and only if M |= (a)n 6= 0.
We used the β-function coding to define the notion of a coded set, but we could
have used any other coding, based say on binary expansions, just as well. For
the purposes of the arguments to follow, we will use a coding based on the prime
numbers sequence. Suppose that M |= PA and let us argue that M can definably
enumerate its prime numbers. Let Prime(p) be the ∆0-definable relation expressing
that p is prime over M . The definable enumeration px, expressing that p is the
xth-prime number of M , is given by the formula

∃s ((s)0 = 2∧∀i < x(Prime((s)i)∧∀z < (s)i+1(z > (s)i → ¬Prime(z)))∧p = (s)x).

Since the relation Prime(p) is ∆0-definable, it follows that N and M will agree on
the enumeration of the standard prime numbers.

Lemma 6.2. Suppose that M |= PA is nonstandard. Then A ∈ SSy(M) if and
only if there is a ∈M such that for n ∈ N, we have pn|a if and only if n ∈ A.

Proof. Suppose that A ∈ SSy(M). Then there is a formula ϕ(x, y) and b ∈ M
such that A = {n ∈ N | M |= ϕ(n, b)}. Let c ∈ M be nonstandard. We argue by
induction on y up to c in the formula

ψ(y, b) := ∃a∀x ≤ y px|a↔ ϕ(x, b)

that there is a ∈ M such that for all x ≤ c, we have M |= px|a ↔ ϕ(x, b). First,
we verify that there is a such that p0 = 2|a ↔ ϕ(0, b). Choose the witnessing

58 VICTORIA GITMAN

a so that a = 2 if M |= ϕ(0, b), and a = 1 otherwise. So suppose inductively
that there is a ∈ M such that for all x ≤ y, we have M |= px|a ↔ ϕ(x, b). Let
a′ = a · px+1 if M |= ϕ(x+ 1, b), and a′ = a otherwise. Then for all x ≤ y + 1, we
have M |= px|a′ ↔ ϕ(x, b). Thus, there must be a such that for all x ≤ c, we have

M |= px|a↔ ϕ(x, b).

In particular, for n ∈ N, we have n ∈ A if and only if M |= pn|a. �

We are now ready to prove Tennenbaum’s Theorem.

Theorem 6.3 (Tennenbaum’s Theorem). Suppose that 〈M,+, ·, <, 0, 1〉 is a count-
able nonstandard model of PA, then neither 〈M,+〉 nor 〈M, ·〉 is recursive.

Proof. We will argue that if 〈M,+〉 or 〈M, ·〉 was recursive, then every set in
SSy(M) would have to be recursive.

Suppose that A ∈ SSy(M) and fix a ∈ M such that n ∈ A if and only if
M |= pn|a. Fix n ∈ N. By the division algorithm in M , there are unique qn ∈ M
and rn < pn such that a = qn · pn + rn. It follows that n ∈ A if and only if rn = 0.
Next, we make the crucial observation that

qn · pn + rn = qn + . . .+ qn︸ ︷︷ ︸
pn-many

+ 1 + . . .+ 1︸ ︷︷ ︸
rn-many

because both pn and rn are standard. Thus, to determine whether n ∈ A, we
search through all elements of M for an element qn having the property that a =
qn + . . .+ qn︸ ︷︷ ︸

pn-many

+ 1 + . . .+ 1︸ ︷︷ ︸
rn-many

for some rn < pn and we can verify this property using

just the addition operation. Now, we need a variant property which we can verify
using just the multiplication operation. Let b = 2a. Observe that

b = 2qn·pn+rn = (2q)pn · 2rn = wn · . . . · wn︸ ︷︷ ︸
pn-many

· 2 · . . . · 2︸ ︷︷ ︸
rn-many

,

where wn = 2qn . Thus, to determine whether n ∈ A, we search through all elements
of M for an element wn having the property that b = wn · . . . · wn︸ ︷︷ ︸

pn-many

· 2 · . . . · 2︸ ︷︷ ︸
rn-many

for some

rn < pn and we can verify this property using just the multiplication operation.
Now, suppose that 〈M,+〉 is recursive and fix a bijection F : M → N such that

the function +∗ corresponding to + under F is recursive. Let F (a) = ma and
F (1) = m1. To determine whether n ∈ A, we search for a number q such that

ma = q +∗ . . .+∗ q︸ ︷︷ ︸
pn-many

+∗m1 +∗ . . .+∗ m1︸ ︷︷ ︸
r-many

for some r < pn, and conclude that n ∈ A whenever r = 0. It should be clear that
this is a recursive procedure.

Next, suppose that 〈M, ·〉 is recursive and fix a bijection F : M → N such
that the function ·∗ corresponding to · under F is recursive. Let F (b) = mb and
F (2) = m2. To determine whether n ∈ A, we search for a number w such that

mb = w ·∗ . . . ·∗ w︸ ︷︷ ︸
pn-many

·∗m2 ·∗ . . . ·∗ m2︸ ︷︷ ︸
r-many

for some r < pn, and conclude that n ∈ A whenever r = 0. It should be clear that
this is a recursive procedure. �

LOGIC I 59

6.3. Homework.

Question 6.1. Suppose that M |= PA is nonstandard. Show that (M,<) is recur-
sive.

7. Turing Machines and Computability

7.1. On the origin of Turing Machines.

An algorithm must be seen to be believed.

–Donald Knuth

In the age defined by computing, we are apt to forget that the quest to solve
mathematical problems algorithmically, by a mechanical procedure terminating in
finitely many steps, dates back to the beginning of human mathematical endeavors.
We owe its most ambitious formulation to Leibniz, who dreamed of building a
machine capable of solving any mathematical problem by manipulating the symbols
of a new formal language in which all mathematics would be expressible. In the
early 20th-century, with the introduction of first-order logic and the formal theory
of provability, Leibniz’s dream finally seemed close to realization. Hilbert had set
out several goals for mechanizing mathematical reasoning and chief among them
was the Entscheidungsproblem, asking for an algorithm to determine whether a
first-order statement is a logical validity. Like Leibniz, Hilbert believed that no
problem in mathematics was unsolvable.

This conviction of the solvability of every mathematical problem is a pow-

erful incentive to the worker. We hear within us the perpetual call: There

is the problem. Seek its solution. You can find it by pure reason, for in

mathematics there is no ignorabimus.

For instance, the Entscheidungsproblem algorithm for propositional logic consists
of checking whether a given statement evaluates to true under all truth assignments
to the propositional variables it contains. The Entscheidungsproblem was posed by
Hilbert and his student Ackermann in 1928, a time when not even an agreed upon
formal notion of algorithm existed. In 1935, a 22-year-old mathematics student by
the name of Alan Turing heard a lecture on the Entscheidungsproblem and spent
the next year searching for a solution. In the process, he elucidated a philosophi-
cal interpretation of the process of mechanical computation, implemented it with
an abstract computing device, and proposed a formal definition of algorithmically
computable functions based on what his devise, the Turing machine, could com-
pute. Finally, using his definition of computability, he showed that there was no
algorithm to solve the Entscheidungsproblem.15

Turing decided that a computation was to be viewed as mechanical if it could be
carried out by a human ‘computer’16 writing in a finite alphabet on a piece of one
dimensional paper subdivided into squares, one symbol per square, in accordance
with a finite list of instructions, each of which was meant to correspond to a par-
ticular ‘state of mind’ of the computer. The human carrying out the computation
is assumed to read and modify the contents of a single square at a time, while the
length of the available paper is assumed to be unlimited, so that for example when

15Using a notion of computability that turned out to be equivalent to Turing’s, Church inde-

pendently obtained the same result a few months prior.
16In the age before computers as we know them came along, this was a term used for a human

being performing a computation.

60 VICTORIA GITMAN

the paper runs out, more is attached to allow the computer to continue. A ‘state of
mind’ consists of a fixed sequence of actions to be carried out by the computer. A
possible state of mind could be to move forward along the paper writing a symbol,
say ‘a’, in each square until another symbol, say ‘b’, is read and once ‘b’ is read, to
switch to a different state of mind. This new state of mind could require writing ‘b’
in each blank square and ’a’ in each already written in square until the symbol ‘c’
is read (at which point, another change of states would be specified). Thus, each of
the finite list of instructions provided to the computer is a description of a state of
mind that specifies, based on the current contents of a square, which writing action
is to be taken, whether to move forward or backward afterwards, and what new
state to assume.

To formalize his notion of mechanical computation, Turing introduced an ab-
stract computing device, the Turing machine. The hardware of a Turing machine
consists of a tape, infinitely long in both directions, that is subdivided into squares,
and a read/write head which moves along the tape scanning one square at a time.
The actions of the head are controlled by a Turing machine program.

. . . b b a a a a . . . Input/Output Tape

s0s1

s2

s3 . . .

sn

Program

s1

Reading and Writing Head
(moves in both directions)

A Turing machine program comes with a prefixed finite alphabet, whose symbols
the head is allowed to write on the tape. The program instructions define a num-
ber of states which the Turing machine can be in and for each state, how the head
should respond when reading a given symbol on the tape. A given state specifies,
for each possible symbol of the alphabet, what the head should write on the square
being scanned upon encountering that symbol, whether it should subsequently move
right or left along the tape, and whether it should at that point switch states. An
individual instruction is a 5-tuple of elements consisting of the state name, the sym-
bol being read, the symbol being written in response, the direction to move, and,
finally, the new state. Specially designated ‘start’ and ‘halt’ states let the machine
know how to start and end the computation. Writing Turing machine instructions
is best analogous in modern computing to programming in Assembler, a language

LOGIC I 61

that serves as an intermediary between machine language and the higher level pro-
gramming languages programmers usually encounter. An Assembler program is
subdivided into labeled regions (physically corresponding to where the instructions
are stored in the memory), each of which consists of a set of simple instructions such
as reading/writing to memory locations, and basic arithmetic. The ‘goto (label)’
instruction directs the program among the labeled regions. The labeled regions can
be viewed as corresponding to machine states and the goto instruction as directing
a switch to a new state.

Turing defined that a function f : Nk → N is computable if there is a Turing
machine program, which when applied to a tape on which the n-tuple m is pre-
written, reaches the halt state in finitely many steps, leaving f(m) on the tape.
Natural numbers are inputted and outputted on the tape using some predetermined
conventions such as their binary (a finite alphabet consisting of 0 and 1) expansion.

One of the central contributions of Turing’s computational model was the real-
ization that a Turing machine program can be made to interpret (coded versions of)
other Turing machine programs. Turing constructed the Universal Turing Machine
program which took as input a pair consisting of a Turing Machine program and an
input to that program and outputted precisely the value which that program would
compute on that input. The Universal Turing Machine program essentially ‘ran’
the inputted program. It is generally believed that the von Neumann architecture
of the stored program computer on which the modern computer is founded owes
its conception to the Universal Turing Machine.

7.2. Turing Machines. There is no single agreed upon definition of either the
Turing machine hardware or software. Many seemingly arbitrary choices are made,
but remarkably all the various definitions and assumptions produce devices that
compute exactly the same functions on the natural numbers. Our Turing machine
hardware will consist of a tape, infinitely long in both directions, that is subdivided
into squares and a read/write head that can move left or right along the tape,
one square at a time.17 Before describing a Turing machine program, we must
specify the finite alphabet whose symbols the program will direct the machine to
manipulate on the tape. Every such finite alphabet Σ needs to include a special
‘blank’ symbol to be used by the program to refer to a blank square. A Turing
machine program is a finite list of instructions, each of which directs the head, based
the symbol it is currently reading on the tape, what symbol it should write on the
tape, whether it should move right or left, and what new state it should transition
to. Suppose that S is the set of states used by a program P . The simplest way to
name states is to number them 0 through n, but for purposes of program readability,
it is advisable to name states by phrases intended to convey a description of the
behavior they specify. Each state set needs to include two specially designated
states, the ‘Start’ state and the ‘Halt’ state. Because the instructions are not
executed in order, the designated Start state is necessary as means of letting the
machine must know in which state to begin operation. Although, we must have
some way of specifying when a program ends, the existence of the Halt state is
only one such convention. Alternatively, for instance, we could have chosen to end
the program when the machine transitioned to some state for which no instruction
existed. Finally, the program must be sound : it must have exactly one instruction

17For other authors, the tape only extends infinitely in the forward direction.

62 VICTORIA GITMAN

for every pair consisting of a state in S (other than the Halt state) and symbol in
Σ.

Formally, a Turing machine program with the alphabet Σ and a state set S is a
finite collection P of 5-tuples 〈s, r, w, d, s′〉, where s ∈ S is the current state, r ∈ Σ
is the symbol currently being read, w ∈ Σ is the symbol that is supposed to replace
it on the tape, d ∈ {R,L} is the direction in which the head should move after
writing w and s′ is the state it should transition to. Moreover, for every s ∈ S and
r ∈ Σ, there is exactly one tuple 〈s, r, . . .〉.

An input to a Turing machine program consists of some finitely many symbols in
Σ that are pre-written on the tape before the program begins with head placed on
the leftmost input symbol. The program is said to produce an output if it reaches
the Halt state and the interpretation of the output is based on predetermined
conventions.

To define the class of Turing computable functions on the natural numbers, we
must first choose the alphabet Σ in which the computation will take place and set
up conventions for inputting and outputting natural numbers on the tape. Initially
we will choose the smallest possible alphabet Σ = {0, 1}, consisting of just two
symbols, with 0 standing in for the blank character. In the next section, we will
argue that increasing the size of the alphabet, while shortening programs, does not
increase computing capabilities. By convention, we will represent a natural number
n on the Turing machine tape by n + 1-consecutive 1’s. The tape below contains
the input n = 4.

. . . 0 1 1 1 1 0 0 0 . . .

s

Elements of a tuple of natural numbers will be separated by a single blank square.
The tape below contains the input (0, 3).

. . . 0 1 0 1 1 1 1 0 0 0 . . .

s

We will also adapt the convention that the output of a Turing machine in the Halt
state is the number n of (not necessarily consecutive) 1’s left on the tape. The tape
below contains the output n = 3.

. . . 0 0 1 0 0 1 0 0 1 0 . . .

s

Let us say that a program P computes the function f(x) defined by f(m) = n
if and only if P halts on input m with output n. The function f is potentially
partial because P might not reach the Halt state on all inputs. With all the
preliminaries complete, we finally define that a (partial) function f : Nk → N
is (Turing) computable if there is a Turing machine program which computes it.
For a computable function f(x), we shall use the notation f(x) ↓ to indicate that
f(x) is defined, meaning that the program computing it halts on input x, and
likewise we shall use the notation f(x) ↑ to indicate that program computing it
never reaches the Halt state on input x. We shall say that a computable function

LOGIC I 63

f(x) is total if for all x, we have f(x) ↓. We shall say that a relation is computable
if its characteristic function is computable.

Example 7.1. The zero function Z(x) = 0 is computable by the program below.
〈Start, 1, 0, R,Start〉 //Delete input

〈Start, 0, 0, R,Halt〉 //Done!

Example 7.2. The successor function S(x) = x+ 1 is computable by the program
below.

/* For input n, we already have n + 1-many 1’s on entered tape. Thus, the program to compute S(x) needs to

do absolutely nothing. */

〈Start, 1, 1, R,Halt〉 //Do nothing

〈Start, 0, 0, R,Halt〉 //Improper input

Example 7.3. The projection functions Pni (x1, . . . , xn) = xi are computable. Be-
low is a program to compute P 4

3 .

/* We erase the first, second, and forth inputs by keeping track of the number of blank spaces encountered to

know which input the head is currently on. */

〈Start, 1, 0, R,DeleteFirstInput〉 //Start deleting first input

〈Start, 0, 0, R,Halt〉 //Improper input

〈DeleteFirstInput, 1, 0, R,DeleteFirstInput〉 //Keep deleting first input

〈DeleteFirstInput, 0, 0, R,DeleteSecondInput〉 //Switch to deleting second input

〈DeleteSecondInput, 1, 0, R,DeleteSecondInput〉 //Keep deleting second input

〈DeleteSecondInput, 0, 0, R,RemoveExtra1〉 //Proceed to remove extra 1 from third input

〈RemoveExtra1, 1, 0, R,SkipThirdInput〉 //Remove extra 1, switch to skipping third input

〈RemoveExtra1, 0, 0, R,Halt〉 //Cannot happen

〈SkipThirdInput, 1, 1, R,SkipThirdInput〉 //Keep reading through third input

〈SkipThirdInput, 0, 0, R,DeleteFourthInput〉 //Switch to deleting fourth input

〈DeleteFourthInput, 1, 0, R,DeleteFourthInput〉 //Keep deleting fourth input

〈DeleteFourthInput, 0, 0, R,Halt〉 //Done!

We just showed that the basic primitive recursive functions are computable!

Example 7.4. Addition is computable by the program below.

/* For inputs n and m, we have n + 1 and m + 1 1’s entered on tape. To produce output m + n, we need to

delete two extra 1’s. */

〈Start, 1, 0, R,SecondDelete〉 //First extra 1 is deleted, proceed to delete second extra 1

〈Start, 0, 0, R,Halt〉 //Cannot happen

〈SecondDelete, 0, 0, R,SecondDelete〉 //Space between inputs is encountered

〈SecondDelete, 1, 0, R,Halt〉 //Done!

Example 7.5. Multiplication is computable by the program below.

/* For inputs m, n, we have m+ 1 and n+ 1 entered on tape. If m or n is 0, we delete both inputs. If m,n 6= 0,

we make n-many copies of m-many 1’s to the left of first input. Before each copy of m 1’s is made, we delete a

1 from second input, which serves as counter of the number of copies to be made. We stop making copies when

a single 1 is left from second input. To make a copy, we use first input as counter. Before a bit is copied, a 1

from first input is deleted. When a single 1 is left from first input, the m 1’s are written back on tape. When

copying is finished, we delete first and second inputs, leaving precisely n-many copies of m on tape. */

〈Start, 1, 1, R, IsFirstZero〉 //Check if first input is 0

64 VICTORIA GITMAN

〈Start, 0, 0, R,Halt〉 //Improper input

/* First input is 0 */

〈IsFirstZero, 0, 0, L,DeleteFirst〉 //First input is 0, delete first input

〈DeleteFirst, 1, 0, R,FindSecondToDelete〉 //First input is 0, delete first input

〈DeleteFirst, 0, 0, R,Halt〉 //Cannot happen

〈FindSecondToDelete, 0, 0, R,FindSecondToDelete〉 //Find second input to delete

〈FindSecondToDelete, 1, 0, R,DeleteSecond〉 //Proceed to delete second input

〈DeleteSecond, 1, 0, R,DeleteSecond〉

〈DeleteSecond, 0, 0, R,Halt〉 //Done!

/* First input is not 0 */

〈IsFirstZero, 1, 1, R,FindSecondInput〉 //First input is not 0, proceed to second input

〈FindSecondInput, 1, 1, R,FindSecondInput〉 //Reading first input

〈FindSecondInput, 0, 0, R,DecreaseSecondInput〉 //Proceed to decrease second input counter

〈DecreaseSecondInput0, 0, R,Halt〉 //Cannot happen

〈DecreaseSecondInput1, 0, R, IsSecondZero〉 //Check if second input is 0

/* Second input is 0 */

〈IsSecondZero, 0, 0, L,FindFirstToDelete〉 //Go back, find first input

〈FindFirstToDelete, 0, 0, L,FindFirstToDelete〉

〈FindFirstToDelete, 1, 0, L,DeleteFirstInput〉 //First input found, proceed to delete

〈DeleteFirstInput, 1, 0, L,DeleteFirstInput〉

〈DeleteFirstInput, 0, 0, L,Halt〉 //Done!

/* Second input is not 0 */

〈IsSecondZero, 1, 1, L,FindFirstInput〉 //Go back, find first input

〈FindFirstInput, 0, 0, L,FindFirstInput〉

〈FindFirstInput, 1, 1, L,SkipFirstInput〉 //Proceed to skip first input

〈SkipFirstInput, 1, 1, L,SkipFirstInput〉 //Read through first input

/* Make copy of first input */

/* Copy first bit */

〈SkipFirstInput, 0, 0, R,StartCopy〉 //Prepare to copy first input

〈StartCopy, 0, 0, L,Halt〉 //Cannot happen

〈StartCopy, 1, 0, L,SkipSpace〉 //erase bit of first input, proceed to skip to second copy location

〈SkipSpace, 1, 1, L,Halt〉 //Cannot happen

〈SkipSpace, 0, 0, L,FindEmptySpace〉 //Proceed to skip through copies previously made

〈FindEmptySpace, 1, 1, L,SkipThroughCopy〉 //Skip through copy

〈SkipThroughCopy, 1, 1, L,SkipThroughCopy〉

〈SkipThroughCopy, 0, 0, L,FindEmptySpace〉

〈FindEmptySpace, 0, 1, R,ForwardToFirst〉 //Bit is copied, search for double 0 to locate first input

〈ForwardToFirst, 1, 1, R,ForwardToFirst〉

〈ForwardToFirst, 0, 0, R,FindDoubleZero〉

〈FindDoubleZero, 1, 1, R,ForwardToFirst〉

〈FindDoubleZero, 0, 0, R,SkipZeroes〉 //Skip 0’s to first input

〈SkipZeroes, 0, 0, R,SkipZeroes〉

〈SkipZeroes, 1, 1, R, IsEndOfCopy〉 //First input is found, check whether at least two 1’s left

LOGIC I 65

/* Copy next bit */

〈IsEndofCopy, 1, 1, L,DeleteBit〉 //Copy not finished, proceed to delete next bit

〈DeleteBit, 0, 0, L,Halt〉 //Cannot happen

〈DeleteBit, 1, 0, L,FindFirstCopy〉 //Find start of first copy

〈FindFirstCopy, 0, 0, L,FindFirstCopy〉

〈FindFirstCopy, 1, 1, L,SkipThroughCopy〉 //Start to loop

/* Copy finished, reconstitute first input */

〈IsEndOfCopy, 0, 0, L,SkipBit〉 //Copy is finished, skip back to end of first input

〈SkipBit, 0, 0, L,Halt〉 //Cannot happen

〈SkipBit, 1, 1, L,ReenterInput〉 //Reenter input

〈ReenterInput, 0, 1, L,ReenterInput〉

〈ReenterInput, 1, 1, R,CorrectError〉 //Input reentered, go back to delete extra 1

〈CorrectError, 0, 0, R,Halt〉 //Cannot happen

〈CorrectError, 1, 0, R,CountThroughFirst〉 //Read through first input

/* Check second input counter, decrease if not zero */

〈CountThroughFirst, 1, 1, R,CountThroughFirst〉

〈CountThroughFirst, 0, 0, R,SkipZeroesBetween〉 //Skip zeroes between inputs

〈SkipZeroesBetween, 0, 0, R,SkipZeroesBetween〉

〈SkipZeroesBetween, 1, 1, R, IsEndOfSecond〉 //Check whether counter is zero

〈IsEndOfSecond, 1, 1, L,Decrease〉 //Copying not done, proceed to decrease counter

〈Decrease, 0, 0, L,Halt〉 //Cannot happen

〈Decrease, 1, 0, L,FindFirstInput〉 //Now loop

/* Second input counter is zero, delete inputs to finish */

〈IsEndOfSecond, 0, 0, L,DeleteRemainingBit〉 //Delete remaining bit of second input

〈DeleteRemainingBit, 0, 0, L,Halt〉 //Cannot happen

〈DeleteRemainingBit, 1, 0, L,SkipToFirst〉 //Skip 0’s to first input

〈SkipToFirst, 0, 0, L,SkipToFirst〉

〈SkipToFirst, 1, 0, L,DeleteToEnd〉 //Delete first input

〈DeleteToEnd, 1, 0, L,DeleteToEnd〉

〈DeleteToEnd, 0, 0, L,Halt〉 //Done!

7.3. Bigger and better Turing machines. In the previous section, we defined
that a function on the natural numbers is (Turing) computable if it can be computed
by a Turing machine program using the smallest possible alphabet. Does increasing
the size of the alphabet broaden the class of computable functions? It is a first
testament to the robustness of Turing’s definition that indeed it does not. The
addition of more symbols decreases the length and improves the readability of
programs, but it does not affect the computing power. Hardware embellishments
also fail to increase computing power of Turing machines. Turing machines with
multiple tapes, multiple heads, or even a two dimensional tape and a head that
moves up and down as well as right and left, all have the same computational
power. The reason is that all these improvements of software and hardware can be
simulated on the bare bones Turing machine with the minimal alphabet by coding
the extended alphabets and appropriately partitioning the infinite tape. Below we
show how to simulate Turing machines with extended alphabets and multiple tapes.

66 VICTORIA GITMAN

These arguments give the general strategy of how to simulate the other varieties as
well.

Suppose, for the sake of concreteness, that we would like to simulate a Turing
machine program in the extended alphabet Σ′ = {0, 1, a} with a Turing machine
program in Σ. First, we code each of the three symbols of Σ′ by a pair of symbols
in the minimal alphabet Σ = {0, 1}, say, as in the table below:

Symbol Code
0 00
1 10
a 11

Now by viewing every two squares of our tape as a single square, we can simulate
a program P ′ using Σ′ by the program P with just Σ. Each time P ′ needs to
check whether the head is reading a particular symbol on the tape, the program P
would wait for the head to move through two squares, and each time P ′ needs the
head to move left or right, the program P would send it in that direction twice.
So suppose that the tape is prepared with input for program P ′ with some finitely
many symbols from Σ′, as for example, below.

. . . 0 a 0 1 0 0 0 . . .

s

First, we rewrite the input in Σ, using the above coding to obtain the tape below.

. . . 0 1 1 0 0 1 0 0 0 . . .

s

Next, we translate each instruction of program P ′ into several instructions of the
new program P with the alphabet Σ. Suppose, for example, that P ′ contains an
instruction 〈StateA, a, 1, R,StateB〉, letting the head know that when in state StateA and
reading the symbol a, it should write the symbol 1, move right, and switch to state
StateB. The instruction is translated into the list of instructions:

〈StateAread1, 1, 1, R,StateAread2〉 //Check that the next two squares hold a = ‘11′

〈StateAread2, 1, 1, L,StateAwrite1〉

〈StateAwrite1, 1, 1, R,StateAwrite2〉 //Write 1 = ‘10’ instead of a = ‘11’

〈StateAwrite2, 1, 0, R,StateBread1〉

It should be fairly clear that the same translation strategy will work for an alphabet
containing any finite number n of symbols, while coding each symbol by an m-tuple
of Σ-symbols, with m chosen so that n < 2m.

One practical use of an extra symbol in the alphabet is to mark the furthest
locations to the right and and to the left accessed by the head. Suppose that we
are given a program P in the alphabet Σ and we would like to write a program P ′

in the alphabet Σ′ = {0, 1,m}, which carries out the exact same computation as P
but keeps track of the furthest right and left locations on the tape accessed by the
head with the symbol m. The program P ′ begins by writing the symbol m to the
left of the beginning and to the right of the end of the input. Next, it returns the
head to the beginning of the input in the state Start*and we rewrite all instructions

LOGIC I 67

of P involving the Start state using the Start*state. Now suppose that the program
P contains an instruction 〈StateA, r, w,R,StateB〉. We replace this instruction by the following list

of instructions, which has the effect of moving the marker one cell to the right whenever necessary.

〈StateA, r, w,R,StateACheckMarkerRight〉 //Check whether cell to the right contains m

〈StateACheckMarkerRight, 0, 0, L,StateAMoveForward //The cell doesn’t contain m

〈StateAMoveForward, 0, 0, R,StateB〉

〈StateAMoveForward, 1, 1, R,StateB〉

〈StateACheckMarker, 1, 1, L,StateAMoveBack〉 //The cell doesn’t contain m

〈StateACheckMarker,m, 0, R,StateAWriteMarker〉 //Move marker to the right

〈StateAWriteMarker, 0,m, L,StateB〉 //Continue computing

We make a similar replacement for an instruction involving a left movement. Once
the we have marked the furthest locations accessed by the head, we can, for example,
rewrite the output as a contiguous block of 1’s. This is necessary if we want to follow
our program with another program that uses its output as an input, as in the case
of function composition.

The most common extension of the original Turing machine hardware is by the
addition of finitely many parallel running tapes. Such a multi-tape Turing machine
consists of n-many tapes lined up in parallel and a head that can read and write
simultaneously on the vertical row of squares formed by the tapes. Here is what a
3-tape machine hardware looks like.

. . . 0 0 0 0 0 0 0 0 . . . Tape 3

. . . 0 0 0 0 0 0 0 0 . . . Tape 2

. . . 0 0 0 0 0 0 0 0 . . . Tape 1

s

A program for an n-tape Turing machine uses n-tuples in the read and write
slots of its 5-tuple instructions. For example, a program instruction for a 2-tape
Turing machine, 〈StateA, 〈0, 1〉, 〈1, 0, 〉, R,StateB〉, would be letting the head know that if
it is reading 0 on Tape 1 and reading 1 on the Tape 2, then it should write 1 on
Tape 1 and write 0 on Tape 2.

Suppose, for the sake of concreteness that we would like to simulate a program
for a 2-tape Turing machine with a program for the basic Turing machine. First,
we partition the single infinite tape into 2 infinite tapes, Hilbert Grand hotel style,
by viewing every other square of the original tape as the second tape.

. . . t2 t1 t2 t1 t2 t1 t2 t1 t2 . . .

s

Now viewing every other square starting at the initial head position as Tape 1 and
the remaining squares as Tape 2, we can simulate a program P ′ for a 2-tape Turing
machine with the program P for the basic Turing machine. Each time P ′ needs to
check whether the head is reading a particular tuple of symbols on the two tapes,
the program P would wait for the head to move through two squares, and each
time P ′ needs the head to move left or right, the program P would send it in the
same direction twice. So suppose that the tape is prepared with input for program
P ′, as, for example, below.

68 VICTORIA GITMAN

. . . 0 1 1 0 1 0 0 0 . . . Tape 2

. . . 0 1 1 0 1 0 0 0 . . . Tape 1

s

First, we transfer the input to the single tape machine, using alternate squares to
simulate the two tapes.

. . . 0 1 1 1 1 0 0 1 1 0 0 . . .

s

Next, we translate each instruction of program P ′ into several instructions of the
new program P for the basic machine. Suppose, for example, that P ′ contains
an instruction 〈StateA, 〈1, 1〉, 〈1, 0〉, R,StateB〉, letting the head know that when in state
StateA and reading 1 on Tape 1 and 1 on Tape 2, it should write 1 on Tape 1 and
0 on Tape 2, move right, and switch to state StateB. The instruction is translated
into the list of instructions:

〈StateAread1, 1, 1, R,StateAread2〉 //Check for 11

〈StateAread2, 1, 1, L,StateAwrite1〉

〈StateAwrite1, 1, 1, R,StateAwrite2〉 //Write 10 instead of 11

〈StateAwrite2, 1, 0, R,StateBread1〉

It should be fairly clear that the Hilbert Grand Hotel strategy will work for any
finite number of tapes and indeed for the two dimensional Turing machine as well.
In practice, the extra tapes offered by the multi-tape Turing machines are used for
scratch work and storing the results of intermediate computations.

7.4. Arithmetizing Turing Machines. Just as the arithmetization of first-order
logic formed the basis of the Incompleteness Theorems, the seemingly mundane idea
that a program can be coded by a natural number formed the basis of computability
theory and the functioning of the physical computer.

Recall that a Turing machine program consists of 5-tuples 〈s, r, w, d, s′〉 where
s ∈ S (the state set) is the current state, r ∈ Σ is the symbol the head is reading,
w ∈ Σ is the symbol the head should write, d ∈ {L,R} is the direction the head
should move, and s′ is the state the head should transition to. Recall also that a
Turing machine program always has the two special states, Start and Halt, in its
state set. Let us fix the alphabet Σ = {0, 1}. We can assume that the state set
S = {0, . . . , n} for some n ≥ 1, that 0 denotes the Start state, and that 1 denotes
the Halt state. We can also denote the left movement by 0 and the right movement
by 1. Under these assumptions, a Turing machine program consists of 5-tuples
of natural numbers. Each such 5-tuple can be coded by a single natural number
using the extended Cantor’s pairing function and the entire program can then be
coded as a single natural number using the β-function. Since the instructions of
a Turing machine program are not ordered, different ordering of the tuples will
produce different codes for the program. Thus, a Turing machine program can
have (finitely) many different codes.

Suppose that f(x) is a computable function and P is a program that computes f .
If e is some code of P , then we shall say that e is an index of f(x). By augmenting

LOGIC I 69

a program computing f(x) with instructions for states that are never reached, we
can obtain longer and longer programs all computing f(x). Thus, a computable
function f(x) has infinitely many different indices. To make every natural number
the index of some computable function, let us stipulate that any natural number
that does not code a sound program is the index of the empty function. The n-ary

function computed by the program coded by an index e will be denoted by ϕ
(n)
e

18.
Our first use of arithmetization will be to show that every Turing computable

function is Σ1-definable and therefore recursive.

7.5. Turing machines and recursive functions. Before Turing’s introduction
of his Turing machines, the two existing models of computation were Gödel’s recur-
sive functions and Church’s λ-Calculus. Church had used λ-Calculus to obtain a
negative solution to the Entscheidungsproblem just shortly before Turing developed
his ideas. Church also showed that the class of recursive functions was identical
to the class of his λ-definable functions and Turing later showed the Turing com-
putable functions again produced precisely this class. But Turing provided such
a persuasive philosophical justification for his conception of computability that it
was this last equivalence that finally succeeded in convincing Gödel that every al-
gorithmically computable function was recursive. In this section, we prove that the
class of Turing computable functions is identical to the class of Gödel’s recursive
functions.

Theorem 7.6. Every recursive function is Turing computable.

Proof. We already showed that the basic functions are computable. In what follows,
if P is a program in the alphabet Σ, then we will call P ′ the modification of this
program in the alphabet Σ′ = {0, 1,m} which marks the furthest left and right
locations accessed by the head.

Next, we show that the composition of computable functions is computable.
So we suppose that gi(x), for 1 ≤ i ≤ n, are computed by programs Pi and
h(x1, . . . , xn) is computed by program P . Now we argue that the composition
function g(x) = h(g1(x), . . . , gn(x)) is computable. We will work with an n + 1-
tape Turing machine using the alphabet Σ = {0, 1,m}.
Tapes 2, . . . , n + 1 will be used to compute gi(x), while Tape 1 will be used to
compute h(g1(x), . . . , gn(x)). The extra symbol m will be used to mark the furthest
left and right locations accessed by the head in the manner previously described.
So suppose that Tape 1 is prepared with the input x. We start by marking the
square immediately to left of the initial head position on Tape 1 with m. Next,
we copy over the input x to each Tape 2,. . . , Tape n+ 1, and return to the initial
head position. Now, we run the program P ′1 on Tape 2 and whenever P ′1 halts, we
use the markers m to rewrite all remaining 1’s on the tape as a contiguous block
starting at the initial head position, and add an extra 1 to the contiguous block. We
repeat this routine with the remaining programs Pi. Provided that all P ′i halted,
we should now have on Tape i + 1, the value ai + 1, where gi(x) = ai. Next, we
copy the ai over to Tape 1, using the markers m to keep track of our location, and
return the head to the initial head position. Finally, we run the program P on Tape
1 to compute h(a1, . . . , an).

Next, we show that the function obtained by primitive recursion from computable
functions is computable. So suppose that g(x) is computed by program P1 and

18If the superscript is omitted, its value is assumed to be 1.

70 VICTORIA GITMAN

h(x,w, z) is computed by program P2. Now we argue that the function f(x, y)
obtained by primitive recursion such that

f(x, 0) = g(x)
f(x, y + 1) = h(x, y, f(x, y))

is computable. We will work with a 4-tape Turing machine using the alphabet
Σ = {0, 1,m}. We will compute f(x, y) by consecutively computing f(x, n) for all
n ≤ y. Tape 4 will store the input x, y, Tape 3 will store the counter n, and Tape
2 will store f(x, n − 1). The consecutive computations of f(x, n) will take place
on Tape 1. As before, the symbol m will be used to mark the furthest locations
accessed by the head. So suppose that Tape 1 is prepared with the input x, y. We
start by marking the square immediately to the left of the initial head position on
Tape 4 with m. Next, we copy x, y over to Tape 4 and write 1 (to indicate n = 0)
on Tape 3 at the initial head position. Now, we erase y from Tape 1 and run the
program P ′1 to compute f(x, 0) = g(x). In the following iterations of the loop, we
will run the program P ′2 to obtain f(x, n). If f(x, n) halts, we compare the value
on Tape 2 with the value on Tape 4 and halt if they are equal. Otherwise, we
increment the counter on Tape 3. Next, we use the markers m to copy f(x, n) over
to Tape 2 as a contiguous block of 1’s starting at the initial head position, and add
an extra 1 to the contiguous block. At the same time, we erase the computation
of f(x, n) from Tape 1. Now, we prepare Tape 1 with x (copied from Tape 4), n
(copied from Tape 3), and f(x, n) (copied from Tape 2) and loop until n = y.

Next, we show that the function obtained from a computable function using the
µ-operator is computable. So suppose that g(x, y) is computed by program P . Now
we argue that the function f(y) is obtained from g via the µ-operator

f(y) = µx[g(x, y) = 0] =

{
min{x | g(x, y) = 0} if exists,
undefined otherwise,

is computable. We will work with a 3-tape Turing machine using the alphabet
Σ = {0, 1,m}. We will compute f(y) by consecutively computing g(n, y) starting
with n = 0. Tape 3 will store the input y and Tape 2 will store the counter n. The
consecutive computations of g(n, y) will take place on Tape 1. The symbol m will
be used as before. So suppose that Tape 1 is prepared with input y. We start by
marking the square immediately to the left of the initial head position on Tape 3
with m. Next, we copy y over to Tape 3 and write 1 (to indicate n = 0) on Tape 2
at the initial head position. Now, we prepare Tape 1 with the input n followed by
y and run program P ′ to compute g(n, y). If g(n, y) halts, we check whether the
output is equal to 0. If the output is 0, we erase the computation of g(n, y) from
Tape 1, copy over to Tape 1 the value on Tape 2 at the initial head position and
halt. Otherwise, we increment the counter n on Tape 2 and loop. �

Theorem 7.7. Every Turing computable function is recursive.

Proof. We will argue that every computable function is ΣN
1 by defining what it

means for a sequence to witness a Turing computation. Fix an index e coding some
program P with n-many states. We will think of a Turing machine running the
program P as carrying out a single instruction in a single instant of time. At time
t = 0, the machine is in the Start state, and the head is located at the start of the
input. At time t = 1, the first instruction has been carried out, and at time t = n,
the nth-instruction has been carried out. We will think of the snapshot of a Turing

LOGIC I 71

machine taken at time t = n as a total record of the nth-step of the computation.
It will consist of the portion of the tape traversed by the Turing machine since
the start of the operation, the current position of the head, and the current state.
The sequence of consecutive snapshots starting at time t = 0 and obeying the
instructions of P will serve as the witness to a Turing machine computation. A
Turing machine running the program P on input x halts with input y if and only
if there is a witnessing sequence of snapshots, starting with input x on the tape in

state 0 and halting with y on the tape in state 1. The Σ1-definition of ϕ
(m)
e (x) = y

will express that there exists a sequence of snapshots witnessing that P computes
y on input x. Now let us make all these notions precise.

We shall say that s is a sequence of snapshots if all its elements [s]i are triples
〈Ti, Pi, Si〉, where Ti codes a binary sequence and Pi < len(Ti). The element Ti
is intended to represent the used portion of the tape, the element Pi is intended
represent the head position, and the element Si is intended to represent the current
state. Suppose that an index e codes the program P with n-many states. We shall
say that a sequence of snapshots s obeys e if the following list of requirements is
satisfied. If Si = 1 (Halt state), then [s]i+1 = [s]i (once the machine reaches the
Halt state, it remains frozen for all future time instances). Suppose that [Ti]Pi

= r
and P contains the instruction 〈Si, r, w, d, S〉.

(1) ∀i < len(s)Si < n (P has n-states)
(2) P0 is the position of the leftmost 1 in T0 and S0 = 0 (the Start state)
(3) Si+1 = S
(4) if d = 1: (right movement)

(a) Pi+1 = Pi + 1 (head moves right)
(b) if Pi < len(Ti − 1), then len(Ti+1) = len(Ti), [Ti+1]p = [Ti]p for all

p 6= Pi, and [Ti+1]Pi
= w

(c) if Pi = len(Ti − 1), then len(Ti+1) = len(Ti) + 1, [Ti+1]p = [Ti]p for
all p < len(Ti − 1), [Ti+1]Pi = w, [Ti+1]Pi+1 = 0 (extend the tape by
adding a 0-square on the right)

(5) if d = 0: (left movement)
(a) if Pi > 0, then len(Ti+1) = len(Ti), [Ti+1]p = [Ti]p for all p 6= Pi,

[Ti+1]Pi
= w, and Pi+1 = Pi − 1

(b) if Pi = 0, then len(Ti+1) = len(Ti) + 1, [Ti+1]p+1 = [Ti]p for all 1 <
p < len(Ti), [Ti+1]1 = w, [Ti+1]0 = 0, and Pi+1 = 0 (extend the tape
by adding a 0-square on the left)

Thus, ϕ
(m)
e (x) = y if and only if there exists a sequence of snapshots obeying

e of some length n with x on T0, y on Tn−1, and Sn−1 = 1. Clearly this is a
Σ1-definition. �

7.6. Universal Turing Machine. An inherent flaw of any physical computing
devise modeled on the Turing machine is that it would have to be, in some sense,
‘rewired’ each time it runs a different program. This devise wouldn’t even be able
to function as a calculator simultaneously for both addition and multiplication.
That same flaw had probably, since the time of Leibniz, prevented human beings
from building a computing devise. Thus, it was one of Turing’s most remarkable
realizations that a single program, the Universal Turing Machine (UTM), could
simulate any other program, meaning that a Turing machine wired to run the
UTM would be a universal computer for all other computable functions! The

72 VICTORIA GITMAN

modern computer is modeled on the von Neumann stored program architecture
which owes its conception to the UTM. The UTM takes an input (e, a) and outputs

ϕ
(n)
e ([a]0, . . . , [a]n−1), where n = len(a). The existence of the UTM follows almost

immediately from the witnessing sequence of snapshots concept developed in the
previous section.

Theorem 7.8. There exists a Universal Turing Machine.

Proof. By Theorem 7.6, it suffices to show that the UTM is ΣN
1 . Given an index

e and a sequence of inputs a, the program P coded by e returns y on the inputs
coded by a if and only if there exists a sequence of snapshots of length n obeying
e with x on T0, y on Tn−1, and Sn−1 = 1. �

8. The Recursion Theorem

With the arithmetization of Turing machine programs, we get a computability
theoretic analogue of Gödel’s Diagonalization Lemma, known as the Recursion
Theorem. The Recursion Theorem, due to Stephen Kleene from 1938, states that
for any total computable function f(x), there is an index e such that the program
coded by e and and the program coded by f(e) compute the same function.

Theorem 8.1 (Recursion Theorem). Suppose that f(x) is a total computable func-
tion. Then there is e ∈ N such that ϕe = ϕf(e).

Proof. The proof of the Recursion Theorem is identical to the proof of the Diagonal-
ization Lemma, using indices in place of Gödel-numbers and computable functions
in place of first-order formulas. Let us define a function h(x) which on input x,
computes the code of the following program P . The program P on input z first
computes ϕx(x). If ϕx(x) ↓= a, then P runs the program coded by a on input z.
Thus, whenever ϕx(x) is defined, we have that

ϕh(x) = ϕϕx(x).

The function h is clearly total computable. Now consider the composition f(h(x)),
which is a computable function and must therefore have an index e′. Let e = h(e′).
Since e′ is the index of a total computable function, we have that

ϕe = ϕh(e′) = ϕϕe′ (e
′) = ϕf(h(e′)) = ϕf(e).

�

Example 8.2. There are index sets e such that:

(1) ϕe = ϕ2e

(2) ϕe = ϕe+1

(3) ϕe = ϕ2e

A generalized version of the Recursion Theorem will appear in the homework.
Arguably, one of the most used consequences of the Recursion Theorem is that

any 2-ary computable function f(x, y) can guess an index for one of its projections.

Lemma 8.3. If f(x, y) is a computable function, then there is a total computable
function g(x) such that f(x, y) = ϕg(x)(y).

LOGIC I 73

Proof. The function g(x) should, on input a, compute an index of the projection

f(a, y). Suppose that f(x, y) = ϕ
(2)
e (x, y) and the index e codes the program P .

The function g(x) on input a computes the code of a program which on input y
writes a followed by y on the tape, places the head at the start of the input, and
runs program P . �

A generalized version of Lemma 8.3 is known as the s-m-n-Theorem and will appear
in the homework.

Theorem 8.4 (Guessing Theorem). If f(x, y) is a computable function, then there
is an index e such that ϕe(y) = f(e, y).

Proof. Let g(x) be the total computable function from the proof of Lemma 8.3 for
f(x, y). Then by the Recursion Theorem, there is an index e such that ϕe = ϕg(e).
It now follows that f(e, y) = ϕg(e)(y) = ϕe(y). �

We will soon encounter some remarkable applications of the Guessing Theorem.

8.1. Examples of non-computable sets. In the same way that arithmetization
of first-order logic gives formulas the ability to reason about properties of formulas,
the arithmetization of Turing machines makes it possible for algorithms to analyze
properties of algorithms. When presented with a property of computable func-
tions, we can inquire whether it is computable to determine that a function with
a given index has this property. Unfortunately, for most interesting properties of
computable functions, the set of all indices of functions having that property is not
itself computable. The non-computability of a large class of such properties follows
from Rice’s Theorem, due to Henry Rice from 1951.

Suppose that A is a set of unary computable functions. We shall say that the
index set of A is the set A = {e | ϕe ∈ A} of all indices of members of A.

Example 8.5. Here are some examples of index sets:

(1) Tot = {e | ϕe is total}
The set Tot is at most ΠN

2 because it is defined by the formula

δ(e) := ∀n∃s sequence of snapshots witnessing ϕe(n) ↓.
(2) K1 = {e | ∃nϕe(n) ↓}

The set K1 is at most ΣN
1 because it is defined by the formula

δ(e) := ∃n∃s sequence of snapshots witnessing ϕe(n) ↓.
(3) Fin = {e | ϕe has a finite domain}

The set Fin is at most ΣN
2 because it is defined by the formula

δ(e) := ∃n∀s∀m > ns does not witness that ϕe(m) ↓.
(4) Z = {e | ϕe(x) = 0}

The set Z is at most ΠN
2 because it is defined by the formula

δ(e) := ∀n∃s sequence of snapshots witnessing ϕe(n) = 0.

(5) S = {e | ∃xϕe(x) = 0}
The set S is at most ΣN

1 because it is defined by the formula

δ(e) := ∃n∃s sequence o snapshots witnessing ϕe(n) = 0.

Observe that not every subset of N is an index set because an index set I must
have the property that whenever e ∈ I and ϕe = ϕe′ , then e′ ∈ I.

74 VICTORIA GITMAN

Theorem 8.6 (Rice’s Theorem). If A is an index set such that A 6= ∅ and A 6= N,
then A is not computable.

By Rice’s Theorem, none of the sets from Example 8.5 are computable!

Proof. Suppose that A is an index set such that e ∈ A and e /∈ A. Suppose towards
a contradiction that A is computable. Consider the function h(x, y) which returns
ϕe(y) if x ∈ A and ϕe(y) otherwise. Since we assumed that A is computable, the
function h(x, y) is computable as well. Thus, by Lemma 8.4, there is an index e′

such that ϕe′(y) = h(e′, y). Since e′ is an index, it must be that either e′ ∈ A or
e′ /∈ A. If e′ ∈ A, then ϕe′(y) = h(e′, y) = ϕe(y) and e /∈ A. If e′ /∈ A, then
ϕe′(y) = h(e′, y) = ϕe(y) and e ∈ A. Thus, we have reached a contradiction,
showing that A is not computable. �

Rice’s Theorem still leaves open the possibility that interesting properties of in-
dices that are not translatable into properties of index sets are computable. For
instance, we could ask whether we can compute the domain of a given function.
More generally, we can ask whether there is a uniform algorithm for computing the
domain a function from its index. In the parlance of computer science, this trans-
lates into asking whether there is an algorithm capable of analyzing the structure
of an arbitrary program to determine if it enters into an infinite loop on a given
input. Consider the Halting Problem set H = {〈e, y〉 | ϕe(y) ↓}. Observe that set
H is clearly ΣN

1 since 〈e, y〉 is in H if and only if there is a sequence of snapshots s of
length n obeying e with y on T0 and Sn−1 = 1. We can also consider the diagonal
of H, which is the set K = {e | ϕe(e) ↓}. Are the sets H and K computable? First,
we observe that K is not an index set and so its computability is not immediately
ruled out by Rice’s Theorem.

Theorem 8.7. The set K is not an index set.

Proof. Recall that the defining property of index sets is that whenever an index e
is in it and ϕe = ϕe′ , then e′ must be in it as well. Thus, it suffices to produce a
function ϕe = ϕe′ such that ϕe(e) ↓ halts, but ϕe′(e

′) ↑. First, observe that there
is a computable function f(x) which on input x outputs an index of a computable
function with domain {x}. By the Recursion Theorem, there is an index e such
that ϕe = ϕf(e). Thus, the domain of ϕe is the same as the domain of ϕf(e), which
is by definition {e}, and so ϕe(e) ↓ halts. But for any other index e′ such that
ϕe = ϕe′ , we have that ϕe′(e

′) ↑. �

Theorem 8.8. The sets H and K are not computable.

Proof. It suffices to show that K is not computable. Suppose towards a contradic-
tion that K is computable. Consider the program P which on input (x, y), first
checks whether x ∈ K holds. If x ∈ K, then P goes into an infinite loop and if
x /∈ K, then P outputs 1. Let f(x, y) be the function computed by P . By the
Guessing Theorem, there is an index e such that ϕe(y) = f(e, y). Thus, we have
that ϕe(e) = f(e, e). First, suppose that ϕe(e) ↓. Then, by definition, f(e, e) ↑.
Next, suppose that ϕe(e) ↑. Then, by definition, f(e, e) ↓. Thus, we have reached
a contradiction showing that K cannot be computable. �

In particular, it follows that the sets H and K are not ΠN
1 .

Even though there is no uniform algorithm to determine the domain of a com-
putable function from its index, it is still possible that there are such algorithms for

LOGIC I 75

specific computable functions. We will denote the domain of a computable function
ϕe by We and if We is computable, we shall say that the Halting problem for ϕe is
decidable.

Corollary 8.9. The Halting problem for the UTM is not decidable.

Proof. Let D = {〈e, a〉 | UTM halts on (e, a)}. Then we have that 〈e, x〉 ∈ H if
and only if 〈e, 〈y〉〉 ∈ D. Thus, if D was computable, then H would be computable
as well. �

In Section 3, we introduced the µ-operator on functions. For a function f(x, y),
we defined that µx[f(x, y) = 0](y) is the least x, if it exists, such that f(x, y) = 0,
and is undefined otherwise. The subtle requirement on the µ-operator is that we
consider x to be least only provided that f(z, y) exists for all z < x. It turns out
that this requirement is indeed necessary because otherwise computable functions
are not closed under the µ-operator. For a counterexample, consider the function

f(x, y) =

{
0 if x 6= 0 ∨ (x = 0 ∧ y ∈ K),
undefined otherwise.

Let us argue that f(x, y) is computable. Suppose we are given an input (x, y). If
x 6= 0, we output 0. If x = 0, we run ϕy on input y, and if it halts, we output
0. Now consider the function g(y) defined to be the least x such that f(x, y) = 0,
where we allow that f(z, y) is undefined for z < x. We shall argue that g(y) is
the characteristic function of the complement of K. Suppose that n ∈ K. Then
f(0, n) = 0, and so g(n) = 0. Next, suppose that n /∈ K. Then f(0, n) is undefined,
but f(1, n) = 0. So g(y) = 1. Thus, the alternative version of the µ-operator takes
us outside the realm of computable functions!

8.2. On the Entscheidungsproblem. In this section, we use the fact that the
domain of the UTM is not computable to show that the Entscheidungsproblem
has a negative solution. Let us say that a theory T is decidable if the set of Gödel-
numbers of its theorems is computable. It will be an easy corollary of our argument
for the negative solution to the Entscheidungsproblem that PA is not decidable.

Theorem 8.10. The set of Gödel-numbers of logical validities in the language LA
is not computable.

Proof. Let e′ be an index of the UTM, meaning that it is computed by the function

ϕ
(2)
e′ . Given e, a ∈ N, consider the sentence ψe,a expressing that there exists a

sequence of snapshots s of length n obeying e′ with [a]0, . . . , [a]len(a)−1 on T0 and

Sn−1 = 1. Let ψPA− be the sentence that is the conjunction of the PA− axioms.

We will argue that ϕ
(2)
e′ (e, a) ↓ if and only if ψPA− → ψe,a is a logical validity.

First, suppose that ψPA− → ψe,a is a logical validity. It follows, in particular,

that N |= ψPA− → ψe,a, and so N |= ψe,a. Thus, ϕ
(2)
e′ (e, a) ↓. Next, suppose

that ϕ
(2)
e′ (e, a) ↓ and let s be a witnessing sequence of snapshots. Since it is ∆0-

expressible that s is such a witnessing sequence, every model M |= PA− agrees
that s witnesses ψe,a. Thus, ψPA− → ψe,a is a logical validity. It follows that if
we could compute the set of Gödel-numbers of logical validities, we could compute
the domain of the UTM, which is impossible. A crucial fact used in the argument
was that there is a true finite theory, namely PA−, all of whose models have N as
a ∆0-elementary submodel. �

76 VICTORIA GITMAN

Theorem 8.11. Peano Arithmetic is not decidable.

Proof. Using the notation of the proof of Theorem 8.10, we have that ϕ
(2)
e′ (e, a) ↓

if and only if ψe,a is a theorem of PA. �

It follows in particular, that the set ThmPA consisting of the Gödel-numbers of
PA-theorems is ΣN

1 but not ΠN
1 , and so the relation PrPA(x) is not ΠN

1 .

8.3. Computably enumerable sets. In the previous sections, we encountered
sets K, H, and ThmPA that are ΣN

1 but not ΠN
1 . Such sets and their generalizations

are fundamental to the theory of computability. In this section, we will explore
some of their general properties.

We define that A ⊆ N is computably enumerable if A is the range of some
computable function f(x). Indeed, a set is computably enumerable if and only if
there is a Turing machine program which prints out the members of the set on the
Turing machine tape (starting at the initial head position) in no particular order.
Suppose that A is the range of a function f(x) computed by program P . Naively,
we would like to print out members of A by first computing f(0) and printing the
result, next computing f(1) and printing the result, etc. But since the function
f(x) is potentially partial, such a program could fail to list out A because it might
get caught up in an infinite loop in the process of computing one of the f(n). The
solution is to have a printing program Q which runs the following loop controlled by
the counter n. During each iteration of the loop, the program Q takes the counter
value n and decodes it into n = 〈m, l〉. Then it runs the program P on input m for
l many steps. If the computation halts, then the program Q prints out the result
and otherwise it prints nothing. The program Q then increments the counter and
loops. Now suppose that a program P prints out the set A on the Turing machine
tape. Let us define f(x) to be the xth-element printed by P . Then f(x) is clearly
a computable function and it is moreover total. Thus, we can assume without
loss of generality that a set is computably enumerable if it is the range of a total
computable function.

Theorem 8.12. A set is computably enumerable if it is the range of a total com-
putable function.

In fact, if a computably enumerable set is infinite, then it has a computable enu-
meration!

Theorem 8.13. An infinite set is computably enumerable if and only if it is the
range of a total one-to-one computable function.

Proof. Suppose that A is computably enumerable and fix a total computable f(x)
such that A is the range of f . Let us inductively define a function g(x) such that
g(n) = f(m) where m is least such that f(m) 6= g(k) for all k < n. The function
g(x) is clearly computable. It is one-to-one by construction and must have the same
range as f(x). �

Observe that if a set is computably enumerable, then the longer the Turing ma-
chine printing it runs, the more members of the set become known, but we can never
rule out that a given element is a member of the set because it might always appear
at some later time. Computably enumerable sets have many equivalent character-
izations, in particular, they are precisely the Halting problem sets of computable
functions, We, and precisely the ΣN

1 -sets.

LOGIC I 77

Theorem 8.14. The following are equivalent for a set A ⊆ N:

(1) A is computably enumerable,
(2) A is ΣN

1 ,
(3) A = We for some e ∈ N.

Proof.
(1)→ (2) : Suppose that A is computably enumerable and fix a computable function
f(x) such that A is the range of f . Let f be defined by the Σ1-formula ψ(x, y).
Then A is defined by the formula

ϕ(x) := ∃zϕ(z, x).

(2) → (3) : Suppose that A is defined by the Σ1-formula ϕ(x) := ∃zψ(x, z) with
ψ(x, z) a ∆0-formula. Define f(x) := µz[ψ(x, z)] and let e be an index of f . Then
A = We.
(3) → (1) : Suppose that A = We for some index e and that e codes the program
Q. Consider the program P , which on input n decodes n = 〈k, l〉 and runs the
program Q for l-many steps on input k. If Q halts in l-many steps, the program P
outputs k. Clearly the program P computes a function whose range is A. �

Corollary 8.15. A subsets of the natural numbers is computable if and only if it
and its complement are both computably enumerable.

Proof. We showed earlier that computable sets are precisely the ∆N
1 -sets. Thus,

every computable set is computably enumerable. Now suppose that both a set and
its complement are computably enumerable. Then both are ΣN

1 and hence the set
itself is ∆N

1 . �

Thus, the computably enumerable sets that are not computable are precisely the
ΣN

1 -sets that are not ΠN
1 .

8.4. Oracle Turing Machines and Relative Computability. There are con-
tinuum many subsets of the natural numbers, but only countably many of these are
computable. This is because there are countably many Turing machine programs
and each such program can compute the characteristic function of at most one
set. Similarly there are only countably many computably enumerable sets. More
generally, since there are countably many formulas, there are only countably many
sets that are definable over the natural numbers. Thus, almost all subsets of N are
not even definable, let alone computable. Although it may not appear to be the
case at the outset, the subject of computability theory is concerned mainly with
all these other subsets of N. Computability theory studies the information content
of sets and the resulting structure that such considerations create on the powerset
of the natural numbers. Informally, the information content of a set consists of
a description of what can be computed from it. Let us suppose that a computer
is given unrestricted access to a magical oracle for some non-computable set A,
for instance, the Gödel-numbers of all PA-theorems. In the course of running a
program, the computer can query the oracle about whether a given number is an
element of A and use the resulting answer in the computation. The collection of
all sets computable by the oracle-endowed computer describes the informational
content of A. This notion of relative computability was invented by Turing and he
modeled it with his oracle Turing machines.

78 VICTORIA GITMAN

An oracle Turing machine possess all the hardware of a standard Turing machine
along with the ability to, on request, count the number of 1’s currently on the tape
and query the oracle whether that number is in it or not. A program for an oracle
Turing machine has a new 4-tuple instruction type 〈s, r, syes, sno〉, called the query
instruction. The query instruction dictates that a machine in state s and reading
the symbol r should count the number of 1’s already on the tape. If that number
n is in the oracle set, then the machine should transition to the state syes and
otherwise to the state sno. An oracle Turing machine program is independent of
any particular oracle, but will mostly likely produce different results when run on
a machine with access to different oracles. Suppose that A ⊆ N. We shall say that
an oracle program P using oracle A computes a function f(x) if for every m in N,
we have f(m) = n if and only if P halts on input m with output n. We shall say
that a function f(x) is A-(Turing) computable if there is an oracle program which
computes it using A. We shall say that a set is A-computable if its characteristic
function is A-computable and we shall say that it is A-computably enumerable if it
is the range of an A-computable function. Natural number codes of oracle programs
can be computed similarly as for standard Turing programs. If e codes an oracle
program and A ⊆ N, then we shall denote by ΨA

e (x) the A-computable function
computed by P . If A is not computable, what are some examples of non-computable
functions that are A-computable?

Example 8.16. Suppose that A ⊆ N.

(1) The characteristic function χA of A is A-computable.
The program P computing χA on input n queries the oracle as to whether
n ∈ A. If the answer is yes, it outputs 1 and 0 otherwise.

(2) The characteristic function χA of the complement A of A is A-computable.
The program P computing χA on input n queries the oracle as to whether
n ∈ A. If the answer is yes, it outputs 0 and 1 otherwise.

Example 8.17. The characteristic function of the Halting Problem setH is ThmPA-
computable.

In the previous sections we saw that the class of computable functions was iden-
tical to the class of recursive functions and the class of ΣN

1 -functions. We also
showed that the computable sets were precisely the ∆N

1 -sets and the computably
enumerable sets were precisely the ΣN

1 -sets. Such equivalent characterizations exist
for the A-computable functions as well. We define the class of A-recursive functions
as the smallest class containing the basic functions together with the characteristic
function of A and closed under the operations of composition, primitive recursion,
and the µ-operator. Let LAA be the language of arithmetic expanded by a single
unary relation A and consider the LAA-structure 〈N,+, ·, <,A, 0, 1〉 where the ad-
ditional relation A is interpreted by the set A. Let us say that a function f(x) is

Σ
〈N,A〉
n , Π

〈N,A〉
n , or ∆

〈N,A〉
n , if it is definable by a Σn, Πn, or a ∆n(N)-formula over the

expanded structure 〈N,+, ·, <,A, 0, 1〉. It turns out that the class of A-computable
functions is precisely the class of A-recursive functions and precisely the class of

Σ
〈N,A〉
1 -functions. The A-computable sets are again precisely the ∆

〈N,A〉
1 -sets and

the A-computably enumerable sets are precisely the Σ
〈N,A〉
1 -sets. More generally,

all results we encountered in the previous sections extend seamlessly to relative
computability.

LOGIC I 79

8.5. The Turing Universe. Suppose that A,B ⊆ N. Let us define that:

(1) A ≤T B if A is B-computable,
(2) A ≡T B if A ≤T and B ≤T A,
(3) A <T B if A ≤T B, but B �T A.

The relation A ≤T B is known as the Turing reducibility relation because we imag-
ine that we are reducing the problem of computing A to the problem of computing
B. We interpret the statement A ≡T B to mean that A and B have the same
informational content and we interpret the statement A <T B to mean that B has
strictly more informational content than A.

Example 8.18. If A ⊆ N is computable and B ⊆ N, then A ≤T B.

Example 8.19. If A ⊆ N is ΣN
1 or ΠN

1 , then A ≤T H.
Suppose that A is ΣN

1 . Then A = We for some function ϕe(x). Thus, n ∈ A if and
only if 〈e, n〉 ∈ H. Now suppose that A is ΠN

1 , then the complement of A is ΣN
1 and

so is H-computable. But then A is H computable as well.

Example 8.20. If A ⊆ N is computable, then A <T H.

Example 8.21. We have that ThmPA ≡T H.
Our previous arguments show that H ≤T ThmPA. Also, since ThmPA is com-
putably enumerable, we have that ThmPA ≤T H.

Example 8.22. We have that K ≡T H.
Clearly K ≤T H. So it remains to argue that H ≤T K. Let f(x) be a function
which on input x = 〈e, n〉 outputs an index e′ such that if ϕe(n) = a, then ϕe′ is
the constant function a and if ϕe(n) ↑, then ϕe′(x) ↑ for all x. Clearly f(x) is total
computable. Now to determine whether 〈e, n〉 ∈ H, we check whether f(e) ∈ K.

Example 8.23. We have that K1 ≡ H.
Since K1 is computably enumerable, we have K1 ≤T H. So it remains to argue that
H ≤T K1. Let f(x) be as in the example above. To determine whether 〈e, n〉 ∈ H,
we check whether f(e) ∈ K1.

Example 8.24. We have that Z ≡T Tot.
First, we show that Tot ≤T Z. Let f(x) be a function which on input e outputs an
index e′ such that if ϕe(n) ↓, then ϕe′(n) = 0 and if ϕe(n) ↑, then ϕe′(n) ↑. Now
to determine whether e ∈ Tot, we check whether f(e) ∈ Z. Next, we show that
Z ≤T Tot. Let g(x) be a function which on input e outputs an index e′ such that
if ϕe(n) = 0, then ϕe′(n) = 0, if ϕe(n) 6= 0, then ϕe′(n) ↑, and if ϕe(n) ↑, then
ϕe′(n) ↑. Now to determine whether e ∈ Z, we check whether f(e) ∈ Tot.

Example 8.25. We have that Fin ≡T Tot.
First, we show that Fin ≤T Tot. Let f(x) be the function which on input e outputs
the code e′ of the following program P . On input 0, the program P searches for
the least n = 〈k, l〉, where ϕe(k) ↓ in l-many steps. If it finds such n, it outputs
k. On input 1, the program P searches for the least n0 = 〈k0, l0〉, where ϕe(k0) ↓
in l0-many steps, and then for the least n = 〈k, l〉 > n0 such that k 6= k0 and
ϕe(k) ↓ in l-many steps. If it finds such n, it outputs k. It should now be clear
what P does on an arbitrary input m. It remains to observe that the domain of ϕe
is infinite if and only if ϕf(e) is total. Next, we show that Tot ≤T Fin. Let f(x)
be the function which on input e outputs the index e′ such that ϕe′(n) = 1 if all

80 VICTORIA GITMAN

ϕe(0), . . . , ϕe(n) halt and ϕe(n) ↑ otherwise. It remans to observe that e ∈ Tot if
and only if f(e) /∈ Fin.

Lemma 8.26. The Turing reducibility relation ≤T is transitive.

Proof. Suppose that A ≤T B and B ≤T C. Then there is a program P which
computes the characteristic function χA of A using oracle B and a program Q
which computes the characteristic function χB of B using oracle C. The program
P ′ to compute χA using oracle C runs program P until it comes time to query
the oracle. At this point instead of querying the oracle about whether n ∈ B, the
program P ′ runs the program Q to determine whether n ∈ B. �

Corollary 8.27. The relation ≡T is an equivalence relation on the subsets of N.

Proof. The relation ≡T is reflexive since we already argued that A ≤T A for every
A ⊆ N. The relation ≡T is obviously symmetric, and it is transitive by Lemma 8.26.

�

Suppose that A ⊆ N. We shall call the equivalence class [A]T of A, the Turing
degree of A and also denote it by a = deg(A). Let D be the collection of all Turing
degrees. This is the Turing Universe! Since each degree is countable, the collection
D has size continuum. The collection D comes with the obvious partial order ≤
induced on the equivalence classes by ≤T . The degree 0 of all computable sets is
the least Turing degree and any other degree has at most countably many other
degrees below it. Thus, in particular, there is no greatest Turing degree. Are there
incomparable degrees? Yes! A theorem of Post and Kleene says D is not linearly
ordered. In fact, every countable partial order can be embedded in D! There are
even incomparable degrees of computably enumerable sets!

Lemma 8.28. Every two degrees {a, b} have a least upper bound degree.

Proof. Suppose that A ∈ a and B ∈ b. Define the set A⊕ B so that n ∈ A if and
only if 2n ∈ A ⊕ B and n ∈ B if and only if 2n + 1 ∈ A ⊕ B. Clearly A,B are
computable from A⊕B, but also if A ≤T C and B ≤T C, then A⊕B ≤T C. Thus,
a⊕ b = deg(A⊕B) is the least upper bound for {a,b}. �

Suppose that A ⊆ N. We define the jump of A to be A′ = {〈n, e〉 | ψAe (n) ↓}, the
Halting Problem set for sets computable from A. Inductively, we define the n+1th-
jump of A to be A(n+1) = (A(n))′. Identical arguments to those made in the
computable case show that A′ is A-computably enumerable, every A-computably
enumerable set is Turing reducible to A′, and A <T A′. Returning back to the
Turing Universe D, we note that the jump operation respects equivalence classes.

Lemma 8.29. Suppose that A,B ⊆ N. If A ≡T B, then A′ ≡T B′.
Proof. Suppose that A ≤T B. Then there is a program P which computes the
characteristic function χA of A using oracle B. We describe the program Q which
performs the following action on input 〈e, n〉. Suppose that e codes the program p
for an oracle Turing machine. First, Q computes the index e′ coding the program
p′ which instead of querying the oracle, runs program P and acts on its output.
The result is that ψAe = ψBe′ . Now Q computes whether 〈n, e〉 ∈ A′ by checking
whether 〈n, e′〉 ∈ B′. �

Thus, it makes sense to talk about the jump a′ of a Turing degree a, and more
generally about the nth-jumpt a(n).

LOGIC I 81

Corollary 8.30. The collection D has a strictly increasing ω-chain.

Proof. Consider the increasing chain: 0 < 0′ < 0′′ < · · · < 0(n) < · · · . �

We end with the connection of the jump hierarchy to the arithmetic hierarchy.
We showed in the previous sections that a set A ⊆ N is computable if and only if
it is ∆N

1 and it is computably enumerable if and only if it is ΣN
1 . More generally, it

holds that:

Theorem 8.31.

(1) A set A ⊆ N is computable in 0(n) if and only if it is ∆N
n+1.

(2) A set A ⊆ N is ΣN
n+1 if and only if it is computably enumerable in 0(n).

Proof. It will suffice to verify item (1) for n = 1. So suppose first that A is

computable in 0′. Then by our previous observation A is ∆
〈N,0′〉
1 . Thus, there is

a Σ1-formula in the language with the predicate for 0′ which defines A over N.
But since 0′ is itself ΣN

1 , it follows that we can translate this definition of A into
at worst a Σ2-definition in LA. Thus, A is ΣN

2 , and the argument that A is ΠN
2

is similar. Now suppose that A is ∆N
2 . Let us fix a Σ2-formula δ(x) := ∃yϕ(x, y),

where ϕ(x, y) is Π1, defining A. Since ϕ(x, y) is Π1, the set it defines is computable
from 0′, and therefore this definition translates into a Σ1-definition in the language
expanded by a predicate for 0′. Using a similar argument for the Π2-definition of
A, we conclude that A is computable from 0′. �

Corollary 8.32. A subset of N is definable if and only if it is computable in some
0(n).

8.6. Scott sets. In 1962, several years before the concept of a standard system
was introduced into models of PA, Dana Scott considered collections of subsets
of N represented in a given model of PA and arrived at the notion of what later
became known as a Scott set. A Scott set X is a non-empty collection of subsets of
N having the following three properties:

(1) X is a Boolean algebra.
(2) If T ∈ X codes an infinite binary tree (via the β-function coding), then

there is B ∈ X coding an infinite branch through T .
(3) If A ∈ X and B ≤T A, then B ∈ X.

Put succinctly, Scott sets are Boolean algebras of subsets of N that are closed under
branches through binary trees and under relative computability.

Once the concept of a standard system was introduced, Scott’s work was reinter-
preted to show that every standard system is a Scott set and that quite remarkably
every countable Scott set is the standard system of a model of PA. Thus, Scott
sets turned out to be precisely the standard systems of countable models of PA!

Theorem 8.33. Suppose that M |= PA is nonstandard. Then SSy(M) is a Scott
set.

Proof. We already showed in Section 2 that SSy(M) is a Boolean algebra and
that whenever it contains a binary tree, it must contain a branch through that
tree. Thus, it remains to show that standard systems are closed under relative
computability. So suppose that A ∈ SSy(M) and B ≤T A. Let ψAe compute the

82 VICTORIA GITMAN

characteristic function of B using A as an oracle. Let a ∈ M such that n ∈ A if
and only if (a)n 6= 0. Consider the following formula

δ(x, a) := ∃s sequence of snapshots witnessing that ψae (x) = 1.

By the notation ψae , we mean that the query instruction is carried out by checking
whether (a)n 6= 0. We claim that the intersection of the subset of M defined by
δ(x, a) with N is precisely B. First, suppose that M |= δ(n, a). We know that �

Before we show the converse of Theorem 8.33 for countable Scott sets, we will
prove the following lemma. Suppose that L is a first-order language. We shall say
that the grammar of L is computable if all relations and functions involved in the
arithmetization of L are computable.

Lemma 8.34. Suppose that X is a Scott set, L is some first-order language, and
T is an L-theory. If the set T of Gödel-numbers of sentences of T is in X and
the grammar of L is computable, then X contains a set of Gödel-numbers of some
consistent completion of T .

Proof. Just as in the proof of Theorem 4.20, we argue that there is a T -computable
binary tree whose branches code consistent completions of T . �

Theorem 8.35. Every countable Scott set is the standard system of a model of
PA.

Proof. Suppose that X is a countable Scott set and enumerate X = {An | n ∈ N}.
Let L′A be the first-order language consisting of LA together with countably many
constants {an | n ∈ N} and let L be the first-order language consisting of L′A
together with countably many constants {c(i)n | n, i ∈ N}. Let us code L as follows.
The logical symbols of LA will be coded by pairs 〈0, i〉, the variables will be coded
by pairs 〈1, i〉, the constants {an | n ∈ N} will be coded by pairs 〈2, i〉, and finally,

the constants c
(i)
n will be coded by pairs 〈4 + n, i〉. Let S be the theory consisting

of PA together with the countably many sentences⋃
n∈N
{(an)j 6= 0 | j ∈ An} ∪ {(an)j = 0 | j /∈ An}.

We will use the constants c
(i)
n as Henkin constants to build a complete consistent

L-theory with the Henkin property extending S whose Henkin model will have
precisely X as the standard system.

Let us make the convention that whenever T is a theory, we shall call T the set
of Gödel-numbers of sentences of T . Let T0 be the theory PA and observe that since
PA is computable, we have that T 0 ∈ X. Let T ′0 be the theory T0 together with

sentences {(a0)j 6= 0 | j ∈ A0}∪{(a0)j = 0 | j /∈ A0} and observe that T
′
0 ∈ X since

it is A0-computable. Next, viewing T ′0 as a theory in the language LA∪{a0}, we let

T ′′0 be T ′0 together with all the Henkin sentences, using the constants {c(0)
n | n ∈ N}.

Clearly T
′′
0 is T

′
0-computable and hence in X. Finally, we let S0 be some consistent

completion of T ′′0 in the language LA ∪ {a0} ∪ {c(0)
n | n ∈ N} such that S0 ∈ X.

Following this pattern, we define Sn for n ∈ N and let S =
⋃
n∈N Sn. Since S

is by construction a consistent complete Henkin theory, we let M |= PA be the
Henkin model constructed from S. By construction, we have that X ⊆ SSy(M).
So it remains to argue that SSy(M) ⊆ X. Fix A ∈ SSy(M) and a ∈ M such that

LOGIC I 83

(a)n 6= 0 if and only if n ∈ A. Since M is a Henkin model, we have that a is some

constant c
(i)
n . But then the set of sentences {(a)n 6= 0 | n ∈ N} is already decided

by the theory Si. Now, since Si ∈ X, it follows that {n | (a)n 6= 0} ∈ X as well.
This completes the proof that SSy(M) = X. �

The proof method of Theorem 8.35 cannot be extended in an obvious way to
uncountable Scott sets because the theory S obtained after the first countably many
stages need not be an element of X.

Question 8.36 (Scott’s Problem). Is every Scott set the standard system of a
model of PA?

Using a construction that involves unioning elementary chains of models of PA,
Julia Knight and Mark Nadel extended Scott’s Theorem to Scotts set of size ω1,
the first uncountable cardinal.

Theorem 8.37 (Knight, Nadel, 1982). Every Scott set of size ω1 is the standard
system of a model of PA. Thus, if the Continuum Hypothesis holds, then every
Scott set is the standard system of a model of PA.

Scott’s problem remains one of the most important and fascinating open ques-
tions in the subject of models of PA.

8.7. Homework.

Question 8.1. Write a Turing machine program to compute truncated subtraction.

Question 8.2. Write a Turing machine program to compute the characteristic
function of the set of even numbers.

Question 8.3. Show that the sets represented in PA are precisely the computable
sets.

Question 8.4. (Generalized Recursion Theorem) Show that if f(x, y) is total com-
putable, then there exists a total computable function k(y) such that ϕf(k(y),y) =
ϕk(y).

Question 8.5. Let us say that a function f : N → N is strictly increasing if
n < m→ f(m) < f(n). Show that a set is computable if and only if it is the range
of an increasing computable function.

Question 8.6. Show that every infinite computably enumerable set contains an
infinite computable subset.

References

[AZ97] Zofia Adamowicz and Pawe l Zbierski. Logic of mathematics. Pure and Applied Math-
ematics (New York). John Wiley & Sons Inc., New York, 1997. A modern course of
classical logic, A Wiley-Interscience Publication.

[Coo04] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton, FL, 2004.
[Kay91] Richard Kaye. Models of Peano arithmetic, volume 15 of Oxford Logic Guides. The

Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications.
[Mil] Arnold Miller. Introduction to mathematical logic. http://www.math.wisc.edu/~miller/

old/m771-98/logintro.pdf.

