Incomparable ω_1 -like models of set theory

Victoria Gitman

vgitman@nylogic.org http://boolesrings.org/victoriagitman

March 31, 2014

• E •

< 3 b

This is joint work with Gunter Fuchs and Joel David Hamkins (CUNY).

イロト イヨト イヨト イヨト

The ω_1 -like models of Peano Arithmetic and set theory

"ω1-like models bridge the gap between countable and uncountable structures." —Roman Kossak

Definition: A model $\mathcal{M} = \langle M, +, \cdot, <, 0, 1 \rangle \models PA$ is ω_1 -like if:

- *M* has size ω_1 ,
- every proper initial segment is countable: for every b ∈ M, the initial segment b^M = {a ∈ M | a < b} is countable.

Definition: A model $\mathcal{M} = \langle M, \in \rangle \models \text{ZFC}$ is ω_1 -like if:

- *M* has size ω_1 ,
- every proper initial segment of the ordinals is countable: for every $\beta \in \text{ORD}^{\mathcal{M}}$, the initial segment $\beta^{\mathcal{M}} = \{\alpha \in \mathcal{M} \mid \alpha \in \mathcal{M} \beta\}$ is countable (it follows that every rank initial segment $V_{\alpha}^{\mathcal{M}}$ is countable).

The ω_1 -like models are locally countable, yet they inherit the set-theoretic structure of ω_1 .

This allows us to build exotic ω_1 -like models with surprising properties.

Given any cardinal κ , we similarly define the notion of a κ -like model.

Existence of ω_1 -like models of PA

Definition: Suppose $\mathcal{M} \prec \mathcal{N} \models PA$. Then \mathcal{N} is an end-extension of \mathcal{M} ,

 $\mathcal{M} \prec_{e} \mathcal{N},$

if for every $b \in N \setminus M$, we have b > a for all $a \in M$.

Tagline: "New elements are added only on top."

Theorem: (MacDowell, Specker, 1961) Every model of PA has a proper end-extension.

Existence of ω_1 -like models of PA (continued)

Corollary: There is an ω_1 -like model of PA.

Proof: We construct an elementary chain of models of PA of length ω_1

 $\mathcal{M}_0 \prec \mathcal{M}_1 \prec \cdots \prec \mathcal{M}_\omega \prec \cdots \mathcal{M}_{\xi} \prec \mathcal{M}_{\xi+1} \prec \cdots$

using transfinite recursion:

- \mathcal{M}_0 is any countable model of PA,
- $\mathcal{M}_{\xi+1}$ is a proper countable end-extension of \mathcal{M}_{ξ} ,
- $\mathcal{M}_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{M}_{\xi}$ for limit ordinals λ .

Clearly $\mathcal{M} = \bigcup_{\xi < \omega_1} \mathcal{M}_{\xi}$ is ω_1 -like. \Box

Corollary: For every cardinal κ , there is a κ -like model of PA.

Models of set theory

A model $\mathcal{M} = \langle M, \in \rangle \models$ ZFC is the union of its von Neumann hierarchy. Inside \mathcal{M} , we define:

- $V_0^{\mathcal{M}} = \emptyset$,
- $V_{\alpha+1}^{\mathcal{M}} = P(V_{\alpha}^{\mathcal{M}})$ (powerset of $V_{\alpha}^{\mathcal{M}}$),
- $V_{\lambda}^{\mathcal{M}} = \bigcup_{\alpha < \lambda} V_{\alpha}^{\mathcal{M}}$ for limit ordinals λ .
- The rank of $a \in M$ is the least α such that $a \in V_{\alpha+1}^{\mathcal{M}} \setminus V_{\alpha}^{\mathcal{M}}$.

Note: The set membership relation $\in^{\mathcal{M}}$ is (externally) not necessarily well-founded. So the order $\langle \text{ORD}^{\mathcal{M}}, \in^{\mathcal{M}} \rangle$ is not necessarily well-founded.

イロト イポト イヨト イヨト

End-extensions of models of set theory

Definition: Suppose $\mathcal{M} \prec \mathcal{N} \models \text{ZFC}$. Then \mathcal{N} is an end-extension of \mathcal{M} ,

 $\mathcal{M} \prec_{e} \mathcal{N},$

if for every $b \in N \setminus M$, the rank β of b is greater than all $\alpha \in \text{ORD}^{\mathcal{M}}$.

Tagline: "New elements are added only on top."

End-extensions of models of set theory (continued)

Sneak Preview: It is not true that every model of ZFC has a proper end-extension!

Theorem: (Keisler, Morley, 1968) Every countable model of ZFC has a proper end-extension.

- Original proof is an omitting types argument.
- Alternative proof uses an ultrapower construction.
- The ultrapower argument is flexible: build desired properties into end-extensions.

A B F A B F

Skolem ultrapowers

Suppose $\mathcal{M} = \langle \mathbf{M}, \in \rangle \models \text{ZFC}.$

 $A \subseteq M$ is a class of \mathcal{M} if there is a formula $\varphi(x, y)$ and $s \in M$ such that

 $\mathbf{A} = \{\mathbf{a} \in \mathbf{M} \mid \mathcal{M} \models \varphi(\mathbf{a}, \mathbf{s})\}.$

Skolem ultrapower:

- Class functions $F : ORD^{\mathcal{M}} \to M$
- Ultrafilter U on O the collection of classes of ordinals

Question: Do Skolem ultrapowers satisfy the Łoś Theorem?

Skolem ultrapowers: Łoś Theorem

Inductive assumption:

 $\prod_{\mathcal{O}} \mathcal{M}/\mathcal{U} \models \varphi([\mathcal{G}]_{\mathcal{U}}, [\mathcal{F}]_{\mathcal{U}}) \Leftrightarrow \{\alpha \in \mathrm{ORD}^{\mathcal{M}} \mid \mathcal{M} \models \varphi(\mathcal{G}(\alpha), \mathcal{F}(\alpha))\} \in \mathcal{U}.$

Existential quantifier: $\exists x \varphi(x, [F]_U)$

Suppose $\{\alpha \in \text{ORD}^{\mathcal{M}} \mid \mathcal{M} \models \exists x \varphi(x, F(\alpha))\} \in U.$

Is there a class function $G: \operatorname{ORD}^{\mathcal{M}} \to M$ such that

 $\mathcal{M} \models \exists x \varphi(x, F(\alpha)) \Rightarrow \mathcal{M} \models \varphi(G(\alpha), F(\alpha))?$

We must choose one witness for every $\varphi(x, F(\alpha))$.

This needs a definable global choice function:

 $C: M \setminus \emptyset \to M$ such that $C(x) \in x$.

Remark: There are models of set theory without a definable global choice function.

Moral: To take Skolem ultrapowers, we may need to "add classes" to \mathcal{M} .

Gödel-Bernays set theory - GBC

To allow non-definable classes, we need a foundation for set theory with both set and class objects.

Formalization:

- Two-sorted logic: separate variables and quantifiers for sets and classes.
- Typical model: $\mathcal{M} = \langle M, \in, S \rangle$, where *M* is the sets and *S* is the classes.

We can also formalize in first-order logic: take classes as elements of the model, define sets as any class that is an element of some class.

GBC axioms:

Sets: Extensionality, Regularity, Pairing, Infinity, Union, Powerset.

Classes:

• Class comprehension limited to formulas with set quantifiers: if $\varphi(x, y, Y)$ is a formula with set quantifiers, then $\forall a \in M \forall A \in S$

 $\{x \mid \varphi(x, a, A)\}$ is a class.

- Replacement: if F is a class function and a is a set, then $F \upharpoonright a$ is a set.
- There is a global choice function.

If we allow comprehension for any formula in the two-sorted logic, we get the Kelley-Morse set theory - KM.

Models of GBC

• Suppose $\langle M, \in \rangle \models$ ZFC and *D* is its collection of (definable) classes. If *D* has a global choice function, then $\langle M, \in, D \rangle \models$ GBC.

Theorem: (Solovay) Every countable model $\langle M, \in \rangle \models$ ZFC can be extended to a countable model $\langle M, \in, S \rangle \models$ GBC.

- The definable classes can be expanded to include a global choice function.
- We force to add a global well-order, using a variant of forcing which adds classes without adding sets.

The class partial order $\ensuremath{\mathbb{P}}$ consists of all set well-orders ordered by extension.

• GBC is conservative over ZFC: any property of sets provable in GBC is already provable in ZFC.

Kelley-Morse set theory is not conservative over ZFC: Con(ZFC) is provable in KM.

Theorem: If $\langle M, \in, S \rangle \models$ GBC, then a Skolem ultrapower of $\langle M, \in \rangle$ satisfies the Łoś Theorem.

Moral: Forcing to add classes without adding sets can create rich collections of classes for Skolem ultrapowers of countable models.

Skolem ultrapower end-extensions

Suppose $\langle M, \in \rangle \models$ ZFC is countable. Extend to a countable $\mathcal{M} = \langle M, \in, S \rangle \models$ GBC. Let *U* be some ultrafilter on *O* - the collection of all classes of ordinals.

Observation:

- If $[F]_U$ has rank $\beta \in \text{ORD}^{\mathcal{M}}$ in $\prod_O \mathcal{M}/U$, then we can assume $F : \text{ORD}^{\mathcal{M}} \to V_{\beta+1}^{\mathcal{M}}$.
- If $\mathcal{M} \prec_{e} \prod_{O} \mathcal{M}/U$, then every class $F : ORD^{\mathcal{M}} \to V_{\alpha}^{\mathcal{M}}$ is constant on a set in U.

Goal: Construct *U* so that every class $F : ORD^{\mathcal{M}} \to V_{\alpha}^{\mathcal{M}}$ is constant on a set in *U*.

Skolem ultrapower end-extensions (continued)

Theorem: There is an ultrafilter *U* on *O* such that $\mathcal{M} \prec_{e} \prod_{O} \mathcal{M}/U$.

Proof: *U* is generated by a descending ω -sequence of proper classes in *O*:

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$$

• Enumerate all class $F : ORD^{\mathcal{M}} \to V_{\alpha}^{\mathcal{M}}$ as $\langle F_n \mid n < \omega \rangle$.

• *F*⁰ is constant on some proper class *A*₀.

• F_{n+1} is constant on some proper class $A_{n+1} \subseteq A_n$.

This generates an ultrafilter because for every $A \in O$, we considered F such that

•
$$F(\alpha) = 1$$
 for all $\alpha \in A$,

•
$$F(\alpha) = 0$$
 for all $\alpha \notin A$. \Box

Existence of ω_1 -like models of set theory

Theorem: (Keisler, Morley, 1968) If ZFC is consistent, then there is an ω_1 -like model of ZFC.

Proof: We construct an elementary chain of models of ZFC of length ω_1 :

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \cdots \prec \mathcal{M}_\omega \prec \cdots \mathcal{M}_{\xi} \prec \mathcal{M}_{\xi+1} \prec$$

- \mathcal{M}_0 is any countable model of ZFC,
- if $\mathcal{M}_{\xi+1}$ is a countable end-extension of \mathcal{M}_{ξ} ,
- $\mathcal{M}_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{M}_{\xi}$ for limit ordinals $\lambda \lambda$.

Clearly $\mathcal{M} = \bigcup_{\xi < \omega_1} \mathcal{M}_{\xi}$ is ω_1 -like. \Box

The existence of a well-founded ω_1 -like model is equiconsistent with an inaccessible cardinal.

Theorem: (Enayat, 2001) It is consistent relative to a weakly compact cardinal that there are no ω_2 -like models of ZFC.

Notable ω_1 -like models

Theorem: (Kaufmann, 1983) There is an ω_1 -like model of ZFC without a proper end-extension.

Definition: A model of set theory is Leibnizian if every element has a unique type.

Theorem: (Enayat, 2003) There is an ω_1 -like Leibnizian model of ZFC.

Definition: A model of cardinality κ is Jónsson if it has no elementary substructures of cardinality κ .

Theorem: (Knight, 1976) There is an ω_1 -like Jónsson model of ZFC (PA).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Embeddings of models of PA

Definition: Suppose M and N are models of PA. A map $j : M \to N$ is an embedding of M into N if

j(0) = 0 and *j*(1) = 1, *j*(*a* + *b*) = *j*(*a*) + *j*(*b*) and *j*(*a* ⋅ *b*) = *j*(*a*) ⋅ *j*(*b*), *a* < *b* → *j*(*a*) < *j*(*b*).

Definition: The standard system of a model $\mathcal{M} \models PA$ is the collection:

 $SSy(\mathcal{M}) = \{A \cap \mathbb{N} \mid A \text{ is definable (with parameters) over } \mathcal{M}\}.$

Theorem: Every embedding $j : M \to N$ of models \mathcal{M}, \mathcal{N} of PA is Δ_0 -elementary. **Proof**: By the MRDP Theorem. \Box

MRDP (Matiyasevich, Robinson, Davis, Putnam) Theorem: Over PA, every Σ_1 -formula is equivalent to a formula with a single existential quantifier (a set of integers is Diophantine iff it is computably enumerable).

・ロト ・回ト ・ヨト ・ヨト … ヨ

Embeddings of models of PA (continued)

Theorem: (Friedman, 1973) There is an embedding $j : M \to N$ between countable models M and N of PA iff

- $SSy(\mathcal{M}) \subseteq SSy(\mathcal{N})$,
- \mathcal{N} satisfies the Σ_1 -theory of \mathcal{M} .

Proof:

- (\Rightarrow) Every embedding is Δ_0 -elementary.
- (\Leftarrow) Back and forth argument. \Box

Theorem: (Kossak, 1985) There are ω_1 -like models \mathcal{M} and \mathcal{N} of PA such that

- $SSy(\mathcal{M}) = SSy(\mathcal{N}),$
- ${\mathcal M}$ and ${\mathcal N}$ have the same theory,

but there is no embedding between $\mathcal M$ and $\mathcal N.$

.

Embeddings of models of set theory

Definition: Suppose \mathcal{M} and \mathcal{N} are models of ZFC. A map $j : M \to N$ is an embedding if $a \in b \to j(a) \in j(b)$.

Theorem: (Hamkins, 2012) For any two countable models \mathcal{M} and \mathcal{N} of ZFC either \mathcal{M} embeds into \mathcal{N} or conversely.

- \mathcal{M} embeds into \mathcal{N} if and only if $ORD^{\mathcal{M}}$ embeds into $ORD^{\mathcal{N}}$.
- The embedding may not be Δ_0 -elementary:

Observation: There cannot be a Δ_0 -elementary embedding between a well-founded $\mathcal{M} \models ZFC$ and its constructible universe $L^{\mathcal{M}}$.

Theorem: (Fuchs, G., Hamkins, 2013) Assuming \diamondsuit , if ZFC is consistent, then there is a collection C of the maximum possible size 2^{ω_1} of ω_1 -like models of ZFC such that there is no embedding between any pair of models in C.

Building incomparable ω_1 -like models

Strategy:

• Simultaneously build elementary chains of countable models of ZFC:

$$\mathcal{M}_0 \prec_e \mathcal{M}_1 \prec_e \cdots \prec_e \mathcal{M}_{\xi} \prec_e \mathcal{M}_{\xi+1} \prec_e \cdots$$

and

$$\mathcal{N}_0 \prec_e \mathcal{N}_1 \prec_e \cdots \prec_e \mathcal{N}_{\xi} \prec_e \mathcal{N}_{\xi+1} \prec_e \cdots$$

of length ω_1 .

- Let $\mathcal{M} = \bigcup_{\xi < \omega_1} \mathcal{M}_{\xi}$ and $\mathcal{N} = \bigcup_{\xi < \omega_1} \mathcal{N}_{\xi}$ be the resulting ω_1 -like models.
- At each stage $\xi + 1$, "guess" that some $j : M_{\xi} \to N_{\xi}$ extends to $j : M \to N$.
- Choose $\mathcal{M}_{\xi+1}$ and $\mathcal{N}_{\xi+1}$ so that *j* cannot be extended to $j : M_{\xi+1} \to N_{\xi+1}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Coded sets

Definition: Suppose $\mathcal{M} \prec_{e} \overline{\mathcal{M}} \models ZFC$.

• A set $A \subseteq M$ is coded in $\overline{\mathcal{M}}$ if there is $a \in \overline{M}$ such that $A = a \cap M$:

$$A = \{ b \in M \mid b \in \overline{\mathcal{M}} a \}.$$

• We say that a codes A.

Coded sets (continued)

Observation: Suppose $\mathcal{N} \prec_e \overline{\mathcal{N}} \prec_e \overline{\overline{\mathcal{N}}}$. If $B \subseteq N$ is coded in $\overline{\overline{\mathcal{N}}}$, then *B* is already coded in $\overline{\mathcal{N}}$.

Proof:

- Fix $\alpha \in \text{ORD}^{\overline{\mathcal{N}}} \setminus \text{ORD}^{\mathcal{N}}$.
- Fix $b \in \overline{\mathcal{N}}$ coding *B*.
- $b' = (b \cap V_{\alpha}) \in V_{\alpha+1}$ codes B. \Box

Coded sets (continued)

Tagline: "If an end-extension omits to code a certain set, this cannot be fixed in a further end-extension."

Observation: Suppose

•
$$\mathcal{M} \prec_{e} \overline{\mathcal{M}} \models \text{ZFC} \text{ and } \mathcal{N} \prec_{e} \overline{\mathcal{N}} \models \text{ZFC},$$

• $j: M \rightarrow N$ is an embedding.

If *j* extends to $j : \overline{M} \to \overline{N}$ and $A \subseteq M$ is coded in $\overline{\mathcal{M}}$, then there is *B* coded in $\overline{\mathcal{N}}$ such that $B \cap j " M = j " A$.

Proof: If *a* codes *A*, then j(a) codes *B*. \Box

Killing-off embeddings

Key Lemma: (Fuchs, G., Hamkins) Suppose $\mathcal{M} \models ZFC$ is countable. The collection \mathcal{C} of subsets of M coded in some end-extension of \mathcal{M} has size 2^{ω} .

Observation: Suppose

- \mathcal{M} and \mathcal{N} are countable models of ZFC,
- $j: M \rightarrow N$ is an embedding,
- $\mathcal{N} \prec_{e} \overline{\mathcal{N}}$, which is countable.

Then there is a countable end-extension $\overline{\mathcal{M}}$ of \mathcal{M} such that *j* cannot be extended to $j : \overline{\mathcal{M}} \to \overline{\mathcal{N}}$.

Proof:

- For $b \in \overline{\mathcal{N}}$, let $X_b = \{a \in \mathcal{M} \mid j(a) \in \overline{\mathcal{N}} b\}$.
- There are countably many X_b .
- Let $\overline{\mathcal{M}}$ be an end-extension of \mathcal{M} coding some $A \subseteq M$ such that

$A \neq X_b$ for any $b \in \overline{\mathcal{N}}$.

j cannot be extended to *j* : *M* → *N* because there is no set *B* coded in *N* such that *B* ∩ *j* " *M* = *j* " *A*. □

The guessing principle \diamondsuit

Definition: The principle \diamondsuit states that there is a \diamondsuit -sequence

$$\langle {m {\cal A}}_lpha \mid lpha < \omega_1
angle$$
 with ${m {\cal A}}_lpha \subseteq lpha$

such that for every $X \subseteq \omega_1$, the set

$$\{\alpha \in \omega_1 \mid X \cap \alpha = A_\alpha\}$$

is stationary in ω_1 .

A subset of ω_1 is stationary if it has a non-empty intersection with every closed unbounded subset of ω_1 .

Tagline: "Every subset of ω_1 is predicted cofinally often on the \diamond -sequence."

The *◊*-principle

- holds in the constructible universe L,
- can be forced over any model of set theory,
- implies CH.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Predicting embeddings with \diamond

Observation: Suppose

•
$$\mathcal{M} = \bigcup_{\xi < \omega_1} \mathcal{M}_{\xi}$$
 where
 $\mathcal{M}_0 \prec \mathcal{M}_1 \prec \cdots \prec \mathcal{M}_{\xi} \prec \mathcal{M}_{\xi+1} \prec \cdots$

is an elementary chain of models of ZFC with unions taken at limit stages,

•
$$\mathcal{N} = \bigcup_{\xi < \omega_1} \mathcal{N}_{\xi}$$
 where

$$\mathcal{N}_0 \prec \mathcal{N}_1 \prec \cdots \prec \mathcal{N}_{\xi} \prec \mathcal{N}_{\xi+1} \prec \cdots$$

is an elementary chain of models of ZFC with unions taken at limit stages,

- $M = N = \omega_1$ (as sets without structure),
- $j: M \rightarrow N$ is an embedding.

Then there is a limit ordinal λ such that A_{λ} "codes" $j \upharpoonright M_{\lambda} : M_{\lambda} \to N_{\lambda}$.

```
Fix a bijection \varphi : \omega_1 \times \omega_1 \to \omega_1.
On a club of ordinals \lambda:
• M_{\lambda} = \lambda and N_{\lambda} = \lambda
```

$$\bullet \ j \mid \lambda : \lambda \to \lambda$$

There is a limit λ such that $A_{\lambda} = \varphi$ " $j \upharpoonright \lambda : \lambda \rightarrow \lambda$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Incomparable ω_1 -like models

"I was not predicting the future, I was trying to prevent it." —Ray Bradbury

We simultaneously build elementary chains of countable models of ZFC of length ω_1 :

$$\mathcal{M}_0 \prec_e \mathcal{M}_1 \prec_e \cdots \prec_e \mathcal{M}_{\xi} \prec_e \mathcal{M}_{\xi+1} \prec_e \cdots$$

and

$$\mathcal{N}_0 \prec_e \mathcal{N}_1 \prec_e \cdots \prec_e \mathcal{N}_{\xi} \prec_e \mathcal{N}_{\xi+1} \prec_e \cdots$$

- Let \mathcal{M}_0 and \mathcal{N}_0 be any countable models of ZFC.
- At stage limit ordinal λ :

•
$$\mathcal{M}_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{M}_{\xi} \text{ and } \mathcal{N}_{\lambda} = \bigcup_{\xi < \lambda} \mathcal{N}_{\xi},$$

- $M_{\lambda} = N_{\lambda} = \lambda$ (as sets without structure).
- At stage successor ordinal $\xi + 1$:

Let $\mathcal{N}_{\xi+1}$ be any proper countable end-extension of \mathcal{N}_{ξ} .

- If A_{ξ} codes $j: M_{\xi} \to N_{\xi}$, choose $\mathcal{M}_{\xi+1}$ to kill-off j,
- ► else let M_{ξ+1} be any proper end-extension of M_ξ.

It follows that:

- $\mathcal{M} = \bigcup_{\xi < \omega_1} \mathcal{M}_{\xi}$ and $\mathcal{N} = \bigcup_{\xi < \omega_1} \mathcal{N}_{\xi}$ are ω_1 -like models.
- There is no embedding from $\mathcal M$ to $\mathcal N.$

The Key Lemma: splitting functions

Definition: Suppose $\langle M, \in, S \rangle \models$ GBC. A class $F : ORD^{\mathcal{M}} \to M$ such that $F(\alpha) \subseteq \alpha$ is splitting if for every proper $A \subseteq ORD^{\mathcal{M}}$ in S, there is $\beta \in ORD^{\mathcal{M}}$ such that A splits into

$$\mathbf{A}_{\beta}^{+} = \{ \alpha \in \mathbf{A} \mid \beta \in^{\mathcal{M}} \mathbf{F}(\alpha) \}$$

and

$$\boldsymbol{A}_{\beta}^{-} = \{ \alpha \in \boldsymbol{A} \mid \beta \notin^{\mathcal{M}} \boldsymbol{F}(\alpha) \}$$

both of which are proper.

Tagline: "When constructing a descending sequence generating an ultrafilter *U* for a Skolem ultrafilter, no initial segment of the sequence can decide the subset of $ORD^{\mathcal{M}}$ coded by $[F]_{U}$ in the ultrapower."

The Key Lemma: splitting functions (continued)

Theorem: (Fuchs, G., Hamkins) A model $\langle \mathcal{M}, \in, S \rangle \models$ GBC has a splitting function if and only if it has an ORD^{\mathcal{M}}-tree without a cofinal branch.

Corollary: A model $\langle \mathcal{M}, \in, S \rangle \models \text{GBC}$ may fail to have a splitting function.

Proof: If κ is weakly compact, then $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \text{GBC}$, but every tree of height κ in $V_{\kappa+1}$ has a cofinal branch in $V_{\kappa+1}$.

Corollary: A splitting function can be added by forcing to any model of GBC without adding sets.

Proof: Use a class version of the forcing to add an ω_1 -Souslin tree.

The Key Lemma: proof

Key Lemma: (Fuchs, G., Hamkins) Suppose $\mathcal{M} \models ZFC$ is countable. The collection \mathcal{C} of subsets of M coded in some end-extension of \mathcal{M} has size 2^{ω} .

Proof:

- Suppose $\langle M, \in \rangle \models$ ZFC.
- Extend it to a model $\langle M, \in, S \rangle \models \text{GBC}$ such that *S* has a splitting function *F*.
- Let O be the collection of all classes of ordinals.
- There is a family $\langle U_s \mid s : \mathbb{N} \to 2 \rangle$ of ultrafilters on O such that
 - $\mathcal{M} \prec_e \prod_O \mathcal{M}/U_s$,
 - if $s \neq t$, then the subset of *M* coded by $[F]_{U_s}$ is not equal that coded by $[F]_{U_t}$.
- U_s is generated by the descending sequence $A_0^s \supseteq A_1^s \supseteq \cdots \supseteq A_n^s \supseteq \cdots$.
- Stage 2n: ensure ultrapower is an end-extension.
- Stage 2*n* + 1:
 - choose β such that $(A_{2n}^s)^+_{\beta}$ and $(A_{2n}^s)^-_{\beta}$ are proper,
 - if s(n) = 1, let $A_{2n+1}^s = (A_{2n}^s)_{\beta}^+$,
 - if s(n) = 0, let $A_{2n+1}^s = (A_{2n}^s)_{\beta}^{-}$. \Box

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Thank you!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・