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Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic

Separate variables and quantifiers for numbers and sets of numbers.

Convention: lower-case letters for numbers, upper-case letters for sets.

Notation:
I Σ0

n - first-order Σn-formula
I Σ1

n - n-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is M = 〈M,+,×, <, 0, 1,∈,S〉.
M is the collection of numbers.

S is the collection of sets of numbers: if A ∈ S, then A ⊆ M.

Second-order axioms

Numbers: PA

Sets:
I Extensionality
I Induction axiom: ∀X ((0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ))→ ∀n n ∈ X )
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Weak axiom systems

Arithmetical comprehension ACA0

Comprehension scheme for first-order formulas: for all n, Σ0
n-CA0

if ϕ(n,A) is a first-order formula, then {n | ϕ(n,A)} is a set.

If 〈M,+,×, <, 0, 1〉 |= PA and S consists of definable subsets of M, then

M = 〈M,+,×, <, 0, 1,∈,S〉 |= ACA0.

ACA0 is conservative over PA.

Elementary Transfinite Recursion ATR0

ACA0

Transfinite recursion: every first-order recursion on sets along a well-order has a solution.

A well-order is a linear order Γ whose every subset has a minimal element.

A solution to a recursion is a code of a function F : dom(Γ)→ S.
A code for F is F̄ = {〈n,m〉 | n ∈ dom(Γ, ) m ∈ F (n)}

Iterate Turing jump.

Build an internal constructible universe L.

(Fujimoto) Equivalent (over ACA0) to existence of iterated truth predicates along
any well-order Γ.
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Gödel’s L in ATR0

Gödel’s constructible universe L

Suppose V |= ZF.

L0 = ∅
Lα+1 is the set of all subsets of Lα definable over Lα.

Lλ =
⋃
α<λ Lα for a limit λ.

L =
⋃
α∈Ord Lα.

V
L

Suppose M = 〈M,+,×, <, 0, 1,∈,S〉 |= ATR0 and Γ ∈ S is a well-order.

M can construct the L-hierarchy along Γ.

There is a set coding a sequence of L∆ for ∆ ≤ Γ obeying the definition of L.

A model of ATR0 has its own constructible universe LM !

Definition: A well-order Γ ∈ S is constructible if there is a well-order ∆ such that

L∆ |= Γ is countable.

LM
ω1

is the union of L∆ for constructible well-orders ∆.
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The comprehension hierarchy

Increasing to the amount of comprehension to more complex second-order assertions
produces a hierarchy of second-order set theories

Σ1
n-comprehension Σ1

n-CA0

If ϕ(n,A) is a Σ1
n-formula, then {n | ϕ(n,A)} is a set.

Σ1
1-CA0 is stronger than ATR0.

culminating in:

Full second-order arithmetic Z2

For all n, Σ1
n-comprehension.

If M |= Z2, then LM
ω1
|= ZFC− ZFC without powerset

Definition: Z−p
2 is full comprehension without parameters.
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Equiconsistency of Z2 and Z−p2

Theorem: (H. Friedman) Z2 and Z−p
2 are equiconsistent.

Proof idea: Suppose M = 〈M,+,×, <, 0, 1,∈,S〉 |= Z−p
2 .

A modified L-construction can be carried out without parameters.

LM
ω1
|= ZFC−.

Let S̄ = {A ∈ S | A ∈ LM
ω1
} be the “constructible reals” of M .

(M,+,×, <, 0, 1,∈, S̄) |= Z2.
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Quick review of forcing

Suppose V |= ZFC and P is a forcing notion: partial order with largest element 1l.

Dense sets and generic filters

D ⊆ P is dense if for every p ∈ P, there is q ∈ D with q ≤ p.

G ⊆ P is a filter:

1l ∈ G .

(upward closure) If p ∈ G and p′ ≥ p, then p′ ∈ G .

(compability) If p, q ∈ G , then r ∈ G such that r ≤ p, q.

r

p′

p q

A filter G ⊆ P is V -generic if it meets every dense set D ∈ V of P: D ∩ G 6= ∅.

Theorem: V has no V -generic filters for P.

The forcing extension V [G ] is constructed from V together with an external V -generic
filter G .
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Quick review of forcing (continued)
P-names: names for elements of V [G ].

Defined recursively so that a P-name σ consists of pairs 〈τ, p〉: p ∈ P and τ is a P-name.

Special P-names

Given a ∈ V , ǎ = {〈b̌, 1l〉 | b ∈ a}.
Ġ = {〈p̌, p〉 | p ∈ P}.

Forcing extension V [G ]

Suppose G ⊆ P is V -generic and σ is a P-name. The
interpretation of σ by G : σG = {τG | 〈τ, p〉 ∈ σ and p ∈ G}.
Defined recursively.

The forcing extension V [G ] = {σG | σ is a P-name in V }.

V ⊆ V [G ]: ǎG = a.

G ∈ V [G ]: ĠG = G .

V [G ] |= ZFC

V
V [G ]

•G

Forcing relation p  ϕ(σ): whenever G is V -generic and p ∈ G , then V [G ] |= ϕ(σG ).

For a fixed first-order formula ϕ(x), the relation p  ϕ(σ) is definable.

If q ≤ p and p  ϕ(σ), then q  ϕ(σ).

If V [G ] |= ϕ(σG ), then there is p ∈ G such that p  ϕ(σ).
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Cohen forcing

Add(ω, 1) - adds a new real

Conditions: binary sequences p : D → 2 with D ⊆ ω finite.

Order: q ≤ p if q extends p.

Suppose G ⊆ Add(ω, 1) is V -generic.

r =
⋃

G is a new real

V [G ] has continuum-many V -generic reals for Add(ω, 1).

p = 1
01

1
2
0
345

1
6

q = 1
0
1
1
1
2
0
345

1
6
1
7

Add(ω, κ) - adds (at least) κ-many reals

Conditions: functions p : D → 2, where D is a finite subset of
ω × κ.

Order: q ≤ p if q extends p.

Suppose G ⊆ Add(ω, κ) is V -generic.⋃
G gives κ-many new reals.

0
1
1

0

1

1

0

1

1
ω

κ
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Sacks forcing

Sacks forcing S - adds a generic real

Conditions: Perfect trees T ⊆ 2<ω: every node has a splitting node above it.

Order: S ≤ T if S is a subtree of T .

Suppose G ⊆ S is V -generic.

There is a real b ∈ V [G ] such that T ∈ G iff b is a branch of T .

The generic real b determines G .
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Jensen’s forcing

Jensen’s forcing J - adds a unique generic real

constructed using ♦ in L (construction is technical)

J ⊆ S
has ccc

adds a unique generic Π1
2-definable singleton real

used by Jensen to show that it is consistent to have a non-constructible Π1
2-definable

singleton real.
Every Σ1

2-definable singleton real is in L by Shoenfield’s Absoluteness.
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Products and iterations of forcing notions
Products

Suppose Pα for α < β are forcing notions.

A product P = Πα<βPα is a natural forcing notion.

Conditions: 〈pα | α < β〉 with pα ∈ Pα.

Common supports: finite, bounded, full.

Example: Add(ω, κ) = Πα<κ Add(ω, 1) with finite support.

Usage: adding several objects to a forcing extension.

Iterations

Suppose P is a forcing notion, G ⊆ P is V -generic, and Q is a forcing notion in V [G ].

V has a P-name Q̇ for Q. Every element of V [G ] has a P-name in V .

In V , we define a forcing notion P ∗ Q̇ such that forcing with P ∗ Q̇ is the same as forcing
with P followed by forcing with Q.

Conditions: (p, q̇) with p ∈ P and p  q̇ ∈ Q̇.

Order: (p, q̇) ≤ (r , ṡ) if p ≤ r and p  q̇ ≤ ṡ.

n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: S ∗ Ṡ, where Ṡ is the name for the Sacks forcing of the forcing extension.
Sacks forcing of V [G ] is different from Sacks forcing of V because V [G ] has new perfect trees.
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Automorphisms of forcing notions

Suppose P is a notion of forcing and π is an automorphism of P.

We apply π (recursively) to P-names: 〈τ, p〉 ∈ σ if and only if 〈π(τ), π(p)〉 ∈ π(σ).

π(ǎ) = ǎ

The forcing relation respects automorphisms: p  ϕ(σ) if and only if π(p)  ϕ(π(σ)).

If G ⊆ P is V -generic, then π " G is V -generic.

Examples

For any p, q ∈ Add(ω, 1), there is an automorphism π such that p and π(q) are
compatible.

Every permutation of κ gives rise to a coordinate-switching automorphism of
Add(ω, κ).

For any p, q ∈ Add(ω, κ), there is an automorphism π such that p and π(q) are
compatible.

Jensen’s forcing J is rigid.
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A very bad model of Z−p2

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model
M = 〈M,+,×, <, 0, 1,∈,S〉 |= Z−p

2 such that S is not closed under complements.

Proof: Let G ⊆ Add(ω, ω) be V -generic.

Let {an | n < ω} be the ω-many generic reals from G .

Let S = PV (ω) ∪ {an | n < ω}.
S is not closed under complements.

Let M = 〈ω,+,×, <, 0, 1,∈,S〉.
Let ˙M be the canonical Add(ω, ω)-name for M .

Fix a second-order formula ϕ(x).

Suppose, for n < ω, p  ˙M |= ϕ(ň), but q  ˙M |= ¬ϕ(ň).

Let π be a coordinate-switching automorphism such that there is r ≤ p, π(q).

π(q)  ˙M |= ¬ϕ(ň) since π( ˙M ) = ˙M .

r  ˙M |= ϕ(ň) (r ≤ p) and r  ˙M |= ¬ϕ(ň) (r ≤ π(q)). Impossible!

If some p  ˙M |= ϕ(ň), then all p  ˙M |= ϕ(ň).

By definability of the forcing relation, {n < ω |M |= ϕ(n)} ∈ V .

M |= Z−p
2 . �
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A model of Σ1
2-CA0 + Z−p2

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model of
Σ1

2-CA0 + Z−p
2 in which Σ1

4-CA0 fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks
forcing.

Theorem: (G.) It is consistent that there is a model of Σ1
2-CA0 + Z−p

2 in which Σ1
3-CA0

fails.

The model is constructed in a forcing extension by a tree iteration of Jensen’s forcing.

Work in progress: (Kanovei) It is consistent that there is a model of Σ1
n-CA0 + Z−p

2 in
which Σ1

n+1-CA0 fails.

Proof idea: use a generalization of Jensen’s forcing.
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Finite iterations of Jensen’s forcing

Theorem (Abraham) In L, for every n < ω, there is an n-length iteration
Jn = Q0 · Q̇1 · · · Q̇n−1 such that:

Q0 = J.

If Gi ⊆ Jn � i is L-generic, then in L[Gi ], Q = (Q̇i )Gi has all properties of Jensen’s
forcing.

If m > n, then Jm � n = Jn.

Jn has the ccc.

Jn adds a unique generic Π1
2-definable n-length sequence of reals.

Let ~J = 〈Jn | n < ω〉.
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Tree iteration of Jensen’s forcing

The tree ω<ω

0 1 2 n n+1. . .

. . .

00
01 02

0n

000
001 0n0 0n1 0n2

0nn

(n+1)0 (n+1)1 (n+1)2
(n+1)(n+1)

n+1n+10

P(~J, ω<ω): iteration along the tree ω<ω

Conditions: p : Dp →
⋃

n<ω Jn such that:

Dp is a finite subtree of ω<ω,

for all s ∈ Dp, p(s) ∈ Jlen(s),

for s ⊆ t in Dp, p(s) = p(t) � len(s).

Order: q ≤ p if Dq ⊇ Dp and for all s ∈ Dp,
q(s) ≤ p(s).

p0 q0 r0

〈p0, ṗ1〉 〈p0, q̇1〉

〈p0, q̇1, ṙ1〉
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Tree iteration of Jensen’s forcing (continued)

The tree iteration P(~J, ω<ω) adds a tree T G (isomorphic to ω<ω) such that each node
on level n has an L-generic n-length sequence of reals for Jn.

Theorem: (Friedman, G.) The tree iteration P(~J, ω<ω) has the ccc.

Theorem: (Friedman, G.) Suppose G ⊆ P(~J, ω<ω) is L-generic. In L[G ]:

The only L-generic n-length sequence of reals for Jn are those coming from the
nodes of T G .

The collection of all L-generic n-length sequences of reals for Jn (any n) is
Π1

2-definable.

Proposition: Suppose

G ⊆ P(~J, ω<ω) is L-generic.

T is a finite subtree of ω<ω.

GT = G � T .

Then the only L-generic n-length sequences of reals for Jn in L[GT ] are those coming
from the nodes of T .
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Kanovei’s tree

Suppose G ⊆ P(~J, ω<ω) is L-generic. In L[G ], define the tree S ⊆ T G .

S0 S1 S2

.

.

.

Sn Sn+1

.

.

.
. . .

. . .

S00
S01 S10

S11 Sn0
Sn1

S000
S001

S100

S101 Sn00
Sn01

S0000
S0001

S1000

S1001

Sn000

Sn001

S00000
S00001

S10000

S10001 Sn0000
Sn0001

Sn ∈ S for every n < ω

Sn~0m
for every n,m < ω

~0n is the sequence of n ≥ 1-many zeroes

Sn~0m+11 ∈ S whenever Sn1(1)(m) = 1

S01(1) = 100 . . .

S11(1) = 010 . . .

Sn1(1) = 111 . . .
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A model of Σ1
2-CA0 + Z−p2 in which Σ1

3-CA0 fails

Let

T = {T ⊆ S | T finite},
S = {A ∈ PL[GT ](ω) | T ∈ T },
M = (ω,+,×, <, 0, 1,∈,S),

˙M be a canonical P(~J, ω<ω)-name for M .

Every permutation f of ω gives rise to an automorphism πf of P(~J, ω<ω) which permutes
the subtrees T G

n (sitting on node Sn) of T G , while preserving the rest of the tree
structure.

πf ( ˙M ) = ˙M

for any p, q ∈ P(~J, ω<ω), there is an automorphism πf such that p and πf (q) are
compatible.
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A model of Σ1
2-CA0 + Z−p2 in which Σ1

3-CA0 fails (continued)

Theorem (G.): M = (M,+,×, <, 0, 1,∈,S) |= Σ1
2-CA0 + Z−p

2 + ¬Σ1
3-CA0.

Proof:

M |= Σ1
2-CA0 by Shoenfield’s Absoluteness.

M |= Z−p
2 because every parameter-free A ∈ S is in L by the automorphism

argument.

The collection
{~r | ∃n ~r is an L-generic n-length sequence for Jn} = {Ss | s ∈ T for some T ∈ T }
is Π1

2-definable in M (uses the construction of the Jn).

S01(1) /∈ S.

S01(1) is Σ1
3-definable in M : m ∈ S01(1) if and only if there are two L-generic

m + 2-length sequences of reals for Jm+2 whose first coordinate is S0. �
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