Parameter-free comprehension in second-order arithmetic

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

CUNY Logic Workshop

March 24, 2023

CUNY 1 / 21

<ロ> (日) (日) (日) (日) (日)

Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic

- Separate variables and quantifiers for numbers and sets of numbers.
- Convention: lower-case letters for numbers, upper-case letters for sets.
- Notation:
 - Σ_n^0 first-order Σ_n -formula
 - $\Sigma_n^{''}$ *n*-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, S \rangle$.

- *M* is the collection of numbers.
- S is the collection of sets of numbers: if $A \in S$, then $A \subseteq M$.

Second-order axioms

- Numbers: PA
- Sets:
 - Extensionality
 - ▶ Induction axiom: $\forall X ((0 \in X \land \forall n (n \in X \to n + 1 \in X)) \to \forall n n \in X)$

Weak axiom systems

Arithmetical comprehension ACA_0

Comprehension scheme for first-order formulas: for all n, $\sum_{n=0}^{0} -CA_{0}$ if $\varphi(n, A)$ is a first-order formula, then $\{n \mid \varphi(n, A)\}$ is a set.

• If $\langle M, +, \times, <, 0, 1 \rangle \models PA$ and S consists of definable subsets of M, then

 $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models ACA_0.$

• ACA₀ is conservative over PA.

Elementary Transfinite Recursion ATR_0

 ACA_0

Transfinite recursion: every first-order recursion on sets along a well-order has a solution.

- A well-order is a linear order Γ whose every subset has a minimal element.
- A solution to a recursion is a code of a function $F : \operatorname{dom}(\Gamma) \to S$.

A code for F is $\overline{F} = \{ \langle n, m \rangle \ | \ n \in dom(\Gamma,) m \in F(n) \}$

- Iterate Turing jump.
- Build an internal constructible universe L.
- (Fujimoto) Equivalent (over ${\rm ACA}_0)$ to existence of iterated truth predicates along any well-order $\Gamma.$

CUNY 3 / 21

Gödel's L in ATR₀

Gödel's constructible universe L

Suppose $V \models ZF$.

- $L_0 = \emptyset$
- $L_{\alpha+1}$ is the set of all subsets of L_{α} definable over L_{α} .
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for a limit λ .
- $L = \bigcup_{\alpha \in \operatorname{Ord}} L_{\alpha}$.

Suppose $\mathscr{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models \operatorname{ATR}_0$ and $\Gamma \in \mathcal{S}$ is a well-order.

- \mathcal{M} can construct the *L*-hierarchy along Γ .
- There is a set coding a sequence of L_{Δ} for $\Delta \leq \Gamma$ obeying the definition of L.

A model of ATR_0 has its own constructible universe $L^{\mathcal{M}}$!

Definition: A well-order $\Gamma \in S$ is constructible if there is a well-order Δ such that

 $L_{\Delta} \models \Gamma$ is countable.

 $L_{\omega_1}^{\mathscr{M}}$ is the union of L_{Δ} for constructible well-orders Δ .

<ロ> (四) (四) (三) (三) (三) (三)

The comprehension hierarchy

Increasing to the amount of comprehension to more complex second-order assertions produces a hierarchy of second-order set theories

- Σ_n^1 -comprehension Σ_n^1 -CA₀
- If $\varphi(n, A)$ is a $\sum_{n=1}^{1}$ -formula, then $\{n \mid \varphi(n, A)\}$ is a set.
 - Σ_1^1 -CA₀ is stronger than ATR₀.

culminating in:

Full second-order arithmetic Z₂

- For all *n*, Σ_n^1 -comprehension.
 - If $\mathscr{M} \models \mathbb{Z}_2$, then $L_{\omega_1}^{\mathscr{M}} \models \mathbb{Z}FC^-$ zfc without powerset

Definition: Z_2^{-p} is full comprehension without parameters.

CUNY 5 / 21

・ロト ・個ト ・ヨト ・ヨト

Equiconsistency of Z_2 and Z_2^{-p}

Theorem: (H. Friedman) Z_2 and Z_2^{-p} are equiconsistent.

Proof idea: Suppose $\mathscr{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models \mathbb{Z}_2^{-p}$.

- A modified *L*-construction can be carried out without parameters.
- $L^{\mathscr{M}}_{\omega_1} \models \mathrm{ZFC}^-$.
- Let $\overline{S} = \{A \in S \mid A \in L^{\mathscr{M}}_{\omega_1}\}$ be the "constructible reals" of \mathscr{M} .
- $(M, +, \times, <, 0, 1, \in, \overline{S}) \models \mathbb{Z}_2.$

・ロト ・四ト ・ヨト ・ヨト 三日

Quick review of forcing

Suppose $V \models \text{ZFC}$ and \mathbb{P} is a forcing notion: partial order with largest element **1**.

Dense sets and generic filters

 $D \subseteq \mathbb{P}$ is dense if for every $p \in \mathbb{P}$, there is $q \in D$ with $q \leq p$.

 $G \subseteq \mathbb{P}$ is a filter:

- **1** ∈ **G**.
- (upward closure) If $p \in G$ and $p' \ge p$, then $p' \in G$.
- (compability) If $p, q \in G$, then $r \in G$ such that $r \leq p, q$.

A filter $G \subseteq \mathbb{P}$ is *V*-generic if it meets every dense set $D \in V$ of \mathbb{P} : $D \cap G \neq \emptyset$.

Theorem: V has no V-generic filters for \mathbb{P} .

The forcing extension V[G] is constructed from V together with an external V-generic filter G.

・ロト ・四ト ・ヨト ・ヨト 三国

Quick review of forcing (continued)

 \mathbb{P} -names: names for elements of V[G].

Defined recursively so that a \mathbb{P} -name σ consists of pairs $\langle \tau, p \rangle$: $p \in \mathbb{P}$ and τ is a \mathbb{P} -name.

Special P-names

- Given $a \in V$, $\check{a} = \{\langle \check{b}, 1 \rangle \mid b \in a\}$.
- $\dot{G} = \{ \langle \check{p}, p \rangle \mid p \in \mathbb{P} \}.$

Forcing extension V[G]

Suppose $G \subseteq \mathbb{P}$ is V-generic and σ is a \mathbb{P} -name. The interpretation of σ by G: $\sigma_G = \{\tau_G \mid \langle \tau, p \rangle \in \sigma \text{ and } p \in G\}$.

Defined recursively.

The forcing extension $V[G] = \{\sigma_G \mid \sigma \text{ is a } \mathbb{P}\text{-name in } V\}.$

- $V \subseteq V[G]$: $\check{a}_G = a$.
- $G \in V[G]$: $\dot{\mathbf{G}}_G = \mathbf{G}$.
- $V[G] \models \text{ZFC}$

Forcing relation $p \Vdash \varphi(\sigma)$: whenever G is V-generic and $p \in G$, then $V[G] \models \varphi(\sigma_G)$.

- For a fixed first-order formula $\varphi(x)$, the relation $p \Vdash \varphi(\sigma)$ is definable.
- If $q \leq p$ and $p \Vdash \varphi(\sigma)$, then $q \Vdash \varphi(\sigma)$.
- If $V[G] \models \varphi(\sigma_G)$, then there is $p \in G$ such that $p \Vdash \varphi(\sigma)$.

Cohen forcing

 $Add(\omega, 1)$ - adds a new real Conditions: binary sequences $p: D \rightarrow 2$ with $D \subseteq \omega$ finite. Order: $q \leq p$ if q extends p. $p = 1 \stackrel{10}{_{0123456}} 1$ Suppose $G \subseteq Add(\omega, 1)$ is V-generic. q = 1110 11 • $r = \bigcup G$ is a new real • V[G] has continuum-many V-generic reals for $Add(\omega, 1)$. $Add(\omega,\kappa)$ - adds (at least) κ -many reals Conditions: functions $p: D \rightarrow 2$, where D is a finite subset of $\omega \times \kappa$. Order: $q \leq p$ if q extends p. Suppose $G \subseteq Add(\omega, \kappa)$ is V-generic. ĸ $\bigcup G$ gives κ -many new reals.

ヘロト 人間ト 人団ト 人団ト

Sacks forcing

Sacks forcing S - adds a generic real

Conditions: Perfect trees $T \subseteq 2^{<\omega}$: every node has a splitting node above it. Order: $S \leq T$ if S is a subtree of T.

Suppose $G \subseteq S$ is *V*-generic.

- There is a real $b \in V[G]$ such that $T \in G$ iff b is a branch of T.
- The generic real *b* determines *G*.

イロン イヨン イヨン イヨン

Jensen's forcing J - adds a unique generic real

- constructed using \diamond in *L* (construction is technical)
- $\bullet \ \mathbb{J} \subseteq \mathbb{S}$
- has ccc
- adds a unique generic Π_2^1 -definable singleton real
- \bullet used by Jensen to show that it is consistent to have a non-constructible $\Pi^1_2\text{-definable}$ singleton real.

Every Σ_2^1 -definable singleton real is in L by Shoenfield's Absoluteness.

イロン イヨン イヨン イヨン

Products and iterations of forcing notions **Products**

Suppose \mathbb{P}_{α} for $\alpha < \beta$ are forcing notions.

A product $\mathbb{P} = \prod_{\alpha < \beta} \mathbb{P}_{\alpha}$ is a natural forcing notion.

- Conditions: $\langle p_{\alpha} \mid \alpha < \beta \rangle$ with $p_{\alpha} \in \mathbb{P}_{\alpha}$.
- Common supports: finite, bounded, full.
- Example: $Add(\omega, \kappa) = \prod_{\alpha < \kappa} Add(\omega, 1)$ with finite support.
- Usage: adding several objects to a forcing extension.

Iterations

Suppose \mathbb{P} is a forcing notion, $G \subseteq \mathbb{P}$ is V-generic, and \mathbb{Q} is a forcing notion in V[G].

V has a \mathbb{P} -name $\dot{\mathbb{Q}}$ for \mathbb{Q} . Every element of V[G] has a \mathbb{P} -name in V.

In V, we define a forcing notion $\mathbb{P} * \dot{\mathbb{Q}}$ such that forcing with $\mathbb{P} * \dot{\mathbb{Q}}$ is the same as forcing with \mathbb{P} followed by forcing with \mathbb{Q} .

- Conditions: (p, \dot{q}) with $p \in \mathbb{P}$ and $p \Vdash \dot{q} \in \dot{\mathbb{Q}}$.
- Order: $(p, \dot{q}) \leq (r, \dot{s})$ if $p \leq r$ and $p \Vdash \dot{q} \leq \dot{s}$.
- *n*-step iterations are defined similarly (infinite iterations can be defined as well).

Example: $\mathbb{S} * \dot{\mathbb{S}}$, where $\dot{\mathbb{S}}$ is the name for the Sacks forcing of the forcing extension.

Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.

Victoria Gitman

CUNY 12 / 21

Automorphisms of forcing notions

Suppose \mathbb{P} is a notion of forcing and π is an automorphism of \mathbb{P} .

We apply π (recursively) to \mathbb{P} -names: $\langle \tau, p \rangle \in \sigma$ if and only if $\langle \pi(\tau), \pi(p) \rangle \in \pi(\sigma)$. • $\pi(\check{a}) = \check{a}$

The forcing relation respects automorphisms: $p \Vdash \varphi(\sigma)$ if and only if $\pi(p) \Vdash \varphi(\pi(\sigma))$. If $G \subseteq \mathbb{P}$ is V-generic, then π " G is V-generic.

Examples

- For any $p, q \in Add(\omega, 1)$, there is an automorphism π such that p and $\pi(q)$ are compatible.
- Every permutation of κ gives rise to a coordinate-switching automorphism of Add(ω, κ).
- For any $p, q \in Add(\omega, \kappa)$, there is an automorphism π such that p and $\pi(q)$ are compatible.
- Jensen's forcing J is rigid.

イロト イポト イヨト イヨト 二日

A very bad model of Z_2^{-p}

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model $\mathscr{M} = \langle M, +, \times, <, 0, 1, \in, S \rangle \models \mathbb{Z}_2^{-p}$ such that S is not closed under complements. **Proof**: Let $G \subseteq \operatorname{Add}(\omega, \omega)$ be V-generic.

- Let $\{a_n \mid n < \omega\}$ be the ω -many generic reals from G.
- Let $S = P^V(\omega) \cup \{a_n \mid n < \omega\}.$
- $\bullet \ \mathcal{S}$ is not closed under complements.
- Let $\mathscr{M} = \langle \omega, +, \times, <, 0, 1, \in, \mathcal{S} \rangle$.
- Let \mathcal{M} be the canonical $Add(\omega, \omega)$ -name for \mathcal{M} .
- Fix a second-order formula $\varphi(x)$.
- Suppose, for $n < \omega$, $p \Vdash \dot{\mathcal{M}} \models \varphi(\check{n})$, but $q \Vdash \dot{\mathcal{M}} \models \neg \varphi(\check{n})$.
- Let π be a coordinate-switching automorphism such that there is $r \leq p, \pi(q)$.
- $\pi(q) \Vdash \dot{\mathscr{M}} \models \neg \varphi(\check{n}) \text{ since } \pi(\dot{\mathscr{M}}) = \dot{\mathscr{M}}.$
- $r \Vdash \dot{\mathscr{M}} \models \varphi(\check{n}) \ (r \le p) \text{ and } r \Vdash \dot{\mathscr{M}} \models \neg \varphi(\check{n}) \ (r \le \pi(q)).$ Impossible!
- If some $p \Vdash \dot{\mathscr{M}} \models \varphi(\check{n})$, then all $p \Vdash \dot{\mathscr{M}} \models \varphi(\check{n})$.
- By definability of the forcing relation, $\{n < \omega \mid \mathscr{M} \models \varphi(n)\} \in V$.
- $\mathcal{M} \models \mathbb{Z}_2^{-p}$. \Box

Theorem: (Lyubetsky and Kanovei) It is consistent that there is a model of Σ_2^1 -CA₀ + Z_2^{-p} in which Σ_4^1 -CA₀ fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks forcing.

Theorem: (G.) It is consistent that there is a model of Σ_2^1 -CA₀ + Z₂^{-p} in which Σ_3^1 -CA₀ fails.

The model is constructed in a forcing extension by a tree iteration of Jensen's forcing.

Work in progress: (Kanovei) It is consistent that there is a model of Σ_{n}^{1} -CA₀ + Z_{2}^{-p} in which Σ_{n+1}^{1} -CA₀ fails.

Proof idea: use a generalization of Jensen's forcing.

Finite iterations of Jensen's forcing

Theorem (Abraham) In *L*, for every $n < \omega$, there is an *n*-length iteration $\mathbb{J}_n = \mathbb{Q}_0 \cdot \mathbb{Q}_1 \cdots \mathbb{Q}_{n-1}$ such that:

- $\bullet \ \mathbb{Q}_0 = \mathbb{J}.$
- If G_i ⊆ J_n ↾ i is L-generic, then in L[G_i], Q = (Q̇_i)_{G_i} has all properties of Jensen's forcing.
- If m > n, then $\mathbb{J}_m \upharpoonright n = \mathbb{J}_n$.
- \mathbb{J}_n has the ccc.
- \mathbb{J}_n adds a unique generic Π^1_2 -definable *n*-length sequence of reals.

Let $\vec{\mathbb{J}} = \langle \mathbb{J}_n \mid n < \omega \rangle$.

<ロ> (四) (四) (三) (三) (三) (三)

Tree iteration of Jensen's forcing

- D_p is a finite subtree of $\omega^{<\omega}$,
- for all $s \in D_p$, $p(s) \in \mathbb{J}_{\mathsf{len}(s)}$,
- for $s \subseteq t$ in D_p , $p(s) = p(t) \upharpoonright \operatorname{len}(s)$.

Order: $q \le p$ if $D_q \supseteq D_p$ and for all $s \in D_p$, $q(s) \le p(s)$.

Tree iteration of Jensen's forcing (continued)

The tree iteration $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ adds a tree \mathcal{T}^{G} (isomorphic to $\omega^{<\omega}$) such that each node on level *n* has an *L*-generic *n*-length sequence of reals for \mathbb{J}_n .

Theorem: (Friedman, G.) The tree iteration $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ has the ccc.

Theorem: (Friedman, G.) Suppose $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ is *L*-generic. In L[G]:

- The only *L*-generic *n*-length sequence of reals for \mathbb{J}_n are those coming from the nodes of \mathcal{T}^G .
- The collection of all *L*-generic *n*-length sequences of reals for \mathbb{J}_n (any *n*) is \prod_{2}^{1} -definable.

Proposition: Suppose

- $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ is *L*-generic.
- T is a finite subtree of $\omega^{<\omega}$.
- $G_T = G \upharpoonright T$.

Then the only *L*-generic *n*-length sequences of reals for \mathbb{J}_n in $L[G_T]$ are those coming from the nodes of T.

Kanovei's tree

 $\vec{0}_n$ is the sequence of $n \ge 1$ -many zeroes

• $S_{n\vec{0}_{m+1}} \in S$ whenever $S_{n1}(1)(m) = 1$

 $S_{n1}(1) = 111...$

イロン イヨン イヨン イヨン

A model of Σ_2^1 -CA₀ + Z_2^{-p} in which Σ_3^1 -CA₀ fails

Let

- $\mathscr{T} = \{T \subseteq S \mid T \text{ finite}\},\$
- $S = \{A \in P^{L[G_T]}(\omega) \mid T \in \mathscr{T}\},\$
- $\mathcal{M} = (\omega, +, \times, <, 0, 1, \in, S)$,
- $\dot{\mathscr{M}}$ be a canonical $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ -name for \mathscr{M} .

Every permutation f of ω gives rise to an automorphism π_f of $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ which permutes the subtrees \mathcal{T}_n^G (sitting on node S_n) of \mathcal{T}^G , while preserving the rest of the tree structure.

- $\pi_f(\dot{\mathscr{M}}) = \dot{\mathscr{M}}$
- for any $p, q \in \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$, there is an automorphism π_f such that p and $\pi_f(q)$ are compatible.

<ロ> (四) (四) (三) (三) (三) (三)

A model of Σ_2^1 -CA₀ + Z_2^{-p} in which Σ_3^1 -CA₀ fails (continued)

Theorem (G.): $\mathscr{M} = (M, +, \times, <, 0, 1, \in, S) \models \Sigma_2^1 \cdot \operatorname{CA}_0 + Z_2^{-p} + \neg \Sigma_3^1 \cdot \operatorname{CA}_0.$ Proof:

- $\mathcal{M} \models \Sigma_2^1$ -CA₀ by Shoenfield's Absoluteness.
- $\mathcal{M} \models \mathbb{Z}_2^{-p}$ because every parameter-free $A \in S$ is in L by the automorphism argument.
- The collection

 $\{\vec{r} \mid \exists n \ \vec{r} \text{ is an } L$ -generic *n*-length sequence for $\mathbb{J}_n\} = \{S_s \mid s \in T \text{ for some } T \in \mathscr{T}\}$ is Π_2^1 -definable in \mathscr{M} (uses the construction of the \mathbb{J}_n).

- $S_{01}(1) \notin S$.
- S₀₁(1) is Σ¹₃-definable in *M*: m ∈ S₀₁(1) if and only if there are two L-generic m + 2-length sequences of reals for J_{m+2} whose first coordinate is S₀. □

(日) (四) (E) (E) (E) (E)