Parameter-free schemes in second-order arithmetic

Victoria Gitman

vgitman@gmail.com https://victoriagitman.github.io

> Online Logic Seminar February 6, 2025

Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic

- Separate variables and quantifiers for numbers and sets of numbers.
- Convention: lower-case letters for numbers, upper-case letters for sets.
- Notation:

 - Σ_n^0 first-order Σ_n -formula Σ_n^1 n-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle$.

- M is the collection of numbers.
- S is the collection of sets of numbers: if $A \in S$, then $A \subseteq M$.

Second-order axioms

- Numbers: Peano Arithmetic PA
- Sets:
 - Extensionality
 - ▶ Induction axiom: $\forall X ((0 \in X \land \forall n(n \in X \rightarrow n+1 \in X)) \rightarrow \forall n \ n \in X)$

Weak axiom systems

Arithmetical comprehension ACA₀

Comprehension scheme for first-order formulas: for all n, Σ_n^0 -CA₀ if $\varphi(n, A)$ is a first-order formula, then $\{n \mid \varphi(n, A)\}$ is a set.

• If $\langle M, +, \times, <, 0, 1 \rangle \models PA$ and S consists of definable subsets of M, then

$$\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models ACA_0.$$

• ACA₀ is conservative over PA.

Elementary Transfinite Recursion ATR₀

 ACA_0

Transfinite recursion: every first-order recursion on sets along a well-order has a solution.

- A well-order is a linear order Γ whose every subset has a minimal element.
- A solution to a recursion is a code of a function F: dom(Γ) → S.
 A code for F is F = {⟨n, m⟩ | n ∈ dom(Γ), m ∈ F(n)}.
- Applications:
 - Iterate the Turing jump operation.
 - ▶ Build an internal constructible universe *L*.

→ □ → → □ → → □ → □ → ○ ○ ○

Gödel's L in ATR_0

Gödel's constructible universe L

Suppose $V \models ZF$.

- $L_0 = \emptyset$
- $L_{\alpha+1}$ is the set of all subsets of L_{α} definable over L_{α} .
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for a limit λ .
- $L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$.

Suppose $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models \mathrm{ATR}_0$ and $\Gamma \in \mathcal{S}$ is a well-order.

- \mathcal{M} can construct the L-hierarchy along Γ .
- There is a set coding a sequence of L_{Δ} for $\Delta \leq \Gamma$ obeying the definition of L.

A model of ATR_0 has its own constructible universe $L^{\mathcal{M}}$!

Comprehension scheme

Increasing to the amount of comprehension to more complex second-order assertions produces a hierarchy of second-order set theories

 Σ_n^1 -comprehension Σ_n^1 -CA₀

If $\varphi(n, A)$ is a Σ_n^1 -formula, then $\{n \mid \varphi(n, A)\}$ is a set.

• Σ_1^1 -CA₀ is stronger than ATR₀.

culminating in:

Full second-order arithmetic Z₂

For all n, Σ_n^1 -comprehension.

Definition: Full parameter-free second-order arithmetic \mathbb{Z}_2^{-p}

Full comprehension without parameters.

Choice scheme

Σ_n^1 -choice Σ_n^1 -AC

If $\varphi(n, X, A)$ is a Σ_n^1 -formula and for every n, there is a set X such that $\varphi(n, X, A)$, then there is a set Y such that for every n, $\varphi(n, Y_n, A)$. $Y_n = \{m \mid \langle n, m \rangle \in Y\}$

Choice scheme AC

For all n, Σ_n^1 -choice.

Proposition:

- Over ACA₀, AC implies Z₂.
- The "constructible reals" of a model of Z_2 satisfy $Z_2 + AC$.
- Z_2 is equiconsistent with $Z_2 + AC$.

Definition: Parameter-free choice scheme AC^{-p}

Choice scheme without parameters.

Theorem: (Feferman, Lévy) It is consistent that there is a model of Z_2 in which $AC^{-\rho}$ fails.

Theorem: (Guzicki) It is consistent that there is a model of $Z_2 + AC^{-p}$ in which AC fails.

(미) (리) (리) (리) (리)

6 / 28

Collection scheme

Σ_n^1 -collection Σ_n^1 -Coll

If $\varphi(n, X, A)$ is a Σ_n^1 -formula and for every n, there is a set X such that $\varphi(n, X, A)$, then there is a set Y such that for every n, there is m such that $\varphi(n, Y_m, A)$.

Collection scheme Coll

For all n, Σ_n^1 -collection.

Proposition:

- Over ACA₀, Coll implies Z₂.
- Over ACA₀, Coll is equivalent to AC.

Definition: Parameter-free collection scheme $Coll^{-p}$

Collection scheme without parameters.

7 / 28

Equiconsistency of Z_2 and Z_2^{-p}

Theorem: (H. Friedman) \mathbb{Z}_2 and \mathbb{Z}_2^{-p} are equiconsistent.

Proof idea: Suppose $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models \mathbb{Z}_2^{-p}$.

- Carry out the L-construction inside M, but use only parameter-free definable well-orders.
- Let $(L^{-p})^{\mathcal{M}}$ be the resulting model.
- The "constructible reals" of $(L^{-p})^{\mathcal{M}}$ satisfy $Z_2 + AC$.

Parameter-free schemes

Questions:

- Is Z_2^{-p} equivalent to Z_2 ? No
- \bullet Does AC^{-p} imply Z_2^{-p} over $\mathrm{ACA_0?}$ $_{\text{Open}}$
- Is AC^{-p} equivalent to $Coll^{-p}$ over ACA_0 ? No

Quick review of forcing

Set-up

- $V \models ZFC$
- $\mathbb{P} \in V$ is a forcing notion: partial order with largest element 1

Dense sets and generic filters

 $D \subseteq \mathbb{P}$ is dense if for every $p \in \mathbb{P}$, there is $q \in D$ with $q \leq p$.

 $G \subseteq \mathbb{P}$ is a filter:

- $1 \in G$.
- (upward closure) If $p \in G$ and $p' \ge p$, then $p' \in G$.
- (compability) If $p, q \in G$, then $r \in G$ such that $r \leq p, q$.

A filter $G \subseteq \mathbb{P}$ is V-generic if it meets every dense set $D \in V$ of \mathbb{P} : $D \cap G \neq \emptyset$.

Theorem: V has no V-generic filters for \mathbb{P} .

The forcing extension V[G] is constructed from V together with an external V-generic filter G.

Quick review of forcing (continued)

 \mathbb{P} -name: name for an element of V[G]

Defined recursively to consist of pairs $\langle \tau, p \rangle$ where $p \in \mathbb{P}$ and τ is a \mathbb{P} -name.

Special \mathbb{P} -names

• Given
$$a \in V$$
, $\check{a} = \{\langle \check{b}, 1 \rangle \mid b \in a\}$.

$$\bullet \ \dot{G} = \{\langle \check{p}, p \rangle \mid p \in \mathbb{P}\}.$$

Forcing extension V[G]

Suppose $G \subseteq \mathbb{P}$ is V-generic.

The interpretation of a \mathbb{P} -name σ by G:

$$\sigma_{\it G}=\{ au_{\it G}\mid \langle au, {\it p}
angle \in \sigma \ {\it and} \ {\it p}\in {\it G}\}.$$
 Defined recursively.

The forcing extension $V[G] = \{ \sigma_G \mid \sigma \text{ is a } \mathbb{P}\text{-name in } V \}.$

•
$$G \in V[G]$$
: $\dot{G}_G = G$.

•
$$V[G] \models ZFC$$

Forcing relation $p \Vdash \varphi(\sigma)$: whenever G is V-generic and $p \in G$, then $V[G] \models \varphi(\sigma_G)$.

- For a fixed first-order formula $\varphi(x)$, the relation $p \Vdash \varphi(\sigma)$ is definable.
- If $q \leq p$ and $p \Vdash \varphi(\sigma)$, then $q \Vdash \varphi(\sigma)$.
- $\bullet \ \ \mathsf{If} \ \ V[G] \models \varphi(\sigma_G), \ \mathsf{then} \ \mathsf{there} \ \mathsf{is} \ p \in G \ \mathsf{such that} \ p \Vdash \varphi(\sigma).$

Cohen forcing

 $Add(\omega,1)$ - adds a new real

Elements: binary sequences $p: D \to 2$ with $D \subseteq \omega$ finite.

Order: $q \le p$ if q extends p.

Suppose $G \subseteq Add(\omega, 1)$ is V-generic.

- $r = \bigcup G$ is a new real
- V[G] has continuum-many V-generic reals for $Add(\omega, 1)$.

 $Add(\omega, \kappa)$ - adds (at least) κ -many reals

Elements: functions $p:D\to 2$, where D is a finite subset of

 $\omega \times \kappa$.

Order: $q \le p$ if q extends p.

Suppose $G \subseteq Add(\omega, \kappa)$ is V-generic.

 $\bigcup G$ gives κ -many new reals.

Sacks forcing

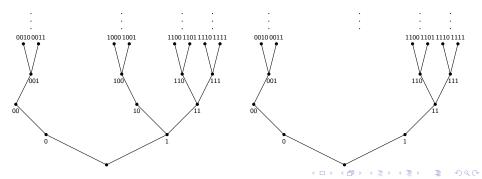
Sacks forcing S - adds a generic real

Elements: Perfect trees $T \subseteq 2^{<\omega}$: every node has a splitting node above it.

Order: $S \leq T$ if S is a subtree of T.

Suppose $G \subseteq \mathbb{S}$ is V-generic.

- $\bigcap_{T \in G} T = b$ is a branch (real).
- If b is a branch of T, then $T \in G$.
- The generic real b determines G.



Jensen's forcing

Jensen's forcing J - adds a unique generic real

- constructed using
 in L construction is technical
- \bullet $\mathbb{J}\subseteq\mathbb{S}$
- adds a unique generic Π₂¹-definable singleton real
- used by Jensen to show that it is consistent to have a non-constructible Π_2^1 -definable singleton real.

Every Σ^1_2 -definable singleton real is in L by Shoenfield's Absoluteness.

Iterations of forcing notions

Suppose \mathbb{P} is a forcing notion, $G \subseteq \mathbb{P}$ is V-generic, and \mathbb{Q} is a forcing notion in V[G].

V has a \mathbb{P} -name \mathbb{Q} for \mathbb{Q} . Every element of V[G] has a \mathbb{P} -name in V.

In V, we define a forcing notion $\mathbb{P}*\dot{\mathbb{Q}}$ such that forcing with $\mathbb{P}*\dot{\mathbb{Q}}$ is the same as forcing with \mathbb{P} followed by forcing with \mathbb{Q} .

- Elements: (p, \dot{q}) with $p \in \mathbb{P}$ and $p \Vdash \dot{q} \in \dot{\mathbb{Q}}$.
- Order: $(p, \dot{q}) \le (r, \dot{s})$ if $p \le r$ and $p \Vdash \dot{q} \le \dot{s}$.
- n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: $\mathbb{S} * \dot{\mathbb{S}}$, where $\dot{\mathbb{S}}$ is the name for the Sacks forcing of the forcing extension.

Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.

Automorphisms of forcing notions

Suppose \mathbb{P} is a notion of forcing and π is an automorphism of \mathbb{P} .

We apply π (recursively) to \mathbb{P} -names: $\langle \tau, p \rangle \in \sigma$ if and only if $\langle \pi(\tau), \pi(p) \rangle \in \pi(\sigma)$.

•
$$\pi(\check{a})=\check{a}$$

The forcing relation respects automorphisms: $p \Vdash \varphi(\sigma)$ if and only if $\pi(p) \Vdash \varphi(\pi(\sigma))$.

If $G \subseteq \mathbb{P}$ is V-generic, then π " G is V-generic.

Examples

- For any $p,q \in \mathrm{Add}(\omega,1)$, there is an automorphism π such that p and $\pi(q)$ are compatible.
- Every permutation of κ gives rise to a coordinate-switching automorphism of $\operatorname{Add}(\omega,\kappa)$.
- For any $p,q \in \mathrm{Add}(\omega,\kappa)$, there is an automorphism π such that p and $\pi(q)$ are compatible.
- Jensen's forcing J is rigid.

A very bad model of \mathbb{Z}_2^{-p}

Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model $\mathcal{M} = \langle M, +, \times, <, 0, 1, \in, \mathcal{S} \rangle \models Z_2^{-\rho}$ such that \mathcal{S} is not closed under complements.

Proof: Let $G \subseteq Add(\omega, \omega)$ be V-generic.

- Let $\{a_n \mid n < \omega\}$ be the ω -many generic reals from G.
- Let $S = P^V(\omega) \cup \{a_n \mid n < \omega\}.$
- ullet ${\cal S}$ is not closed under complements.
- Let $\mathcal{M} = \langle \omega, +, \times, <, 0, 1, \in, \mathcal{S} \rangle$.
- Let \mathcal{M} be the canonical $Add(\omega, \omega)$ -name for \mathcal{M} .
- Fix a second-order formula $\varphi(x)$.
- Suppose, for $n < \omega$, $p \Vdash \mathring{\mathcal{M}} \models \varphi(\check{\mathbf{n}})$, but $q \Vdash \mathring{\mathcal{M}} \models \neg \varphi(\check{\mathbf{n}})$.
- Let π be a coordinate-switching automorphism such that there is $r \leq p, \pi(q)$.
- $\bullet \ \pi(\mathring{\mathscr{M}}) = \mathring{\mathscr{M}}.$
- $\pi(q) \Vdash \pi(\mathring{\mathcal{M}}) \models \neg \varphi(\pi(\check{n}))$, and hence $\pi(q) \Vdash \mathring{\mathcal{M}} \models \neg \varphi(\check{n})$.
- $r \Vdash \mathring{\mathcal{M}} \models \varphi(\check{\mathsf{n}}) \ (r \leq p)$ and $r \Vdash \mathring{\mathcal{M}} \models \neg \varphi(\check{\mathsf{n}}) \ (r \leq \pi(q))$. Impossible!
- If some $p \Vdash \mathcal{M} \models \varphi(\check{n})$, then all $p \Vdash \mathcal{M} \models \varphi(\check{n})$.
- By definability of the forcing relation, $\{n < \omega \mid \mathcal{M} \models \varphi(n)\} \in P^{V}(\omega) \subseteq \mathcal{S}$.
- $\mathcal{M} \models \mathbb{Z}_2^{-p}$. \square

A model of $\Sigma_2^1\text{-}\mathrm{CA}_0 + \mathrm{Z}_2^{-\textit{p}}$

Question: Are there "nice" models of \mathbb{Z}_2^{-p} , but not \mathbb{Z}_2 ?

Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model of $Z_2^{-\rho} + \Sigma_2^1 - CA_0$ in which $\Sigma_4^1 - CA_0$ fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks forcing.

Theorem: (G.) It is consistent that there is a model of $Z_2^{-\rho} + \Sigma_2^1$ -CA₀ in which Σ_3^1 -CA₀ fails.

The model is constructed in a forcing extension by a tree iteration of Jensen's forcing.

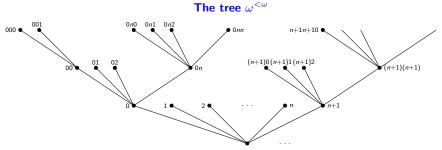
Finite iterations of Jensen's forcing

Theorem (Abraham) In L, for every $n < \omega$, there is an n-length iteration $\mathbb{J}_n = \mathbb{Q}_0 * \dot{\mathbb{Q}}_1 * \cdots * \dot{\mathbb{Q}}_{n-1}$ such that:

- ullet $\mathbb{Q}_0 = \mathbb{J}$.
- If $G_i \subseteq \mathbb{J}_n \upharpoonright i$ is L-generic, then in $L[G_i]$, $\mathbb{Q} = (\dot{\mathbb{Q}}_i)_{G_i}$ has all properties of Jensen's forcing.
- \mathbb{J}_n adds a unique generic Π_2^1 -definable *n*-length sequence of reals.

Let
$$\vec{\mathbb{J}} = \langle \mathbb{J}_n \mid n < \omega \rangle$$
.

The tree iteration of Jensen's forcing along $\omega^{<\omega}$

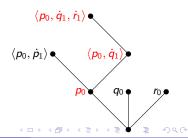


 $\mathbb{P}(\vec{\mathbb{J}},\omega^{<\omega})$: tree iteration along $\omega^{<\omega}$

Elements: $p: D_p \to \bigcup_{n < \omega} \mathbb{J}_n$ such that:

- D_p is a finite subtree of $\omega^{<\omega}$,
- for all $s \in D_p$, $p(s) \in \mathbb{J}_{len(s)}$,
- for $s \subseteq t$ in D_p , $p(s) = p(t) \upharpoonright len(s)$.

Order: $q \le p$ if $D_q \supseteq D_p$ and for all $s \in D_p$, $q(s) \le p(s)$.



Victoria Gitman

Parameter-free comprehension

Tree iterations of Jensen's forcing

Let T be a tree of height at most ω .

- T is finite.
- $T = \omega_1^{<\omega}$.

 $\mathbb{P}(\vec{\mathbb{J}}, T)$: tree iteration along T

Elements: $p: D_p \to \bigcup_{n < \omega} \mathbb{J}_n$ such that:

- D_p is a finite subtree of T,
- for all $s \in D_p$, $p(s) \in \mathbb{J}_{len(s)}$,
- for $s \subseteq t$ in D_p , $p(s) = p(t) \upharpoonright len(s)$.

Order: $q \leq p$ if $D_q \supseteq D_p$ and for all $s \in D_p$, $q(s) \leq p(s)$.

Tree iteration of Jensen's forcing (continued)

The tree iteration $\mathbb{P}(\vec{\mathbb{J}}, T)$ adds a tree T^{G} (isomorphic to T) such that each node on level n has an L-generic n-length sequence of reals for \mathbb{J}_{n} .

Theorem: (Friedman, G.) Suppose G is L-generic for $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ or $\mathbb{P}(\vec{\mathbb{J}}, \omega_1^{<\omega})$. In L[G]:

- The only L-generic n-length sequence of reals for J_n are those coming from the nodes of T⁶.
- The collection of all *L*-generic *n*-length sequences of reals for \mathbb{J}_n (any *n*) is Π_2^1 -definable.

Lemma: Suppose

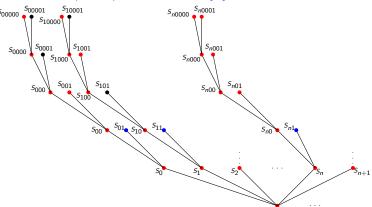
- $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ (or $\mathbb{P}(\vec{\mathbb{J}}, \omega_1^{<\omega})$) is *L*-generic.
- T is a finite subtree of $\omega^{<\omega}$ (or countable subtree of $\omega_1^{<\omega}$).
- $G_T = G \upharpoonright T$.

Then

- G_T is *L*-generic for $\mathbb{P}(\vec{\mathbb{J}}, T)$.
- The only L-generic *n*-length sequences of reals for \mathbb{J}_n in $L[G_T]$ are those coming from the nodes of T.

Kanovei's tree

Suppose $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ is *L*-generic. In L[G], define the tree $S \subseteq \mathcal{T}^G$:



- $S_n \in S$ for every $n < \omega$
- $S_{n\vec{0}_m}$ for every $n, m < \omega$ $\vec{0}_n$ is the sequence of $n \ge 1$ -many zeroes
- ullet $S_{nec{0}_{m+1}1}\in S$ whenever $S_{n1}(1)(m)=1$

$$S_{01}(1) = 100...$$

$$S_{11}(1) = 010...$$

$$S_{n1}(1)=111\ldots$$

CUNY

A model of ${\rm Z}_2^{-\rho} + \Sigma_2^1{\rm -CA}_0$ in which $\Sigma_3^1{\rm -CA}_0$ fails

Big idea:

- $S_{n1} \notin S$.
- S_{n1} is coded into S.

Let

- $\mathcal{T} = \{ T \subseteq S \mid T \text{ finite} \},$
- $S = \{A \in P^{L[G_T]}(\omega) \mid T \in \mathscr{T}\},$
- $\mathcal{M} = (\omega, +, \times, <, 0, 1, \in, \mathcal{S})$,
- \mathcal{M} is a canonical $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ -name for \mathcal{M} .

Every permutation f of ω gives rise to an automorphism π_f of $\mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$ which permutes the subtrees $\mathcal{T}_n^{\mathcal{G}}$ (sitting on node S_n) of $\mathcal{T}^{\mathcal{G}}$, while preserving the rest of the tree structure.

- $\pi_f(\dot{\mathcal{M}}) = \dot{\mathcal{M}}$
- for any $p, q \in \mathbb{P}(\vec{\mathbb{J}}, \omega^{<\omega})$, there is an automorphism π_f such that p and $\pi_f(q)$ are compatible.

→□→→□→→□→→□→□ ● のQで

A model of Σ_2^1 - $\operatorname{CA}_0 + \operatorname{Z}_2^{-p}$ in which Σ_3^1 - CA_0 fails (continued)

Theorem (G.): $\mathcal{M} = (M, +, \times, <, 0, 1, \in, \mathcal{S}) \models \Sigma_2^1 \text{-} \operatorname{CA}_0 + \operatorname{Z}_2^{-\rho} + \neg \Sigma_3^1 \text{-} \operatorname{CA}_0.$

Proof:

- $\mathcal{M} \models \Sigma_2^1\text{-}\mathrm{CA}_0$ by Shoenfield's Absoluteness.
- $\mathcal{M} \models \mathbb{Z}_2^{-p}$ because every parameter-free definable $A \in \mathcal{S}$ is in L by the automorphism argument.
- The collection $\{\vec{r} \mid \exists n \, \vec{r} \text{ is an } L\text{-generic } n\text{-length sequence for } \mathbb{J}_n\} = \{S_s \mid s \in T \text{ for some } T \in \mathscr{T}\}$ is $\Pi^1_{\mathfrak{I}}$ -definable in \mathscr{M} (uses the construction of the \mathbb{J}_n).
- $S_{01}(1) \notin S$.
- $S_{01}(1)$ is Σ_3^1 -definable in \mathcal{M} : $m \in S_{01}(1)$ if and only if there are two L-generic m+1-length sequences of reals for \mathbb{J}_{m+1} whose first coordinate is S_0 . \square

Theorem: (G.) $Coll^{-p}$ fails in \mathcal{M} .

Proof:

- For every $n < \omega$, \mathcal{M} has an L-generic n-length sequence of reals for \mathbb{J}_n .
- If $T \subseteq S$ is finite, then $L[G_T]$ cannot have a set containing for every $n < \omega$, an L-generic n-length sequence of reals for \mathbb{J}_n .

←□ → ←□ → ← □ → ← □ → ← ○ ○

A model of $Z_2^{-p} + \operatorname{Coll}^{-p} + \Sigma_2^1 - \operatorname{CA}_0$ in which AC^{-p} and $\Sigma_4^1 - \operatorname{CA}_0$ fail

Suppose $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega_1^{<\omega})$ is *L*-generic. In L[G], define the tree $S \subseteq \mathcal{T}^G$:

- ullet $S_{\xi} \in \mathcal{S}$ for every $\xi < \omega_1$ all level 1 nodes
- ullet $S_{ec{arepsilon}_m}$ for every $\xi<\omega_1$ and $m<\omega$ all left-most branches
- $S_{\xi \vec{0}_{m+1} n}$ for every $\xi < \omega_1$ and $m, k < \omega$. all left-most branch nodes split ω -times
- ullet $S_{\xi ec{0}_{m+1}\eta} \in S$ for all $\eta < \omega_1$ if and only if $S_{\xi 1}(1)(m) = 1$ left-most branch node splits ω_1 -many times

Big idea:

- $S_{\xi 1} \notin S$.
- $S_{\xi 1}$ is coded into S.

Let

- $\mathscr{T} = \{ T \subseteq S \mid T \text{ countable} \},$
- $S = \{A \in P^{L[G_T]}(\omega) \mid T \in \mathscr{T}\},$
- $\mathcal{M} = (\omega, +, \times, <, 0, 1, \in, \mathcal{S}).$

Corollary: $AC^{-\rho}$ and $Coll^{-\rho}$ are not equivalent over ACA_0 (or even Σ_2^1 - CA_0).

→□→→□→→□→→□→□ ● のQで

A model of $Z_2^{-p} + AC^{-p} + \Sigma_2^{1}\text{-}CA_0$ in which $\Sigma_4^{1}\text{-}CA_0$ fails

Big idea:

- $S_{\varepsilon n} \notin S$.
- The finite sequences $S_{\xi n} \upharpoonright n$ are coded into S.

Suppose $G \subseteq \mathbb{P}(\vec{\mathbb{J}}, \omega_1^{<\omega})$ is *L*-generic. In L[G], define the tree $S \subseteq \mathcal{T}^G$:

For $n < \omega$, let p_n be the n-th prime.

- ullet $S_{\xi}\in S$ for every $\xi<\omega_1$ all level 1 nodes
- ullet $S_{\xi ec{0}_m}$ for every $\xi < \omega_1$ and $m < \omega$ all left-most branches
- ullet $S_{\xi ec{0}_{m+1}n}$ for every $\xi < \omega_1$ and $m,k < \omega$. all left-most branch nodes split ω -times
- $S_{\xi \vec{0}_{p_n^m} \eta} \in S$ for all $\eta < \omega_1$ if and only if $S_{\xi n}(1)(m) = 1$ (m < n) left-most branch node splits ω_1 -many times

Questions

- Can we obtain a model of $Z_2^{-p} + \operatorname{Coll}^{-p} + \Sigma_2^1 \operatorname{CA}_0$ in which, optimally, $\Sigma_3^1 \operatorname{CA}_0$ fails?
- Can we obtain a model of $Z_2^{-\rho}+AC^{-\rho}+\Sigma_2^{1}\text{-}CA_0$ in which, optimally, $\Sigma_3^{1}\text{-}CA_0$ fails?
- Can we obtain a model of $ACA_0 + AC^{-p}$ in which Z_2^{-p} fails?
- Given $n < \omega$, can we obtain a model of $Z_2^{-p} + \Sigma_n^1$ - CA_0 in which Σ_{n+1}^1 - CA_0 -fails?