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Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic

Separate variables and quantifiers for numbers and sets of numbers.

Convention: lower-case letters for numbers, upper-case letters for sets.

Notation:
I Σ0

n - first-order Σn-formula
I Σ1

n - n-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is M = 〈M,+,×, <, 0, 1,∈,S〉.
M is the collection of numbers.

S is the collection of sets of numbers: if A ∈ S, then A ⊆ M.

Second-order axioms

Numbers: Peano Arithmetic PA

Sets:
I Extensionality
I Induction axiom: ∀X ((0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ))→ ∀n n ∈ X )
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Weak axiom systems

Arithmetical comprehension ACA0

Comprehension scheme for first-order formulas: for all n, Σ0
n-CA0

if ϕ(n,A) is a first-order formula, then {n | ϕ(n,A)} is a set.

If 〈M,+,×, <, 0, 1〉 |= PA and S consists of definable subsets of M, then

M = 〈M,+,×, <, 0, 1,∈,S〉 |= ACA0.

ACA0 is conservative over PA.

Elementary Transfinite Recursion ATR0

ACA0

Transfinite recursion: every first-order recursion on sets along a well-order has a solution.

A well-order is a linear order Γ whose every subset has a minimal element.

A solution to a recursion is a code of a function F : dom(Γ)→ S.
A code for F is F̄ = {〈n,m〉 | n ∈ dom(Γ),m ∈ F (n)}.

Applications:
I Iterate the Turing jump operation.
I Build an internal constructible universe L.
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Gödel’s L in ATR0

Gödel’s constructible universe L

Suppose V |= ZF.

L0 = ∅
Lα+1 is the set of all subsets of Lα definable over Lα.

Lλ =
⋃
α<λ Lα for a limit λ.

L =
⋃
α∈Ord Lα.

V
L

Suppose M = 〈M,+,×, <, 0, 1,∈,S〉 |= ATR0 and Γ ∈ S is a well-order.

M can construct the L-hierarchy along Γ.

There is a set coding a sequence of L∆ for ∆ ≤ Γ obeying the definition of L.

A model of ATR0 has its own constructible universe LM !

Victoria Gitman Parameter-free comprehension CUNY 4 / 28



Comprehension scheme

Increasing to the amount of comprehension to more complex second-order assertions
produces a hierarchy of second-order set theories

Σ1
n-comprehension Σ1

n-CA0

If ϕ(n,A) is a Σ1
n-formula, then {n | ϕ(n,A)} is a set.

Σ1
1-CA0 is stronger than ATR0.

culminating in:

Full second-order arithmetic Z2

For all n, Σ1
n-comprehension.

Definition: Full parameter-free second-order arithmetic Z−p
2

Full comprehension without parameters.
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Choice scheme

Σ1
n-choice Σ1

n-AC

If ϕ(n,X ,A) is a Σ1
n-formula and for every n, there is a set X such that ϕ(n,X ,A), then

there is a set Y such that for every n, ϕ(n,Yn,A). Yn = {m | 〈n,m〉 ∈ Y}

Choice scheme AC

For all n, Σ1
n-choice.

Proposition:

Over ACA0, AC implies Z2.

The “constructible reals” of a model of Z2 satisfy Z2 + AC.

Z2 is equiconsistent with Z2 + AC.

Definition: Parameter-free choice scheme AC−p

Choice scheme without parameters.

Theorem: (Feferman, Lévy) It is consistent that there is a model of Z2 in which AC−p

fails.

Theorem: (Guzicki) It is consistent that there is a model of Z2 +AC−p in which AC fails.
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Collection scheme

Σ1
n-collection Σ1

n-Coll

If ϕ(n,X ,A) is a Σ1
n-formula and for every n, there is a set X such that ϕ(n,X ,A), then

there is a set Y such that for every n, there is m such that ϕ(n,Ym,A).

Collection scheme Coll

For all n, Σ1
n-collection.

Proposition:

Over ACA0, Coll implies Z2.

Over ACA0, Coll is equivalent to AC.

Definition: Parameter-free collection scheme Coll−p

Collection scheme without parameters.
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Equiconsistency of Z2 and Z−p2

Theorem: (H. Friedman) Z2 and Z−p
2 are equiconsistent.

Proof idea: Suppose M = 〈M,+,×, <, 0, 1,∈,S〉 |= Z−p
2 .

Carry out the L-construction inside M , but use only parameter-free definable
well-orders.

Let (L−p)M be the resulting model.

The “constructible reals” of (L−p)M satisfy Z2 + AC.
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Parameter-free schemes

Questions:

Is Z−p
2 equivalent to Z2? No

Does AC−p imply Z−p
2 over ACA0? Open

Is AC−p equivalent to Coll−p over ACA0? No
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Quick review of forcing

Set-up

V |= ZFC

P ∈ V is a forcing notion: partial order with largest element 1l

Dense sets and generic filters

D ⊆ P is dense if for every p ∈ P, there is q ∈ D with q ≤ p.

G ⊆ P is a filter:

1l ∈ G .

(upward closure) If p ∈ G and p′ ≥ p, then p′ ∈ G .

(compability) If p, q ∈ G , then r ∈ G such that r ≤ p, q.

r

p′

p q

A filter G ⊆ P is V -generic if it meets every dense set D ∈ V of P: D ∩ G 6= ∅.

Theorem: V has no V -generic filters for P.

The forcing extension V [G ] is constructed from V together with an external V -generic
filter G .

Victoria Gitman Parameter-free comprehension CUNY 10 / 28



Quick review of forcing (continued)
P-name: name for an element of V [G ]

Defined recursively to consist of pairs 〈τ, p〉 where p ∈ P and τ is a P-name.

Special P-names

Given a ∈ V , ǎ = {〈b̌, 1l〉 | b ∈ a}.
Ġ = {〈p̌, p〉 | p ∈ P}.

Forcing extension V [G ]

Suppose G ⊆ P is V -generic.

The interpretation of a P-name σ by G :
σG = {τG | 〈τ, p〉 ∈ σ and p ∈ G}. Defined recursively.

The forcing extension V [G ] = {σG | σ is a P-name in V }.

V ⊆ V [G ]: ǎG = a.

G ∈ V [G ]: ĠG = G .

V [G ] |= ZFC

V
V [G ]

•G

Forcing relation p 
 ϕ(σ): whenever G is V -generic and p ∈ G , then V [G ] |= ϕ(σG ).

For a fixed first-order formula ϕ(x), the relation p 
 ϕ(σ) is definable.

If q ≤ p and p 
 ϕ(σ), then q 
 ϕ(σ).

If V [G ] |= ϕ(σG ), then there is p ∈ G such that p 
 ϕ(σ).
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Cohen forcing

Add(ω, 1) - adds a new real

Elements: binary sequences p : D → 2 with D ⊆ ω finite.

Order: q ≤ p if q extends p.

Suppose G ⊆ Add(ω, 1) is V -generic.

r =
⋃

G is a new real

V [G ] has continuum-many V -generic reals for Add(ω, 1).

p = 1
01

1
2
0
345

1
6

q = 1
0
1
1
1
2
0
345

1
6
1
7

Add(ω, κ) - adds (at least) κ-many reals

Elements: functions p : D → 2, where D is a finite subset of
ω × κ.

Order: q ≤ p if q extends p.

Suppose G ⊆ Add(ω, κ) is V -generic.⋃
G gives κ-many new reals.

0
1
1

0

1

1

0

1

1
ω

κ
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Sacks forcing

Sacks forcing S - adds a generic real

Elements: Perfect trees T ⊆ 2<ω: every node has a splitting node above it.

Order: S ≤ T if S is a subtree of T .

Suppose G ⊆ S is V -generic.⋂
T∈G T = b is a branch (real).

If b is a branch of T , then T ∈ G .

The generic real b determines G .

0 1

10 1100

111110100001

0010 0011 1000 1001 1100 1101 1110 1111

0 1

1100

111110001

0010 0011 1100 1101 1110 1111
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Jensen’s forcing

Jensen’s forcing J - adds a unique generic real

constructed using ♦ in L construction is technical

J ⊆ S
adds a unique generic Π1

2-definable singleton real

used by Jensen to show that it is consistent to have a non-constructible Π1
2-definable

singleton real.
Every Σ1

2-definable singleton real is in L by Shoenfield’s Absoluteness.
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Iterations of forcing notions

Suppose P is a forcing notion, G ⊆ P is V -generic, and Q is a forcing notion in V [G ].

V has a P-name Q̇ for Q. Every element of V [G ] has a P-name in V .

In V , we define a forcing notion P ∗ Q̇ such that forcing with P ∗ Q̇ is the same as forcing
with P followed by forcing with Q.

Elements: (p, q̇) with p ∈ P and p 
 q̇ ∈ Q̇.

Order: (p, q̇) ≤ (r , ṡ) if p ≤ r and p 
 q̇ ≤ ṡ.

n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: S ∗ Ṡ, where Ṡ is the name for the Sacks forcing of the forcing extension.
Sacks forcing of V [G ] is different from Sacks forcing of V because V [G ] has new perfect trees.
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Automorphisms of forcing notions

Suppose P is a notion of forcing and π is an automorphism of P.

We apply π (recursively) to P-names: 〈τ, p〉 ∈ σ if and only if 〈π(τ), π(p)〉 ∈ π(σ).

π(ǎ) = ǎ

The forcing relation respects automorphisms: p 
 ϕ(σ) if and only if π(p) 
 ϕ(π(σ)).

If G ⊆ P is V -generic, then π " G is V -generic.

Examples

For any p, q ∈ Add(ω, 1), there is an automorphism π such that p and π(q) are
compatible.

Every permutation of κ gives rise to a coordinate-switching automorphism of
Add(ω, κ).

For any p, q ∈ Add(ω, κ), there is an automorphism π such that p and π(q) are
compatible.

Jensen’s forcing J is rigid.
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A very bad model of Z−p2
Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model
M = 〈M,+,×, <, 0, 1,∈,S〉 |= Z−p

2 such that S is not closed under complements.

Proof: Let G ⊆ Add(ω, ω) be V -generic.

Let {an | n < ω} be the ω-many generic reals from G .

Let S = PV (ω) ∪ {an | n < ω}.
S is not closed under complements.

Let M = 〈ω,+,×, <, 0, 1,∈,S〉.
Let ˙M be the canonical Add(ω, ω)-name for M .

Fix a second-order formula ϕ(x).

Suppose, for n < ω, p 
 ˙M |= ϕ(ň), but q 
 ˙M |= ¬ϕ(ň).

Let π be a coordinate-switching automorphism such that there is r ≤ p, π(q).

π( ˙M ) = ˙M .

π(q) 
 π( ˙M ) |= ¬ϕ(π(ň)), and hence π(q) 
 ˙M |= ¬ϕ(ň).

r 
 ˙M |= ϕ(ň) (r ≤ p) and r 
 ˙M |= ¬ϕ(ň) (r ≤ π(q)). Impossible!

If some p 
 ˙M |= ϕ(ň), then all p 
 ˙M |= ϕ(ň).

By definability of the forcing relation, {n < ω |M |= ϕ(n)} ∈ PV (ω) ⊆ S.

M |= Z−p
2 . �
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A model of Σ1
2-CA0 + Z−p2

Question: Are there “nice” models of Z−p
2 , but not Z2?

Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model of
Z−p

2 + Σ1
2-CA0 in which Σ1

4-CA0 fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks
forcing.

Theorem: (G.) It is consistent that there is a model of Z−p
2 + Σ1

2-CA0 in which Σ1
3-CA0

fails.

The model is constructed in a forcing extension by a tree iteration of Jensen’s forcing.
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Finite iterations of Jensen’s forcing

Theorem (Abraham) In L, for every n < ω, there is an n-length iteration
Jn = Q0 ∗ Q̇1 ∗ · · · ∗ Q̇n−1 such that:

Q0 = J.

If Gi ⊆ Jn � i is L-generic, then in L[Gi ], Q = (Q̇i )Gi has all properties of Jensen’s
forcing.

Jn adds a unique generic Π1
2-definable n-length sequence of reals.

Let ~J = 〈Jn | n < ω〉.
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The tree iteration of Jensen’s forcing along ω<ω

The tree ω<ω

0 1 2 n n+1. . .

. . .

00
01 02

0n

000
001 0n0 0n1 0n2

0nn

(n+1)0 (n+1)1 (n+1)2
(n+1)(n+1)

n+1n+10

P(~J, ω<ω): tree iteration along ω<ω

Elements: p : Dp →
⋃

n<ω Jn such that:

Dp is a finite subtree of ω<ω,

for all s ∈ Dp, p(s) ∈ Jlen(s),

for s ⊆ t in Dp, p(s) = p(t) � len(s).

Order: q ≤ p if Dq ⊇ Dp and for all s ∈ Dp,
q(s) ≤ p(s).

p0 q0 r0

〈p0, ṗ1〉 〈p0, q̇1〉

〈p0, q̇1, ṙ1〉
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Tree iterations of Jensen’s forcing

Let T be a tree of height at most ω.

T is finite.

T = ω<ω1 .

P(~J,T ): tree iteration along T

Elements: p : Dp →
⋃

n<ω Jn such that:

Dp is a finite subtree of T ,

for all s ∈ Dp, p(s) ∈ Jlen(s),

for s ⊆ t in Dp, p(s) = p(t) � len(s).

Order: q ≤ p if Dq ⊇ Dp and for all s ∈ Dp, q(s) ≤ p(s).
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Tree iteration of Jensen’s forcing (continued)

The tree iteration P(~J,T ) adds a tree T G (isomorphic to T ) such that each node on
level n has an L-generic n-length sequence of reals for Jn.

Theorem: (Friedman, G.) Suppose G is L-generic for P(~J, ω<ω) or P(~J, ω<ω1 ).
In L[G ]:

The only L-generic n-length sequence of reals for Jn are those coming from the
nodes of T G .

The collection of all L-generic n-length sequences of reals for Jn (any n) is
Π1

2-definable.

Lemma: Suppose

G ⊆ P(~J, ω<ω) (or P(~J, ω<ω1 )) is L-generic.

T is a finite subtree of ω<ω (or countable subtree of ω<ω1 ).

GT = G � T .

Then

GT is L-generic for P(~J,T ).

The only L-generic n-length sequences of reals for Jn in L[GT ] are those coming from
the nodes of T .
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Kanovei’s tree

Suppose G ⊆ P(~J, ω<ω) is L-generic. In L[G ], define the tree S ⊆ T G :

S0 S1 S2

.

.

.

Sn Sn+1

.

.

.
. . .

. . .

S00
S01 S10

S11 Sn0
Sn1

S000
S001

S100

S101 Sn00
Sn01

S0000
S0001

S1000

S1001

Sn000

Sn001

S00000
S00001

S10000

S10001 Sn0000
Sn0001

Sn ∈ S for every n < ω

Sn~0m
for every n,m < ω

~0n is the sequence of n ≥ 1-many zeroes

Sn~0m+11 ∈ S whenever Sn1(1)(m) = 1

S01(1) = 100 . . .

S11(1) = 010 . . .

Sn1(1) = 111 . . .
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A model of Z−p2 + Σ1
2-CA0 in which Σ1

3-CA0 fails

Big idea:

Sn1 /∈ S .

Sn1 is coded into S .

Let

T = {T ⊆ S | T finite},
S = {A ∈ PL[GT ](ω) | T ∈ T },
M = (ω,+,×, <, 0, 1,∈,S),

˙M is a canonical P(~J, ω<ω)-name for M .

Every permutation f of ω gives rise to an automorphism πf of P(~J, ω<ω) which permutes
the subtrees T G

n (sitting on node Sn) of T G , while preserving the rest of the tree
structure.

πf ( ˙M ) = ˙M

for any p, q ∈ P(~J, ω<ω), there is an automorphism πf such that p and πf (q) are
compatible.
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A model of Σ1
2-CA0 + Z−p2 in which Σ1

3-CA0 fails (continued)

Theorem (G.): M = (M,+,×, <, 0, 1,∈,S) |= Σ1
2-CA0 + Z−p

2 + ¬Σ1
3-CA0.

Proof:

M |= Σ1
2-CA0 by Shoenfield’s Absoluteness.

M |= Z−p
2 because every parameter-free definable A ∈ S is in L by the

automorphism argument.

The collection
{~r | ∃n ~r is an L-generic n-length sequence for Jn} = {Ss | s ∈ T for some T ∈ T }
is Π1

2-definable in M (uses the construction of the Jn).

S01(1) /∈ S.

S01(1) is Σ1
3-definable in M : m ∈ S01(1) if and only if there are two L-generic

m + 1-length sequences of reals for Jm+1 whose first coordinate is S0. �

Theorem: (G.) Coll−p fails in M .

Proof:

For every n < ω, M has an L-generic n-length sequence of reals for Jn.

If T ⊆ S is finite, then L[GT ] cannot have a set containing for every n < ω, an
L-generic n-length sequence of reals for Jn.
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A model of Z−p2 + Coll−p +Σ1
2-CA0 in which AC−p and Σ1

4-CA0 fail

Suppose G ⊆ P(~J, ω<ω1 ) is L-generic. In L[G ], define the tree S ⊆ T G :

Sξ ∈ S for every ξ < ω1 all level 1 nodes

Sξ~0m for every ξ < ω1 and m < ω all left-most branches

Sξ~0m+1n
for every ξ < ω1 and m, k < ω. all left-most branch nodes split ω-times

Sξ~0m+1η
∈ S for all η < ω1 if and only if Sξ1(1)(m) = 1 left-most branch node splits ω1-many times

Big idea:

Sξ1 /∈ S .

Sξ1 is coded into S .

Let

T = {T ⊆ S | T countable},
S = {A ∈ PL[GT ](ω) | T ∈ T },
M = (ω,+,×, <, 0, 1,∈,S).

Corollary: AC−p and Coll−p are not equivalent over ACA0 (or even Σ1
2-CA0).
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A model of Z−p2 + AC−p + Σ1
2-CA0 in which Σ1

4-CA0 fails

Big idea:

Sξn /∈ S .

The finite sequences Sξn � n are coded into S .

Suppose G ⊆ P(~J, ω<ω1 ) is L-generic. In L[G ], define the tree S ⊆ T G :

For n < ω, let pn be the n-th prime.

Sξ ∈ S for every ξ < ω1 all level 1 nodes

Sξ~0m for every ξ < ω1 and m < ω all left-most branches

Sξ~0m+1n
for every ξ < ω1 and m, k < ω. all left-most branch nodes split ω-times

Sξ~0pmn η
∈ S for all η < ω1 if and only if Sξn(1)(m) = 1 (m < n) left-most branch node splits

ω1-many times
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Questions

Can we obtain a model of Z−p
2 +Coll−p + Σ1

2-CA0 in which, optimally, Σ1
3-CA0 fails?

Can we obtain a model of Z−p
2 +AC−p + Σ1

2-CA0 in which, optimally, Σ1
3-CA0 fails?

Can we obtain a model of ACA0 + AC−p in which Z−p
2 fails?

Given n < ω, can we obtain a model of Z−p
2 + Σ1

n-CA0 in which Σ1
n+1-CA0-fails?
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