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Second-order arithmetic

Second-order arithmetic has two types of objects: numbers and sets of numbers (reals).

Syntax: Two-sorted logic
@ Separate variables and quantifiers for numbers and sets of numbers.

@ Convention: lower-case letters for numbers, upper-case letters for sets.
o Notation:

> ):2 - first-order X ,-formula
> Y1 - p-alternations of set quantifiers followed by a first-order formula.

Semantics: A model is # = (M, +, x,<,0,1,€,S).
@ M is the collection of numbers.
@ S is the collection of sets of numbers: if A€ S, then A C M.

Second-order axioms

@ Numbers: Peano Arithmetic PA
@ Sets:

> Extensionality
> Induction axiom: VX ((0 € X AVn(ne€ X - n+ 1€ X)) = Vnn € X)
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Weak axiom systems

Arithmetical comprehension ACA,

Comprehension scheme for first-order formulas: for all n, ¥%-CAq
if o(n,A) is a first-order formula, then {n | p(n, A)} is a set.

o If (M,+,x,<,0,1) = PA and S consists of definable subsets of M, then
M= (M, +,%,<,0,1,€,8) = ACA,.
o ACAy is conservative over PA.

Elementary Transfinite Recursion ATRg
ACAy

Transfinite recursion: every first-order recursion on sets along a well-order has a solution.
@ A well-order is a linear order I whose every subset has a minimal element.

@ A solution to a recursion is a code of a function F : dom(l') — S.
A code for Fiis F = {(n, m) | n € dom(T'), m € F(n)}.
@ Applications:

> lterate the Turing jump operation.
> Build an internal constructible universe L.
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N
Godel's L in ATRy

Godel’s constructible universe L

Suppose V E ZF.
o Lo=0
@ L,41 is the set of all subsets of L, definable over L.
o Ly = Ua<A L, for a limit \.
o L=U,com Lo

Suppose # = (M, +, x,<,0,1,€,S) = ATRo and I € S is a well-order.
@ ./ can construct the L-hierarchy along TI'.

@ There is a set coding a sequence of La for A < T obeying the definition of L.

A model of ATRg has its own constructible universe L-%1
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Comprehension scheme

Increasing to the amount of comprehension to more complex second-order assertions
produces a hierarchy of second-order set theories

¥ !_comprehension Y1-CAg

If o(n, A) is a Xi-formula, then {n | p(n, A)} is a set.
e Y1-CAyis stronger than ATRy.

culminating in:

Full second-order arithmetic Z,

For all n, £X-comprehension.

Definition: Full parameter-free second-order arithmetic Z; "
Full comprehension without parameters.
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Choice scheme

¥ ! choice ¥1-AC
If o(n, X, A) is a Zi-formula and for every n, there is a set X such that o(n, X, A), then
there is a set Y such that for every n, o(n, Y, A). Yo ={m| (o,m) € v}

Choice scheme AC
For all n, ¥}-choice.

Proposition:
@ Over ACAy, AC implies Zo.
@ The “constructible reals” of a model of Zs satisfy Zo + AC.
@ Zs is equiconsistent with Zs + AC.

Definition: Parameter-free choice scheme AC™°
Choice scheme without parameters.

Theorem: (Feferman, Lévy) It is consistent that there is a model of Z in which AC™P
fails.

Theorem: (Guzicki) It is consistent that there is a model of Z, + AC™" in which AC fails.
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Collection scheme

¥ !-collection ¥}-Coll

If o(n, X,A) is a Zi-formula and for every n, there is a set X such that (n, X, A), then
there is a set Y such that for every n, there is m such that o(n, Ym, A).

Collection scheme Coll
For all n, Z},—collection.

Proposition:
@ Over ACAy, Coll implies Zs.
@ Over ACAy, Coll is equivalent to AC.

Definition: Parameter-free collection scheme Coll ™"
Collection scheme without parameters.
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Equiconsistency of Z, and Z, "

Theorem: (H. Friedman) Z, and Z, " are equiconsistent.
Proof idea: Suppose .# = (M, +,x,<,0,1,€,8) E Z,°.
@ Carry out the L-construction inside .#, but use only parameter-free definable
well-orders.
o Let (L7P)* be the resulting model.
o The “constructible reals” of (L™°)% satisfy Z» + AC.
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Parameter-free schemes
Questions:

o Is Z;” equivalent to Z>? no

@ Does AC™P imply Z;” over ACAo? open

@ Is AC™? equivalent to Coll™” over ACA? no

o = - = LY
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Quick review of forcing

Set-up
e V |EZFC
o P € V is a forcing notion: partial order with largest element 1

Dense sets and generic filters
D C P is dense if for every p € P, there is g € D with g < p. N
G C Pis a filter:
e 1cG.
o (upward closure) If p € G and p’ > p, then p’ € G.
o (compability) If p,q € G, then r € G such that r < p, q.
A filter G C P is V-generic if it meets every dense set D € V of P: DN G # 0.

Theorem: V has no V-generic filters for P.
The forcing extension V[G] is constructed from V together with an external V-generic
filter G.
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Quick review of forcing (continued)
P-name: name for an element of V[G]
Defined recursively to consist of pairs (7, p) where p € P and 7 is a P-name.
Special P-names
o Givenac V, 5= {(h1) | bc a}.
o G={(pp)|pePl}
Forcing extension V[G]
Suppose G C P is V-generic.
The interpretation of a P-name o by G: viel
o6 ={16 | (T,p) € 0 and p € G}. Defined recursively.
The forcing extension V[G]| = {o¢ | o is a P-name in V'}.
o V C VIG]: 4¢ = a.
e GeVI[G]: Gc=G.
e V[G] E ZFC
Forcing relation p |- ©(o): whenever G is V-generic and p € G, then V[G] = ¢(0¢).
@ For a fixed first-order formula ¢(x), the relation p I (o) is definable.
o If g < pandpl (o), then gl ¢(c).
o If V[G] = ¢(0¢), then there is p € G such that p IF p(0).
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Cohen forcing

Add(w, 1) - adds a new real

Elements: binary sequences p : D — 2 with D C w finite.

Order: g < p if g extends p. p=110 1

Suppose G C Add(w, 1) is V-generic.
o r=|JG is a new real

@ V[G] has continuum-many V-generic reals for Add(w, 1).

Add(w, k) - adds (at least) xk-many reals

Elements: functions p : D — 2, where D is a finite subset of
w X K.

Order: g < p if g extends p.

Suppose G C Add(w, k) is V-generic.

J G gives k-many new reals.
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Sacks forcing
Sacks forcing S - adds a generic real

Elements: Perfect trees T C 2<“: every node has a splitting node above it.
Order: S < T if S is a subtree of T.
Suppose G C S is V-generic.

® Nyce T = bis a branch (real).

@ If bisabranchof T, then T € G.

@ The generic real b determines G.

00100011 10001001 1100110111101111 00100011 1100110111101111
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Jensen’s forcing

Jensen's forcing J - adds a unique generic real
@ constructed using <> in L construction is technical
eJCS
@ adds a unique generic M3-definable singleton real

o used by Jensen to show that it is consistent to have a non-constructible M3-definable
singleton real.

Every ‘E%-definable singleton real is in L by Shoenfield's Absoluteness.
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Iterations of forcing notions

Suppose P is a forcing notion, G C P is V-generic, and Q is a forcing notion in V[G].
V has a P-name @ for Q Every element of V[G] has a P-name in V.

In V, we define a forcing notion P« () such that forcing with P % Q is the same as forcing
with P followed by forcing with Q.

o Elements: (p,q) with pe P and pl- g € Q.
o Order: (p,q) <(r,8)ifp<randpl-g<s.
® n-step iterations are defined similarly (infinite iterations can be defined as well).

Example: S S, where § is the name for the Sacks forcing of the forcing extension.

Sacks forcing of V[G] is different from Sacks forcing of V because V[G] has new perfect trees.
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Automorphisms of forcing notions

Suppose P is a notion of forcing and 7 is an automorphism of P.
We apply 7 (recursively) to P-names: (7, p) € o if and only if (7(7), 7(p)) € 7(o).
o m(d) =143
The forcing relation respects automorphisms: p I (o) if and only if 7(p) IF p(7(0)).
If G CPis V-generic, then w" G is V-generic.

Examples

@ For any p, g € Add(w, 1), there is an automorphism 7 such that p and 7(q) are
compatible.

@ Every permutation of k gives rise to a coordinate-switching automorphism of
Add(w, k).

o For any p, g € Add(w, k), there is an automorphism 7 such that p and 7(q) are
compatible.

o Jensen's forcing J is rigid.
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A very bad model of Z, "

Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model
M= (M, +,%x,<,0,1,€,8) E Z;” such that S is not closed under complements.
Proof: Let G C Add(w,w) be V-generic.

Let {a, | n < w} be the w-many generic reals from G.

Let S = PY(w)U{an | n < w}.

S is not closed under complements.

Let # = (w,+, X,<,0,1,€,85).

Let .# be the canonical Add(w,w)-name for ..

Fix a second-order formula ¢(x).

Suppose, for n < w, p - . = (i), but q I .4 |= —p(#).

Let 7 be a coordinate-switching automorphism such that there is r < p, w(q).
(M) =M.

7(q) IF 7(A) l= =¢(n(#)), and hence 7(q) I+ .4 = —p(#).

ri- = (i) (r < p)and rl- 4 = —p(i) (r < m(q)). Impossible!

If some p IF .7 = (i), then all p I+ .# (= o(#).

By definability of the forcing relation, {n < w | . = ¢(n)} € PV(w) C S.
M=7,P. 0
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A model of £3-CAqg + Z,"

Question: Are there “nice” models of Z; ”, but not Z,?

Theorem: (Kanovei and Lyubetsky) It is consistent that there is a model of

Z, " + ¥3-CAg in which X;-CA, fails.

The model is constructed in a forcing extension by a (non-linear) tree iteration of Sacks
forcing.

Theorem: (G.) It is consistent that there is a model of Z;” + Y1-CAp in which ¥3-CAy
fails.

The model is constructed in a forcing extension by a tree iteration of Jensen's forcing.
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Finite iterations of Jensen's forcing

Theorem (Abraham) In L, for every n < w, there is an n-length iteration
Jn=Qo Q1 %% Qn_1 such that:
) @0 = J
o If G C I, | iis L-generic, then in L[G]], Q = (Qi)g, has all properties of Jensen’s
forcing.

@ J, adds a unique generic M3-definable n-length sequence of reals.

Let J = (Jo | n < w).
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The tree iteration of Jensen's forcing along w<%

The tree w<*

001 0n0 Onl On2

000

Onn

(n+1)0(n+1)1(n+1)2

P(J,w<*): tree iteration along w<*

J, such that: (Po; G1, 71)
o D, is a finite subtree of w<*,
o forall s € Dy, p(s) € Jien(s), (Po, P1)
o for s C tin Dp, p(s) = p(t) | len(s).

Order: q < p if Dg O D, and for all s € D,

q(s) < p(s)-

Elements: p: D, — |

n<w
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Tree iterations of Jensen's forcing

Let T be a tree of height at most w.
o T is finite.
o T =uw"
P(J, T): tree iteration along T
Elements: p: D, — U, Ja such that:
@ D, is a finite subtree of T,
o for all s € Dy, p(s) € Jien(s),
e for s C tin Dy, p(s) = p(t) [ len(s).
Order: g < pif Dg O D, and for all s € D, q(s) < p(s).
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Tree iteration of Jensen's forcing (continued)

The tree iteration P(J, T) adds a tree 7 (isomorphic to T) such that each node on
level n has an L-generic n-length sequence of reals for J,.

Theorem: (Friedman, G.) Suppose G is L-generic for P(J,w<*) or P(J,w;).
In L[G]:

@ The only L-generic n-length sequence of reals for J, are those coming from the
nodes of 7°.

@ The collection of all L-generic n-length sequences of reals for J, (any n) is
M3-definable.

Lemma: Suppose
o G CP(J,w<) (or P(J,wi ™)) is L-generic.
o T is a finite subtree of w<* (or countable subtree of w;*).
0 Gr=GI|T.
Then
o Gris L-generic for P(J, T).

@ The only L-generic n-length sequences of reals for J, in L[G7] are those coming from
the nodes of T.
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Kanovei's tree
Suppose G C P(J,w<*) is L-generic. In L[G], define the tree S C T°:

S00001 510001 Sn0001

500000 5n0000

n+1

@ S, S forevery n<w Ser(1) = 100...
° Sy, forevery n.m<w $11(1) = 010...
0, is the sequence of n > 1-many zeroes S 1(1) — 111 L

® S5...1 €S whenever S5y (1)(m) =1
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N
A model of Z2_p + Z%—CAO in which Z%—CAO fails

Big idea:
@ Sn¢S.
@ 5,1 is coded into S.
Let
o 7 ={T CS|T finite},
o S={AcPllw)| T eT},
o M = (w,+,x,<,0,1,€,8),
o ./ is a canonical P(J,w<“)-name for .Z.
Every permutation f of w gives rise to an automorphism 7¢ of P(,,]T,w“’) which permutes

the subtrees 7,° (sitting on node S,) of 7, while preserving the rest of the tree
structure.

° ﬂ'f(&%.) :%

e for any p,q € P(j,w“"), there is an automorphism 7¢ such that p and 7¢(q) are
compatible.
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A model of £3-CAq + Z, " in which £3-CAy fails (continued)

Theorem (G.): .4 = (M, +, x,<,0,1,€,8) = X3-CAg + Z, ? + ~X3-CAo.
Proof:
o ./ = ¥3-CAg by Shoenfield’s Absoluteness.

o ./ | 7," because every parameter-free definable A € S is in L by the
automorphism argument.

@ The collection
{r'| Anr'is an L-generic n-length sequence for J,} = {Ss|s € T for some T € T}
is M3-definable in .7 (uses the construction of the In).

] 501(1) ¢ 8

o Soi(1) is X3-definable in .#Z: m € Sp1(1) if and only if there are two L-generic
m + 1-length sequences of reals for J,1 whose first coordinate is Sp. [J

Theorem: (G.) Coll™ fails in .Z.
Proof:
o For every n < w, .# has an L-generic n-length sequence of reals for J,.

e If T C S is finite, then L[G7] cannot have a set containing for every n < w, an
L-generic n-length sequence of reals for J,.
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N
A model of Z5” 4 Coll™P +%¥3-CAg in which AC™P and ¥}-CA, fail

Suppose G C P(J,ws*) is L-generic. In L[G], define the tree S C T°:
@ Sc € S for every € < Wy all level 1 nodes
© S, forevery £ <wi and m < w ailefemost branches
° ngam“n for every £ < w1 and m, k < w. all left-most branch nodes split c-times
® S¢5,..n €S forall p <wi if and only if Se1(1)(m) = 1 tefi-most branch node spits wy-many times
Big idea:
® S ¢8S.
@ S¢1 is coded into S.
Let
e 7 ={T CS|T countable},
o S={AcPllw)| T eT},
o M =(w,+,%x,<,0,1,€,8).
Corollary: AC™” and Coll™” are not equivalent over ACAq (or even ¥3-CAy).
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A model of Zy? + AC™P + ¥1-CAy in which £3-CAg fails

Big idea:

) 5,5,, ¢ 5

@ The finite sequences S¢, [ n are coded into S.
Suppose G C P(J,wi*) is L-generic. In L[G], define the tree S C T¢:
For n < w, let pp be the n-th prime.

@ Sc € S for every £ < Wy all level 1 nodes

o S, forevery £ <wi and m < w alltefemost branches

] 5£6m+1n for every § < w1 and m, k < W. all left-most branch nodes split w-times

° 5§5p;;m € S for all n < wy if and only if Sep(1)(M) =1 (M < 1) tefe-most branch node splits

wq-many times
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Questions

Can we obtain a model of Z, ® + Coll ™ + ¥3-CAy in which, optimally, ¥3-CA, fails?
Can we obtain a model of Z,? + AC™" + ¥3-CAy in which, optimally, £1-CA, fails?
o Can we obtain a model of ACAg + AC™" in which Z5* fails?

@ Given n < w, can we obtain a model of Z;” + Y7-CAg in which X}, ;-CAo-fails?
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