Indestructibility for Ramsey cardinals

Victoria Gitman

City University of New York

vgitman@nylogic.org http://boolesrings.org/victoriagitman

April 2, 2012

Victoria Gitman (CUNY)

Indestructibility for Ramsey cardinals

E ▶ E ∽ Q C April 2, 2012 1/21

This is joint work with Thomas Johnstone (CUNY)

・ロト ・回ト ・ヨト ・ヨト

Indestructibility

A large cardinal can be easily destroyed by forcing, e.g., force to collapse it to ω_1 .

A large cardinal κ in a universe V is indestructible by a forcing notion \mathbb{P} if in every forcing extension V[G] by $G \subseteq \mathbb{P}$, κ retains its large cardinal property. there is a V-generic filter $G \subseteq \mathbb{P}$ such that κ retains the large cardinal property in the forcing extension V[G].

Standard indestructibility strategy:

Measurable cardinals and most stronger large cardinals κ are characterized by the existence of elementary embeddings $j : V \to M$ from the universe V into a transitive class M with critical point κ (and additional properties specific to the large cardinal).

Steps to show that κ retains the large cardinal property in V[G]:

- In V[G], lift j to an elementary embedding j : V[G] → M[H] by finding a right M-generic filter H for the forcing notion j(P) ∈ M.
- Verify that the lift *j* satisfies the additional properties specific to the large cardinal. (to be continued...)

Question: Does the strategy apply to smaller large cardinals?

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Elementary embeddings and smaller large cardinals

Many smaller large cardinals κ are characterized by the existence of elementary embeddings for "mini-universes" of set-theory.

The "mini-universes" are weak κ -models and κ -models of set theory.

Definitions:

- A weak κ -model of set theory is a transitive set $M \models ZFC^-$ of size κ with $\kappa \in M$.
- A κ -model *M* of set theory is a weak κ -model such that $M^{<\kappa} \subseteq M$.
- ZFC⁻ is the theory ZFC without the powerset axiom and with the collection scheme instead of the replacement scheme.
- Natural examples are $M \prec H_{\kappa^+}$ of size κ with $\kappa \in M$.

イロト イポト イヨト イヨト

Weakly compact cardinals

Definition: A cardinal κ is weakly compact if for every $f : [\kappa]^2 \to 2$, there is $H \subseteq \kappa$ of size κ such that f is constant on H.

Theorem: If $2^{<\kappa} = \kappa$, then κ is weakly compact if and only if any of the following hold:

- Every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists an elementary embedding $j : M \to N$ with N transitive and $cp(j) = \kappa$.
- Every A ⊆ κ is contained in a κ-model M for which there exists an elementary embedding j : M → N with N transitive and cp(j) = κ.
- For every κ-model *M*, there exists an elementary embedding *j* : *M* → *N* with *N* transitive and cp(*j*) = κ.

Elementary embeddings and ultrafilters

Fact: The existence of a (definable) elementary embedding $j : V \to M$ from the universe V into a transitive class M with $cp(j) = \kappa$ is equivalent to the existence of a κ -complete ultrafilter on κ .

Proof:

- The Mostowski collapse of the ultrapower of *V* is well-founded if and only if the ultrafilter is countably complete.
- If $j: V \to M$ is a (definable) elementary embedding with $cp(j) = \kappa$, then

 $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$

is a κ -complete ultrafilter on κ .

Small elementary embeddings and *M*-ultrafilters

Definition: Suppose a transitive $M \models ZFC^-$ and κ is a cardinal in M. A set $U \subseteq P(\kappa)^M$ is an *M*-ultrafilter if $\langle M, U \rangle \models$ "*U* is a normal ultrafilter on κ ".

- *U* is κ -complete for sequences in *M*.
- The ultrapower of *M* by *U* is built from functions $f \in M$.
- The ultrapower of *M* need not be well-founded.

Fact: The existence of an elementary embedding $j : M \to N$ from a weak κ -model M into a transitive N with $cp(j) = \kappa$ is equivalent to the existence of an M-ultrafilter on κ with a well-founded ultrapower.

Proof:

- If $j : M \to N$ is an elementary embedding with N transitive and $cp(j) = \kappa$, then $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$ is an *M*-ultrafilter.
- The ultrapower of *M* by *U* embeds into *N*, and is hence well-founded.

Fact: If $j : M \to N$ is the ultrapower map by an *M*-ultrafilter on κ and *M* is a κ -model, then *N* is a κ -model as well. ("Ultrapowers preserve closure.")

M-ultrafilters with well-founded ultrapowers

Definition: An *M*-ultrafilter is countably complete if every countable sequence of its elements has a non-empty intersection.

Fact: The ultrapower of *M* by a countably complete *M*-ultrafilter is well-founded.

Fact: While countable completeness is sufficient for well-foundedness, it is not necessary.

Iterated ultrapowers

The ultrapower construction with a countably complete ultrafilter can be iterated ORD-many times:

- At successor stages, use the image of the ultrafilter from the previous stage.
 - $(j_0: V \to M_1$ is the ultrapower by $U_0, j_1: M_1 \to M_2$ is the ultrapower by $U_1 = j_0(U_0),...)$
- At limit stages, use direct limits.

Theorem: (Gaifman, 1974) The iterated ultrapowers are well-founded.

Question: Can the ultrapower construction by an *M*-ultrafilter be iterated?

- How to do we construct the successor stage models?
 If *j* : *M* → *N* is the ultrapower map by an *M*-ultrafilter *U* on *κ*, then *j*(*U*) does not make sense!
- If the ultrapower is well-founded, are all the iterated ultrapowers well-founded?

Weakly amenable *M*-ultrafilters

Suppose $j: M \to N$ is the ultrapower map by an *M*-ultrafilter *U* on κ .

Idea: Define a predicate W on the ultrapower N corresponding to U using Łoś:

$$W = \{ [f]_U \mid \{ \alpha < \kappa \mid f(\alpha) \in U \} \in U \}$$

Obstacle: $\{\alpha < \kappa \mid f(\alpha) \in U\}$ might not be an element of *M*.

Definition: An *M*-ultrafilter *U* on κ is weakly amenable if $U \cap B$ is an element of *M* for every *B* of size κ in *M*.

- If $f : \kappa \to M$ is an element of M, then $\{\alpha < \kappa \mid f(\alpha) \in U\} \in M$.
- If j : M → N is the ultrapower map by a weakly amenable M-ultrafilter U, then W is a weakly amenable N-ultrafilter. ("Weak amenability propagates along the iteration.")

With a weakly amenable *M*-ultrafilter, the ultrapower construction can be iterated!

κ -powerset preserving embeddings

Definition: An elementary embedding $j : M \to N$ with $cp(j) = \kappa$ is κ -powerset preserving if $P(\kappa)^M = P(\kappa)^N$.

Fact: Weak amenability is equivalent to κ -powerset preservation.

- If $j : M \to N$ κ -powerset preserving, then $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$ is weakly amenable.
- The ultrapower map $j: M \to N$ by a weakly amenable *M*-ultrafilter on κ is κ -powerset preserving.

Question: Does weak compactness imply the existence of κ -powerset preserving embeddings?

Definition: (G.) A cardinal κ is weakly Ramsey if every $A \subseteq \kappa$ is contained in in a weak κ -model *M* for which there exists a κ -powerset preserving elementary embedding.

Theorem: (G.) Weakly Ramsey cardinals are weakly compact and stationary limits of weakly compact cardinals.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Degrees of iterability

Suppose $j : M \to N$, with N transitive, is the ultrapower map by a weakly amenable M-ultrafilter U on κ .

Let $W = \{ [f]_U \mid \{ \alpha < \kappa \mid f(\alpha) \in U \} \in U \}.$

Question: Does the *N*-ultrafilter *W* produce a well-founded ultrapower?

Theorem: (Gaifman, 1974) If the first ω_1 -many iterated ultrapowers are well-founded, then all the iterated ultrapowers are well-founded.

Theorem: (G., Welch) For every $\alpha < \omega_1$, it is consistent that there are weakly amenable *M*-ultrafilters producing exactly α -many well-founded iterated ultrapowers.

Theorem: (Kunen, 1970) If a weakly amenable *M*-ultrafilter *U* is countably complete, then all the iterated ultrapowers are well-founded.

Ramsey cardinals

Definition: A cardinal κ is Ramsey if for every $f : [\kappa]^{<\omega} \to 2$, there is $H \subseteq \kappa$ of size κ such that $f \upharpoonright [\kappa]^n$ is constant on H for every $n < \omega$. ("*H* is homogeneous for *f*.")

Theorem: (Mitchell, 1979) A cardinal κ is Ramsey if and only if every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists a weakly amenable countably complete (even κ -complete!) M-ultrafilter on κ .

Question: Is it equivalent to assume that the *M*-ultrafilters exist for κ -models (as with weakly compact cardinals)?

Definition: (G.) A cardinal κ is strongly Ramsey if every $A \subseteq \kappa$ is contained in a κ -model *M* for which there exists a weakly amenable *M*-ultrafilter on κ .

Theorem: (G.) A strongly Ramsey cardinal is Ramsey and a stationary limit of Ramsey cardinals.

Theorem: (G.) It is inconsistent to assume that for every κ -model *M*, there exists a weakly amenable *M*-ultrafilter on κ .

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

The indestructibility toolkit

Lifting Criterion: Suppose $j : M \to N$ is an elementary embedding of ZFC⁻ models having generic extensions M[G] and N[H] by forcing notions \mathbb{P} and $j(\mathbb{P})$ respectively. The embedding *j* lifts to $j : M[G] \to N[H]$ with j(G) = H if and only if $j " G \subseteq H$.

Fact: The lift of an ultrapower embedding is again an ultrapower embedding.

Diagonalization Criterion: If \mathbb{P} is a forcing notion in a transitive model $M \models ZFC^-$ and for some cardinal κ the following criteria are satisfied:

- $M^{<\kappa} \subseteq M$,
- \mathbb{P} is $<\kappa$ -closed in M,
- *M* has at most κ many dense sets of \mathbb{P} ,

then there is an *M*-generic filter for \mathbb{P} .

Closure Criterion: Suppose a transitive $M \models ZFC^-$ and for some cardinal κ , $M^{<\kappa} \subseteq M$. If $G \subseteq \mathbb{P}$ is *V*-generic for a forcing notion $\mathbb{P} \in M$ having κ -cc in *V*, then $M[G]^{<\kappa} \subseteq M[G]$ in V[G].

Indestructibility for weakly compact cardinals

Small forcing:

- $|\mathbb{P}| < \kappa$ for a large cardinal κ
- wlog $\mathbb{P} \in V_\kappa$

Theorem: (folklore) Weakly compact cardinals κ are indestructible by small forcing. **Proof:**

- Fix $\mathbb{P} \in V_{\kappa}$ and a *V*-generic $G \subseteq \mathbb{P}$.
- Fix $A \subseteq \kappa$ in V[G] and a nice name $\dot{A} \in H_{\kappa^+}$ such that $(\dot{A})_G = A$.
- Fix a weak κ -model M with $\dot{A} \in M$ and $j : M \to N$ with $cp(j) = \kappa$.
- Since $A \in M[G]$, it suffices to lift *j*.
- Lifting criterion: need an *N*-generic filter for $j(\mathbb{P}) = \mathbb{P}$ containing j = G.
- That's G!
- The embedding *j* lifts to $j : M[G] \rightarrow N[G]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Indestructibility for weakly compact cardinals

Canonical forcing of the GCH:

- \bullet ORD-length iteration $\mathbb P$
- Easton support: direct limits at inaccessibles, inverse limits elsewhere
- $\dot{\mathbb{Q}}_{\alpha} = \operatorname{Add}(\alpha^+, 1)$ if α is a cardinal in $V^{\mathbb{P}_{\alpha}}$, trivial otherwise

Theorem: (folklore) Weakly compact cardinals κ are indestructible by the canonical forcing of the GCH.

Proof:

- It suffices to show that κ is indestructible by \mathbb{P}_{κ} : $\mathbb{P}_{\kappa} \subseteq V_{\kappa}$, \mathbb{P}_{κ} has κ -cc.
- Fix a V-generic $G \subseteq \mathbb{P}_{\kappa}$.
- Fix $j : M \to N$ with critical point κ and M, N both κ -models (use an ultrapower!).
- It suffices to lift *j* to *M*[*G*].
- Lifting criterion: need an *N*-generic for $j(\mathbb{P}) \cong \mathbb{P}_{\kappa} * \dot{\mathbb{P}}_{tail}$ containing j = G.
- Use G for \mathbb{P}_{κ} and construct an N[G]-generic for $\mathbb{P}_{tail} = (\dot{\mathbb{P}}_{tail})_G$ in V[G].
- Closure criterion: $N[G]^{<\kappa} \subseteq N[G]$ since \mathbb{P}_{κ} has κ -cc
- Diagonalization criterion: N[G]^{<κ} ⊆ N[G], |N[G]| = κ, P_{tail} is ≤κ-closed in N[G].
- The embedding *j* lifts to *j* : *M*[*G*] → *N*[*H*] with *H* = *G* ∗ *G*_{tail}.

Road map for Ramsey cardinals

• Come up with a diagonalization criterion that does not require closure: use the "opposite" of closure.

Definition: (G., Johnstone) A weak κ -model *M* is special if it is the union of an elementary chain of transitive substructures $\langle m_i | i < \omega \rangle$ with $m_i \in M$ and $|m_i|^M = \kappa$.

Fact: (G., Johnstone) If *M* is special and $j : M \to N$ is the ultrapower map by an *M*-ultrafilter on κ , then *N* is the union of an elementary chain of substructures $\langle x_i | i < \omega \rangle$ with $x_i \in N$ and $|x_i|^N = \kappa$.

Theorem: (G., Johnstone) A cardinal κ is Ramsey if and only if every $A \subseteq \kappa$ is contained in a special weak κ -model M for which there exists a weakly amenable countably complete M-ultrafilter on κ .

- Ensure that the lift is κ -powerset preserving.
 - This is almost free.
- Ensure that the lift is the ultrapower by a countably complete ultrafilter. This will work for:
 - small forcing
 - countably closed forcing

A new diagonalization criterion

Theorem: (G., Johnstone) If \mathbb{P} is a forcing notion in a model *M* of ZFC⁻ and the following criteria are satisfied:

- \mathbb{P} is $\leq \kappa$ -closed in M,
- there is an increasing sequence $\langle X_i | i < \omega \rangle$ with $X_i \in M$, $|X_i|^M = \kappa$ and $M = \bigcup_{i < \omega} X_i$,

then there is an *M*-generic filter *G* for \mathbb{P} .

Proof:

- In *M*, construct a κ-length descending sequence of conditions meeting all dense sets of X₀. (Use ≤κ closure of ℙ.)
- Choose p_0 below this sequence. (Use $\leq \kappa$ closure of \mathbb{P} .)
- Since $M = \bigcup_{i < \omega} X_i$, choose i > 0 such that $p_0 \in X_i$.
- In *M*, construct a κ-length descending sequence of conditions meeting all dense sets of X_i.
- Choose *p*₁ below this sequence, etc.
- Let *G* be the filter generated by $\langle p_n | n < \omega \rangle$.

Indestructibility for Ramsey cardinals

Theorem: (G., Johnstone) Suppose

- *M* is a weak *κ*-model,
- $j: M \rightarrow N$ is the ultrapower map by a countably complete *M*-ultrafilter *U* on κ ,
- $\mathbb{P} \in M$ is a countably closed forcing notion and $G \subseteq \mathbb{P}$ is *V*-generic.
- *j* lifts to an embedding $j : M[G] \rightarrow N[j(G)]$ in V[G],

then the lift *j* is the ultrapower by a countably complete M[G]-ultrafilter in V[G]. **Proof:**

- The lift $j : M[G] \to N[j(G)]$ is the ultrapower by an M[G]-ultrafilter W: $A \in W \Leftrightarrow \kappa \in j(A)$.
- Fix $\langle A_n \mid n < \omega \rangle \in V[G]$ with $A_n \subseteq \kappa, A_n \in M[G], \kappa \in j(A_n)$.
- Fix \mathbb{P} -names $\dot{A}_n \in M$ such that $(\dot{A}_n)_G = A_n$.
- The sequence $\langle \dot{A}_n | n < \omega \rangle \in V$ by countable closure of \mathbb{P} .
- Fix a \mathbb{P} -name \dot{S} such that
 - 1 $\Vdash \dot{S}$ is an ω -sequence
 - for all $n \in \omega$, $\mathbf{1} \Vdash \dot{S}(\check{n}) = \dot{A}_n$
- Towards a contradiction, suppose $p \in G$ and $p \Vdash \bigcap \dot{S} = \emptyset$.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Indestructibility (continued)

- $p \in G \Rightarrow j(p) \in j(G)$
- In j(G), choose $j(p) \ge p_0 \ge p_1 \ge \cdots \ge p_n \ge \cdots$ such that $p_n \Vdash \kappa \in j(\dot{A}_n)$ over N.
- Fix $f_n \in M$ such that $p_n = [f_n]_U$.
- The sequence $\langle f_n | n < \omega \rangle \in V$ by countable closure of \mathbb{P} .
- The following sets are in U:
 - $S_n = \{\xi < \kappa \mid f_n(\xi) \Vdash \check{\xi} \in A_n \text{ over } M\}$ for $n < \omega$,
 - $T_n = \{\xi < \kappa \mid f_{n+1}(\xi) \le f_n(\xi)\}$ for $n < \omega$,
 - $S = \{\xi < \kappa \mid f_0(\xi) \leq p\}.$
- Since *U* is countably complete, there is $\alpha < \kappa$ such that:
 - $f_n(\alpha) \Vdash \check{\alpha} \in \dot{A}_n$ over M for $n < \omega$,
 - $f_{n+1}(\alpha) \leq f_n(\alpha)$ for $n < \omega$,
 - $f_0(\alpha) \leq p$.
- Fix *q* below $p \ge f_0(\alpha) \ge f_1(\alpha) \ge \cdots \ge f_n(\alpha) \ge \cdots$.
 - $q \Vdash \check{\alpha} \in \dot{A}_n$ over *M* for $n < \omega$,
 - ► $q \Vdash \bigcap \dot{S} = \emptyset$
- Contradiction!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Indestructibility for Ramsey cardinals: summary

Theorem: (G., Johnstone, folklore) Ramsey cardinals κ are indestructible by:

- small forcing
- the canonical forcing of the GCH
- $\bullet\,$ the forcing to add a fast function on $\kappa\,$
- the forcing to add a slim κ -Kurepa tree

Theorem: (G., Johnstone) If κ is Ramsey, then there is a forcing extension in which it becomes indestructible by Add(κ , θ) for any cardinal θ .

Corollary: The GCH can be forced to fail at a Ramsey cardinal. (This is false for measurable cardinals)

Corollary: If Ramsey cardinals are consistent, then there is a model of ZFC in which κ is not Ramsey, but becomes Ramsey in a forcing extension.

Theorem: (G., Cody) Assuming GCH, if κ is Ramsey and *F* is a class function with domain regular cardinals such that:

- $F(\alpha) \leq F(\beta)$ for $\alpha < \beta$ and $cf(F(\alpha)) > \alpha$, ("Easton's theorem")
- *F* has a closure point at *κ*, (necessary by inaccessibility)

then there is a cofinality preserving forcing extension in which κ remains Ramsey and $2^{\delta} = F(\delta)$ for every regular cardinal δ .