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RAMSEY-LIKE CARDINALS II

VICTORIA GITMAN AND P.D. WELCH

Abstract. This paper continues the study of the Ramsey-like large cardi-
nals introduced in [Git09] and [WS10]. Ramsey-like cardinals are defined by

generalizing the characterization of Ramsey cardinals via the existence of el-

ementary embeddings. Ultrafilters derived from such embeddings are fully
iterable and so it is natural to ask about large cardinal notions asserting the

existence of ultrafilters allowing only α-many iterations for some countable or-

dinal α. Here we study such α-iterable cardinals. We show that the α-iterable
cardinals form a strict hierarchy for α ≤ ω1, that they are downward absolute

to L for α < ωL
1 , and that the consistency strength of Schindler’s remarkable

cardinals is strictly between 1-iterable and 2-iterable cardinals.
We show that the strongly Ramsey and super Ramsey cardinals from

[Git09] are downward absolute to the core model K. Finally, we use a forcing
argument from a strongly Ramsey cardinal to separate the notions of Ramsey

and virtually Ramsey cardinals. These were introduced in [WS10] as an upper

bound on the consistency strength of the Intermediate Chang’s Conjecture.

1. Introduction

The definitions of measurable cardinals and stronger large cardinal notions follow
the template of asserting the existence of elementary embeddings j : V → M from
the universe of sets to a transitive subclass with that cardinal as the critical point.
Many large cardinal notions below a measurable cardinal can be characterized by
the existence of elementary embeddings as well. The characterizations of these
smaller large cardinals κ follow the template of asserting the existence of elementary
embeddings j : M → N with critical point κ from a weak κ-model or κ-model M of
set theory to a transitive set.1 A weak κ-model M of set theory is a transitive set of
size κ satisfying ZFC− (ZFC without the Powerset Axiom) and having κ ∈ M . If
a weak κ-model M is additionally closed under < κ-sequences, that is M<κ ⊆ M ,
it is called a κ-model of set theory. Having embeddings on κ-models is particularly
important for forcing indestructibility arguments, where the techniques rely on < κ-
closure. The weakly compact cardinal is one example of a smaller large cardinal
that is characterized by the existence of elementary embeddings. A cardinal κ is
weakly compact if κ<κ = κ and every A ⊆ κ is contained in a weak κ-model M
for which there exists an elementary embedding j : M → N with critical point
κ. Another example is the strongly unfoldable cardinal. A cardinal κ is strongly
unfoldable if for every ordinal α, every A ⊆ κ is contained a weak κ-model M for
which there exists an elementary embedding j : M → N with critical point κ,
α < j(κ), and Vα ⊆ N .

The research of the first author has been supported by grants from the CUNY Research
Foundation.

1It will be assumed throughout the paper that, unless stated otherwise, all embeddings are
elementary and between transitive structures.
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An embedding j : V → M with critical point κ can be used to construct a
κ-complete ultrafilter on κ. These measures are fully iterable; they allow iterating
the ultrapower construction through all the ordinals. The iteration proceeds by
taking ultrapowers by the image of the original ultrafilter at successor ordinal stages
and direct limits at limit ordinal stages to obtain a directed system of elementary
embeddings of well-founded models of length Ord. Returning to smaller large
cardinals, an embedding j : M → N with critical point κ and M a model of
ZFC− can be used to construct an ultrafilter on P(κ)M that is κ-complete from
the perspective of M . These small measures are called M -ultrafilters because all
their measure-like properties hold only from the perspective of M . It is natural
to ask what kind of iterations can be obtained from M -ultrafilters. Here, there
are immediate technical difficulties arising from the fact that an M -ultrafilter is, in
most interesting cases, external to M . In order to start defining the iteration, the
M -ultrafilter needs to have the additional property of being weakly amenable. The
existence of weakly amenable M -ultrafilters on κ with well-founded ultrapowers is
equivalent to the existence of embeddings j : M → N with critical point κ where
M and N have the same subsets of κ. We will call such embeddings κ-powerset
preserving.

Gitman observed in [Git09] that weakly compact cardinals are not strong enough
to imply the existence of κ-powerset preserving embeddings. She called a cardinal κ
weakly Ramsey if every A ⊆ κ is contained in a weak κ-model for which there exists a
κ-powerset preserving elementary embedding j : M → N . In terms of consistency
strength weakly Ramsey cardinals are above completely ineffable cardinals and
therefore much stronger than weakly compact cardinals. We associate iterating M -
ultrafilters with Ramsey cardinals because Ramsey cardinals imply the existence
of fully iterable M -ultrafilters. Mitchell showed in [Mit79] that κ is Ramsey if
and only if every A ⊆ κ is contained in a weak κ-model M for which there exists a
weakly amenable countably complete2 M -ultrafilter on κ. Kunen showed in [Kun70]
that countable completeness is a sufficient condition for an M -ultrafilter to be
fully iterable, that is, for every stage of the iteration to produce a well-founded
model. The α-iterable cardinals were introduced in [Git09] to fill the gap between
weakly Ramsey cardinals that merely assert the existence of M -ultrafilters with
the potential to be iterated and Ramsey cardinals that assert the existence of fully
iterable M -ultrafilters. A cardinal κ is α-iterable if every subset of κ is contained in
a weak κ-model M for which there exists an M -ultrafilter on κ allowing an iteration
of length α. By a well-known result of Gaifman [Gai74], an ultrafilter that allows
an iteration of length ω1 is fully iterable. So it only makes sense to study the
α-iterable cardinals for α ≤ ω1.

Welch and Sharpe showed in [WS10] that ω1-iterable cardinals are strictly weaker
than ω1-Erdős cardinals. In Section 3, we show that for α < ωL

1 , the α-iterable
cardinals are downward absolute to L. In Section 4, we show that for α ≤ ω1, the
α-iterable cardinals form a hierarchy of strength. Also, in Section 4, we establish
a relationship between α-iterable cardinals and α-Erdős cardinals, and provide an
improved upper bound on the consistency strength of Schindler’s remarkable car-
dinals by placing it strictly between 1-iterable cardinals and 2-iterable cardinals.

2An M -ultrafilter is countably complete if every countable collection of sets in the ultrafilter
has a nonempty intersection (see Section 2).
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Finally we answer a question of Gitman about whether 1-iterable cardinals imply
existence of embeddings on weak κ-models of ZFC.

Gitman also introduced strongly Ramsey cardinals and super Ramsey cardinals
by requiring the existence of κ-powerset preserving embeddings on κ-models instead
of weak κ-models. The strongly Ramsey and super Ramsey cardinals fit in between
Ramsey cardinals and measurable cardinals in strength. In Section 5, we show that
these two large cardinal notions are downward absolute to the core model K. In
Section 6, we use a forcing argument starting from a strongly Ramsey cardinal to
separate the notions of virtually Ramsey and Ramsey cardinals. Virtually Ramsey
cardinals were introduced by Welch and Sharpe in [WS10] as an upper bound on
the consistency of the Intermediate Chang’s Conjecture.

2. Preliminaries

In this section, we review facts about M -ultrafilters and formally define the
α-iterable cardinals. We begin by giving a precise definition of an M -ultrafilter.

Definition 2.1. Suppose M is a transitive model of ZFC− and κ is a cardinal in
M . A set U ⊆ P(κ)M is an M -ultrafilter if 〈M,∈, U〉 |= “U is a κ-complete normal
ultrafilter”.

Recall that an ultrafilter is κ-complete if the intersection of any < κ-sized col-
lection of sets in the ultrafilter is itself an element of the ultrafilter. An ultrafilter
is normal if every function regressive on a set in the ultrafilter is constant on a
set in the ultrafilter. By definition, M -ultrafilters are κ-complete and normal only
from the point of view of M , that is, the collection of sets being intersected or the
regressive function has to be an element of M . We will say that an M -ultrafilter
is countably complete if every countable collection of sets in the ultrafilter has a
nonempty intersection. Obviously, any M -ultrafilter is, by definition, countably
complete from the point of view of M , but countable completeness requests the
property to hold of all sequences, not just those in M .3 Unless M satisfies some
extra condition, such as being closed under countable sequences, an M -ultrafilter
need not be countably complete. In this article we shall consider the usual ultra-
power of a structure M taken using only functions in M . We are thus not using
fine-structural ultrapowers in our arguments. An ultrapower by an M -ultrafilter is
not necessarily well-founded. An M -ultrafilter with a well-founded ultrapower may
be obtained from an elementary embedding j : M → N .

Proposition 2.2. Suppose M is a weak κ-model and j : M → N is an elementary
embedding with critical point κ, then U = {A ∈ P(κ)M | κ ∈ j(A)} is an M -
ultrafilter on κ with a well-founded ultrapower.

In this case, we say that U is generated by κ via j. The well-foundedness of the
ultrapower follows since it embeds into N .

To define α-iterable cardinals, we will need the corresponding key notion of α-
good M -ultrafilters.

3It is more standard for countable completeness to mean ω1-completeness which requires the

intersection to be an element of the ultrafilter. However, the weaker notion we use here is better

suited to M -ultrafilters because the countable collection itself can be external to M , and so there
is no reason to suppose the intersection to be an element of M .
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Definition 2.3. Suppose M is a weak κ-model. An M -ultrafilter U on κ is 0-good
if the ultrapower of M by U is well-founded.

To begin discussing the iterability of M -ultrafilters, we need the following key
definitions.

Definition 2.4. Suppose M is a weak κ-model. An M -ultrafilter U on κ is weakly
amenable if for every A ∈ M of size κ in M , the intersection U ∩ A is an element
of M .

Definition 2.5. Suppose M is a model of ZFC−. An elementary embedding
j : M → N with critical point κ is κ-powerset preserving if M and N have the
same subsets of κ.

It turns out that the existence of weakly amenable 0-good M -ultrafilters on κ is
equivalent to the existence of κ-powerset preserving embeddings.

Proposition 2.6. Suppose M is a transitive model of ZFC−.
(1) If j : M → N is the ultrapower by a weakly amenable M -ultrafilter on κ,

then j is κ-powerset preserving.
(2) If j : M → N is a κ-powerset preserving embedding, then the M -ultrafilter

U = {A ∈ P(κ)M | κ ∈ j(A)} is weakly amenable.

Definition 2.7. Suppose M is a weak κ-model. An M -ultrafilter on κ is 1-good if
it is 0-good and weakly amenable.

Lemma 2.8. Suppose M is a weak κ-model, U is a 1-good M -ultrafilter on κ, and
j : M → N is the ultrapower by U . Define

j(U) = {A ∈ P(j(κ))N | A = [f ] and {α ∈ κ | f(α) ∈ U} ∈ U}.

Then j(U) is a weakly amenable N -ultrafilter on j(κ) containing j′′U as a subset.

See [Kan03] for details on the above facts. Lemma 2.8 is essentially saying that
the weak amenability of U implies a partial  Loś Theorem for the ultrapower of
〈M,∈, U〉 by U resulting in j(U), the predicate corresponding to U in the ultra-
power, having the requisite properties. The resulting ultrapower is fully elementary
in the language without the predicate for U and Σ0-elementary with the predicate.
This suffices since the main purpose in taking the ultrapower in the extended lan-
guage is to obtain the next ultrafilter in the iteration. Weak amenability serves
as the basis of any fine structural analysis of measures and extenders [Zem02]. As
we shall see later, it is not necessarily the case that the ultrapower by j(U) is
well-founded.

Suppose M is a weak κ-model and U0 is a 1-good M -ultrafilter on κ. Let
j(U0) = U1 be the weakly amenable ultrafilter obtained as above for the ultrapower
of M by U . If the ultrapower by U1 happens to be well-founded, we will say that
U0 is 2-good. In this way, we can continue iterating the ultrapower construction so
long as the ultrapowers are well-founded. For ξ ≤ ω, we will say that U is ξ-good if
the first ξ-many ultrapowers are well-founded. Suppose next that the first ω-many
ultrapowers are well-founded. We can form their direct limit and ask if that is
well-founded as well. If the direct limit of the first ω-many iterates turns out to be
well-founded, we will say that U is ω + 1-good. Continuing the pattern, we make
the following definition.
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Definition 2.9. Suppose M is a weak κ-model and α is an ordinal. An M -
ultrafilter on κ is α-good, if we can iterate the ultrapower construction for α-many
steps.

Gaifman showed in [Gai74] that to be able to iterate the ultrapower construction
through all the ordinals it suffices to know that we can iterate through all the
countable ordinals.

Theorem 2.10. Suppose M is a weak κ-model. An ω1-good M -ultrafilter is α-good
for every ordinal α.

Thus, the study of α-good ultrafilters only makes sense for α ≤ ω1.

Definition 2.11. For α ≤ ω1, a cardinal κ is α-iterable if every A ⊆ κ is contained
in a weak κ-model M for which there exists an α-good M -ultrafilter on κ.

A few easy observations about the definition are in order.

Remark 2.12.

(1) If κ<κ = κ, then κ is 0-iterable if and only if κ is weakly compact. Without
the extra assumption κ<κ = κ, being 0-iterable is not necessarily a large
cardinal notion. Hamkins showed in [Ham07] that it is consistent for 2ω to
be 0-iterable.

(2) Weakly Ramsey cardinals are exactly the 1-iterable cardinals. Unlike
0-iterability, 1-iterability implies inaccessibility and hence weak compact-
ness (see [Git09] for the strength of 1-iterable cardinals).

(3) By our previous comments, Ramsey cardinals are ω1-iterable.
(4) ω1-iterable cardinals are strongly unfoldable in L (see [Vil98]).

3. α-iterable cardinals in L

In this section, we show that for α < ωL
1 , the α-iterable cardinals are downward

absolute to L. This result is optimal since ω1-iterable cardinals cannot exist in L.
Many of our arguments below will use the following two simple facts about weak

κ-models.

Remark 3.1.

(1) If M is a weak κ-model of height α, then LM = Lα. Note that M ∩ L
can be a proper superset of Lα. That is, M might contain constructible
elements that it does not realize are constructible.

(2) If M is a weak κ-model, j : M → N is an elementary embedding with
critical point κ, and X has size κ in M , then j � X is an element of N .
This follows since j � X is definable from an enumeration f of X in M
together with j(f), both of which are elements of N .

Next, we give an argument why ω1-iterable cardinals cannot exist in L.

Proposition 3.2. If there is an ω1-iterable cardinal, then 0# exists.

Proof. Suppose κ is an ω1-iterable cardinal. Fix a weak κ-model M and an ω1-good
M -ultrafilter U on κ. By Theorem 2.10, U is fully iterable. Let jα : Mα → Nα

be the αth-iterated ultrapower of U . Observe that P(κ)M = P(κ)Mα for all α.



6 VICTORIA GITMAN AND P.D. WELCH

By remark 3.1 (1), Mα ∩ L contains Lα. Thus, for a large enough α, we have
P(κ)L ⊆ Lα ⊆ Mα. It follows that Lκ+ ⊆ M . Thus, jα restricts to an embedding
on Lκ+ and hence 0# exists. �

We will first show that if 0# exists, then the Silver indiscernibles are α-iterable
in L for all α < ωL

1 . Later, we will modify this argument to show that for α < ωL
1 ,

the α-iterable cardinals are downward absolute to L. We begin with the case of
1-iterable cardinals. We will make use of a standard lemma below (see [BJW82] for
a proof).

Lemma 3.3. If 0# exists and κ is a Silver indiscernible, then cfV ((κ+)L) = ω.

Theorem 3.4. If 0# exists, then the Silver indiscernibles are 1-iterable in L.

Proof. Let I = {iξ | ξ ∈ Ord} be the Silver indiscernibles enumerated in increasing
order. Fix κ ∈ I and let λ = (κ+)L. Define j : I → I by j(iξ) = iξ for all iξ < κ and
j(iξ) = iξ+1 for all iξ ≥ κ in I. The map j extends, via the Skolem functions, to an
elementary embedding j : L → L with critical point κ. Restrict to j : Lλ → Lj(λ),
which is clearly κ-powerset preserving. Let U be the weakly amenable Lλ-ultrafilter
generated by κ via j as in Proposition 2.2. Since every α < λ has size κ in Lλ,
by weak amenability, U ∩ Lα is an element of Lλ. Construct, using Lemma 3.3, a
sequence 〈λi : i ∈ ω〉 cofinal in λ, such that each Lλi

≺ Lλ, and U∩Lλi
, Lλi

∈ Lλi+1 .
Let ji be the restriction of j to Lλi

. Each ji : Lλi
→ Lj(λi) is an element of L

by remark 3.1 (2), since it has size κ in Lλ. These observations motivate the
construction below.

To show that κ is 1-iterable in L, for every A ⊆ κ in L, we need to construct in
L a weak κ-model M containing A and a 1-good M -ultrafilter on κ. Fix A ⊆ κ in
L. Define in L, the tree T of finite sequences of the form

s = 〈h0 : Lγ0 → Lδ0 , . . . , hn : Lγn
→ Lδn

〉
ordered by extension and satisfying the properties:

(1) A ∈ Lγ0 |= ZFC−,
(2) hi : Lγi

→ Lδi
is an elementary embedding with critical point κ,

(3) δi < j(λ).
Let Wi be the Lγi

-ultrafilter generated by κ via hi. Then:
(4) for i < j ≤ n, we have Lγi ,Wi ∈ Lγj , Lγi ≺ Lγj , Lδi ≺ Lδj , and hj extends

hi.
We view the sequences s as better and better approximations to the embedding we
are trying to build.

Consider the sequences

sn = 〈j0 : Lλ0 → Lj(λ0), . . . , jn : Lλn
→ Lj(λn)〉.

Clearly each sn is an element of T and 〈sn : n ∈ ω〉 is a branch through T in V .
Hence the tree T is ill-founded. By absoluteness, it follows that T is ill-founded
in L as well. Let {hi : Lγi

→ Lδi
: i ∈ ω} be a branch of T in L and Wi be the

Lγi
-ultrafilters as above. Let

h = ∪i∈ωhi, Lγ = ∪i∈ωLγi , Lδ = ∪i∈ωLδi , and W = ∪i∈ωWi.

It is clear that h : Lγ → Lδ is an elementary embedding with critical point κ and
W is a weakly amenable Lγ-ultrafilter generated by κ via h. Since the ultrapower
of Lγ by W is a factor embedding of h, it must be well-founded.
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We have now found a weak κ-model Lγ containing A for which there exists a
1-good Lγ-ultrafilter on κ. This completes the proof that κ is 1-iterable. �

The next lemma will allow us to modify the proof of Theorem 3.4 to show that
1-iterable cardinals are downward absolute to L.

Lemma 3.5. If κ is a 1-iterable cardinal, then every A ⊆ κ is contained in a weak
κ-model M for which there exists a 1-iterable M -ultrafilter U on κ satisfying the
conditions:

(1) M = ∪n∈ωMn,
(2) Mn,Mn ∩ U ∈ Mn+1,
(3) for i < j, we have Mi ≺ Mj,
(4) M |= “I am Hκ+” (every set has transitive closure of size at most κ).

Proof. Fix A ⊆ κ and find a weak κ-model M ′ containing A with a 1-good M ′-
ultrafilter U ′ on κ. Let h : M ′ → N ′ be the ultrapower embedding by U ′. We can
assume without loss of generality that M ′ |= “I am Hκ+” by taking {B ∈ M ′ | M ′ |=
transitive closure of B has size ≤ κ} instead of M ′ and restricting the embedding
accordingly. Since M ′ |= “I am Hκ+” and h is κ-powerset preserving, it follows
that M ′ = HN ′

κ+ . In N ′, let M0 be a transitive elementary submodel of Hκ+ of
size κ containing A. Since U ′ is weakly amenable, it follows that U0 = M0 ∩ U ′

is an element of HN ′

κ+ . Let M1 be a transitive elementary submodel of Hκ+ of size
κ containing M0 and U0 and let U1 = M1 ∩ U ′. Again, U1 is clearly an element
of HN ′

κ+ . Inductively let Mn+1 be a transitive elementary submodel of Hκ+ of
size κ containing Mn and Un and Un+1 = Mn+1 ∩ U ′. Let M = ∪n∈ωMn and
U = ∪n∈ωUn. Clearly U is a weakly amenable M -ultrafilter and the ultrapower of
M by U is well-founded as it embeds into N . �

Theorem 3.6. If κ is 1-iterable, then κ is 1-iterable in L.

Proof. Observe that if 0# exists, the theorem follows from Theorem 3.4 since all
uncountable cardinals of V are among the Silver indiscernibles. So suppose 0#

does not exist. In L, fix Lξ of size κ. Choose a weak κ-model M containing Lξ

and Vκ for which there exists a 1-iterable M -ultrafilter U and let j : M → N be
the ultrapower embedding. It is easy to see that κ is weakly compact in N , and
hence in V N

j(κ) |= ZFC. Since V N
j(κ) knows that 0# does not exist, it must satisfy

that (κ+)L = κ+. Restrict to j : Lα → Lβ where α and β are the heights of
M and N respectively. By the observation above, (κ+)Lβ = α and hence the
restriction is κ-powerset preserving. Note also, that by Lemma 3.5, we can assume
that cfV (α) = ω. Therefore the embedding j : Lα → Lβ has exactly the same
properties as the embedding with the Silver indiscernible as the critical point. So we
can proceed as in the proof of Theorem 3.4 to construct a weak κ-model containing
Lξ and a 1-iterable ultrafilter for it in L. �

The next lemma is a simple observation that will prove key to generalizing the
arguments above for α-iterable cardinals. Let us say that

{jξγ : Mξ → Mγ | ξ < γ < α}

is a good commuting system of elementary embeddings of length α if:
(1) for all ξ0 < ξ1 < ξ2 < α, jξ1ξ2 ◦ jξ0ξ1 = jξ0ξ2 .
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Let κξ be the critical point of jξξ+1 and let Uξ be the Mξ-ultrafilter generated by
κξ via jξξ+1, then:

(2) for all ξ < β < α, if A ∈ Mξ and A ⊆ Uξ, then jξβ(A) ⊆ Uβ .

Remark 3.7. The directed system of embeddings resulting from the iterated ul-
trapowers construction is a good commuting system of elementary embeddings.

The next lemma shows that existence of good commuting systems of elementary
embeddings of length α is basically equivalent to existence of α-good ultafilters.

Lemma 3.8. Suppose {jξγ : Mξ → Mγ : ξ < γ < α} is a good commuting system
of elementary embeddings of length α. Suppose further that m0 = ∪i∈ωm

(i)
0 is

a transitive elementary submodel of M0 such that m
(i)
0 ≺ m

(i+1)
0 and U0 ∩ m

(i)
0 ,

m
(i)
0 ∈ m

(i+1)
0 . Then u0 = m0 ∩ U0 is an α-good m0-ultrafilter.

Proof. Let {hξγ : mξ → mγ : ξ < γ < α} be the not necessarily well-founded
directed system of embeddings obtained by iterating u0 and let uξ be the ξth-
iterate of u0. Define u

(i)
0 = u0 ∩ m

(i)
0 and u

(i)
ξ = h0ξ(u(i)

0 ). It is easy to see that

hβξ(u(i)
β ) = u

(i)
ξ and uξ = ∪i∈ωu

(i)
ξ . To show that each mξ is well-founded, we will

argue that we can define elementary embeddings πξ : mξ → Mξ. More specifically
we will construct the following commutative diagram:

M0
j01 - M1

j12 - M2
j23 - . . .

jξξ+1- Mξ+1

jξ+1ξ+2- . . .

. . .

m0

π0

6

h01 - m1

π1

6

h12 - m2

π2

6

h23 - . . .
hξξ+1- mξ+1

πξ+1

6

hξ+1ξ+2- . . .

where
(1) πξ+1([f ]uξ

) = jξξ+1(πξ(f))(κξ),
(2) if λ is a limit ordinal and t is a thread in the direct limit mλ with domain

[β, λ), then πλ(t) = jβλ(πβ(t(β))),
(3) πξ(u(i)

ξ ) ⊆ Uξ for all i ∈ ω.
We will argue that the πξ exist by induction on ξ. Let π0 be the identity map.
Suppose inductively that πξ has the desired properties. Define πξ+1 as in (1)
above. Since πξ(u(i)

ξ ) ⊆ Uξ by the inductive assumption, it follows that πξ+1 is
a well-defined elementary embedding. The commutativity of the diagram is also
clear. It remains to verify that πξ+1(u(i)

ξ+1) ⊆ Uξ+1. Recall that

u
(i)
ξ+1 = hξξ+1(u(i)

ξ ) = [c
u

(i)
ξ

]uξ
.

Let πξ(u(i)
ξ ) = v. Then by inductive assumption, v ⊆ Uξ. Thus,

πξ+1(u(i)
ξ+1) = jξξ+1(cv)(κξ) = cjξξ+1(v)(κξ) = jξξ+1(v).

By hypothesis, jξξ+1(v) ⊆ Uξ+1. This completes the inductive step. The limit case
also follows easily. �

Below, we give another useful example of a good commuting system of elementary
embeddings.
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Lemma 3.9. Suppose L (or Lρ) is the Skolem closure of a collection of order
indiscernibles I and let iξ be the ξth element of I. Suppose δ is below o.t.(I) and λ
is an ordinal such that for all ξ below o.t.(I) and all ξ′ < λ, the sum ξ + ξ′ is below
o.t.(I). Then the system of embeddings {jαβ | α < β < λ} defined by jαβ(iξ) = iξ
for ξ < δ + α and otherwise jαβ(iξ) = iξ+γ where α + γ = β is a good commuting
system of elementary embeddings.

Note that o.t.(I) is allowed to be Ord. The proof is a straightforward application
of indiscernibility. Thus, if κ is a Silver indiscernible, then there is a good com-
muting system of elementary embeddings of length Ord with the first embedding
having critical point κ.

Now we can generalize Lemma 3.5 to the case of α-iterable cardinals.

Lemma 3.10. If κ is an α-iterable cardinal, then every A ⊆ κ is contained in a
weak κ-model M for which there exists an α-good M -ultrafilter U on κ satisfying
conditions (1)-(4) of Lemma 3.5.

Proof. Start with any weak κ-model M ′ and an α-good M ′-ultrafilter U ′ on κ. Use
proof of Lemma 3.5 to find a transitive elementary submodel M of M ′ satisfying
the requirements and use Lemma 3.8 to argue that U = M ∩ U ′ is α-good. �

We are now ready to show that if 0# exists, the Silver indiscernibles are α-iterable
in L for all α < ωL

1 . It will follow using the same techniques that for α < ωL
1 , the

α-iterable cardinals are downward absolute to L.

Theorem 3.11. If 0# exists, then the Silver indiscernibles are α-iterable in L for
all α < ωL

1 .

Proof. Fix a Silver indiscernible κ0 and let λ0 = (κ+
0 )L. Let U0 be an ω1-good

Lλ0-ultrafilter on κ0 that exists by Lemma 3.8 combined with Lemma 3.9. Let

{jγξ : Lλγ
→ Lλξ

: γ < ξ < α}
be the good commuting system of elementary embeddings obtained from the first
α-steps of the iteration. Let κξ be the critical point of jξξ+1 and let Uξ be the
ξth-iterate of U0. As before, we find a cofinal sequence 〈λ(i)

0 : i ∈ ω〉 in λ0 such that
L

λ
(i)
0
≺ Lλ0 and U0∩L

λ
(i)
0

, L
λ

(i)
0
∈ L

λ
(i+1)
0

. Let U
(i)
0 = U0∩L

λ
(i)
0

, L
λ

(i)
ξ

= j0ξ(L
λ

(i)
0

),

and U
(i)
ξ = j0ξ(U (i)

0 ). Finally, let j
(i)
γξ be the restriction of jγξ to L

λ
(i)
γ

. Observe

that each j
(i)
γξ is an element of L by remark 3.1 (2). As before, we will use these

sequences to show that the tree we construct below is ill-founded.
To show that κ0 is α-iterable in L, for every A ⊆ κ0 in L, we need to construct

in L a weak κ0-model M containing A and an α-good M -ultrafilter on κ0. Fix
A ⊆ κ0 in L. Also, fix in L, a bijection ρ : [α]2 → ω.

Define in L, the tree T of finite tuples of sequences t = 〈s0, . . . , sn〉 where each si

is a sequence of length n consisting of approximations to the elementary embedding
from stage ξ to stage β where ρ(ξ, β) = i. That is

si = 〈h(0)
ξβ : L

γ
(0)
ξ

→ L
γ
(0)
β

, . . . , h
(n)
ξβ : L

γ
(n)
ξ

→ L
γ
(n)
β

〉

Note that if t is an m-tuple, then we require all sequences in the tuple to have length
m. We define t ≤ t′ whenever the length of t′ is greater than or equal to the length
of t and the ith coordinate of t′ extends the ith coordinate of t. The sequences
si = 〈h(j)

ξβ : L
γ
(j)
ξ

→ L
γ
(j)
ξ

| 0 ≤ j ≤ n〉 are required to satisfy the properties:
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(1) A ∈ L
γ
(0)
0

|= ZFC−,

(2) h
(j)
ξβ : L

γ
(j)
ξ

→ L
γ
(j)
β

are commuting elementary embeddings,

(3) γ
(j)
ξ < λα = ∪ξ<αλξ.

Let κξ be the critical points of h
(j)
ξξ+1 and let W

(j)
ξ be the L

γ
(j)
ξ

-ultrafilters generated

by κξ via h
(j)
ξξ+1, then:

(4) for j < k ≤ n, L
γ
(j)
ξ

,W
(j)
ξ ∈ L

γ
(k)
ξ

, L
γ
(j)
ξ

≺ L
γ
(k)
ξ

and h
(k)
ξβ extends h

(j)
ξβ ,

(5) h
(j)
ξβ (W (j)

ξ ) = W
(k)
β .

As before, we argue using the iterated ultrapowers of U0, that T is ill-founded in V
and hence in L. Unioning up the branch in L, we obtain a good commuting system
of elementary embeddings of length α and therefore an α-good ultrafilter for the
first model in the system by Lemma 3.8. �

Theorem 3.12. For α < ωL
1 , if κ is α-iterable, then κ is α-iterable in L.

Proof. Use the proof of Theorem 3.6 together with Lemma 3.8. �

4. The hierarchy of α-iterable cardinals

In this section, we show using the techniques developed in the previous section,
that for α ≤ ω1, the α-iterable cardinals form a hierarchy of strength. We make
some observations about the relationship between α-iterable cardinals and α-Erdős
cardinals. We show that a 2-iterable cardinal is a limit of Schindler’s remarkable
cardinals, improving the upper bound on their consistency strength, and that a re-
markable cardinal implies the existence of a countable transitive model of ZFC with
a proper class of 1-iterable cardinals. Finally, we answer a question from [Git09]
about whether 1-iterable cardinals imply the existence of κ-powerset preserving
embeddings on weak κ-models satisfying full ZFC.

Theorem 4.1. If κ is an α-iterable cardinal, then for ξ < α, the cardinal κ is a
limit of ξ-iterable cardinals.

Proof. Suppose κ is an α-iterable cardinal. Choose a weak κ-model M0 containing
Vκ as an element for which there exists an α-good M0-ultrafilter, satisfying the
conclusions of Lemma 3.10. Let jξ : Mξ → Mξ+1 be the ξth step of the iteration by
U0. Suppose, first, that α = β + 1 is a successor ordinal. In this case, the iteration
will have a final model namely Mα. It suffices to argue that κ is β-iterable in Mα.
To see this, suppose that κ is β-iterable in Mα, then κ is β-iterable in M1 as well.
But then M1 satisfies that there is a β-iterable cardinal below j0(κ) and hence,
by elementarity, M0 satisfies that κ is a limit of β-iterable cardinals. But since
Vκ ∈ M0, the model must be correct about this assertion. Now we exactly follow
the argument that Silver indiscernibles are β-iterable in L, with Mα in the place
of L. Let M0 = ∪i∈ωM

(i)
0 where the M

(i)
0 satisfy the conclusions of Lemma 3.10

and let M
(i)
ξ = j0ξ(M (i)

0 ) for ξ ≤ α. Observe that for ξ < γ ≤ β, the restrictions

j
(i)
ξγ : M

(i)
ξ → M

(i)
γ are all elements of Mβ by remark 3.1 (2). Moreover, Mβ is a

set in Mα and hence the ordinals of Mβ are bounded in Mα by some ordinal δ.
This suffices to run the same tree building argument. The bound δ is needed to
insure that the tree is a set. Next, suppose, that α is a limit ordinal. Fix ξ < α,
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then κ is ξ + 1-iterable. So by the inductive assumption, κ is a limit of ξ-iterable
cardinals. �

Next, we give some results on the relationship between α-iterable cardinals and
α-Erdős cardinals for α ≤ ω1.

Definition 4.2. Suppose κ is a regular cardinal and α is a limit ordinal. Then κ
is α-Erdős if every structure of the form 〈Lκ[A], A〉 where A ⊆ κ has a good set of
indiscernibles of order type α.4

Equivalently, κ is α-Erdős if it is least such that the partition relation κ → (α)<ω

holds.
In [WS10], Sharpe and Welch showed that:

Theorem 4.3. An ω1-Erdős is a limit of ω1-iterable cardinals.

Here we show that:

Theorem 4.4. If κ is a γ-Erdős cardinal for some γ < ω1 and δ < γ is an ordinal
such that for all ξ′ < γ and ξ < δ, the sum ξ′ + ξ < γ, then there is a countable
ordinal α and a real r such that Lα[r] is a model of ZFC having a proper class of
δ-iterable cardinals.

Proof. Suppose κ is a γ-Erdős cardinal, then there is a set I = {iξ | ξ ∈ γ} of
good indiscernibles for Lκ[r] where r codes the fact that γ is a countable ordinal.
Let Lα[r] be the collapse of the Skolem closure of I in Lκ[r], then it is the Skolem
closure of some collection K = {kξ | ξ ∈ γ} of indiscernibles. The indiscernibles kξ

are unbounded in α. Since each Liξ
[r] ≺ Lκ[r], we have Lβ [r] ≺ Lκ[r] where β is

the sup of I. It follows that the Skolem closure of I is contained in Lβ [r] and hence
the kξ are unbounded in Lα[r]. By Lemma 3.9, for every indiscernible kξ, there is
a good commuting system of elementary embeddings of length δ on Lα[r] with the
first embedding having critical point kξ. Thus, by Lemma 3.8, there is a δ-good
ultrafilter for every L(k+

ξ )Lα[r] . Since α is countable, it is clear that (k+
ξ )Lα[r] has

countable cofinality. Now we can use the argument in the proof of Theorem 3.11 to
show that each kξ is δ-iterable in Lα[r]. Notice that we cannot use these techniques
to make the argument for δ = γ since the tree of embedding approximations must
be a set in Lα[r]. �

In particular, note that an ω-Erdős cardinal implies for every n ∈ ω, the consis-
tency of the existence of a proper class of n-iterable cardinals.

Remark 4.5. γ-Erdős cardinals do not necessarily have any iterability since the
least such cardinal need not be weakly compact.

In [Sch04], Schinder defined remarkable cardinals and showed that they are
equiconsistent with the assumption that L(R) cannot be modified by proper forc-
ing. Schindler showed that an ω-Erdős cardinal implies that there is a countable
model with a remarkable cardinal. We show that if κ is 2-iterable, then κ is a limit
of remarkable cardinals. By Theorem 4.3, this is an improved upper bound on the
consistency strength of these cardinals.

4See Section 6 for a discussion of good sets of indiscernibles.



12 VICTORIA GITMAN AND P.D. WELCH

Definition 4.6. A cardinal κ is remarkable if for each regular λ > κ, there exists a
countable transitive M and an elementary embedding e : M → Hλ with κ ∈ ran(e)
and also a countable transitive N and an elementary embedding θ : M → N such
that:

(1) cp(θ) = e−1(κ),
(2) OrdM is a regular cardinal in N ,
(3) M = HN

OrdM ,
(4) θ(e−1(κ)) > OrdM .

We will need the following property of 2-iterable cardinals.

Theorem 4.7. If κ is a 2-iterable cardinal, then every A ⊆ κ is contained in a
weak κ-model M |= ZFC for which there exists an embedding j : M → N such that
M = V N

j(κ) and M ≺ N .

For proof, it suffices to observe that if U is a 2-good ultrafilter for a weak κ-model
M , then we get the following commutative diagram:

M
jU - N = M/U

N = M/U

jU

?

jjU (U)

- K = N/jU (U)

hU

?

j
U 2

-

where jU and hU are ultrapowers by U and jjU (U) is the ultrapower by jU (U). If
Vκ ∈ M , the restriction of hU to V N

j(κ) has all the required properties. See [Git09]
for details. The ultrafilter needs to be 2-good to ensure that the bottom arrow
embedding has a well-founded target.

Theorem 4.8. If κ is 2-iterable, then κ is a limit of remarkable cardinals.

Proof. Suppose κ is 2-iterable, then there is j : M → N as in Theorem 4.7 with
Vκ ∈ M . It will suffice to argue that κ is remarkable in M , since it will be remarkable
in N by elementarity, and hence a limit of remarkable cardinals. In M , fix a regular
cardinal λ > κ. Continuing to work in M , find X0 ≺ Hλ of size κ such that
Vκ ∪ {κ} ⊆ X0. By remark 3.1 (2), j � X0 : X0 → j(X0) is an element of N . In
N , find Y0 ≺ j(X0) of size κ such that X0 ∪ j“X0 ∪ {λ} ⊆ Y0. Let j0 : X0 → Y0

such that j0(x) = j(x) for all x ∈ X0, then j0 is clearly elementary and an element
of N . Let Z0 = Y0 ∩ Hλ (clearly HM

λ = HN
λ ), then Z0 ∈ Hλ. Back in M , find

X1 ≺ Hλ such that Z0 ⊆ X1 and in N , find Y1 ≺ j(X1) of size κ and containing
X1 ∪ j“X1. Let j1 : X1 → Y1 such that j1(x) = j(x) for all x ∈ X1, then as
before j1 is elementary and an element of N . Proceed inductively to define the
the sequence 〈jn : Xn → Yn | n ∈ ω〉. The elements of the sequence are all in N ,
but the sequence itself need not be. As in the previous proofs, we will use a tree
argument to find a sequence with similar properties in N itself. The elements of the
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tree T will be sequences 〈h0 : P0 → R0, . . . , hn : Pn → Rn〉 ordered by extension
and satisfying the properties:

(1) hi : Pi → Ri is an elementary embedding with critical point κ,
(2) Vκ ∪ {κ} ⊆ P0, Pi ∈ Hλ, Pi has size κ in Hλ, Pi ≺ Hλ, and Pi ⊆ Ri

(3) Ri ∈ Hj(λ) and Ri has size κ,
(4) for i < j ≤ n, Ri ∩Hλ ⊆ Pj .

The sequence of embeddings we constructed above is a branch through T and hence
T is ill-founded. Thus, N has a branch of T . Let h : P → R be the embedding
obtained from unioning up the branch. By our construction, P ≺ Hλ, P = HR

λ ,
and P is an element of M . Collapse R and use the collapse to define an elementary
embedding of transitive structures h̄ : P̄ → R̄ where R̄ is the collapse of R and P̄
is the collapse of P . Since h̄, P̄ , and R̄ all have transitive size κ, they are elements
of M . Observe that OrdP̄ = γ is a regular cardinal in R̄, the critical point of h̄
is κ, and h̄(κ) > γ. Finally, in M , take a countable elementary substructure of
〈R̄, P̄ , h̄〉 and collapse the structures to obtain an elementary embedding i : m → n
of countable structures with critical point θ. Let e : m → Hλ be the composition
of the inverses of the collapse maps. The embeddings i : m → n and e : m → Hλ

clearly satisfy properties (1)-(4) in the definition of remarkable cardinals. This
completes the argument that κ is remarkable in M . �

If κ is at least 2-iterable, then by Theorem 4.7, we can assume without loss of
generality that we have embeddings on weak κ-models satisfying full ZFC. Gitman
asked in [Git09] whether the same holds true for 1-iterable cardinals. We end this
section, by answering the question in the negative and using the same techniques
to pin the consistency strength of remarkable cardinals exactly between 1-iterable
and 2-iterable cardinals.

Theorem 4.9. If every A ⊆ κ can be put into a weak κ-model M |= “P(κ) exists”
for which there exists a 1-good M -ultrafilter on κ, then κ is a limit of 1-iterable
cardinals.

Proof. Fix a weak κ-model M |= “P(κ) exists” containing Vκ for which there is
a 1-good M -ultrafilter U , and let j : M → N be the ultrapower embedding. Fix
A ⊆ κ in N and find in N , a transitive M0 ≺ Hκ+ of size κ and containing A.
As before, j � M0 : M0 → j(M0) is in N . Next, find a transitive M1 ≺ Hκ+ of
size κ containing M0 and U ∩ M0 and proceed inductively to define the sequence
〈Mn | n ∈ ω〉 in this manner. Again, we construct a tree to obtain a sequence with
similar properties in N that will witness 1-iterability. That the tree can be defined
in the first place is a consequence of the fact that P(j(κ)) and hence Hj(κ)+ exists
in N by elementarity. �

Corollary 4.10. If every A ⊆ κ can be put into a weak κ-model M |= ZFC
for which there exists a 1-good M -ultrafilter on κ, then κ is a limit of 1-iterable
cardinals.

Theorem 4.11. If κ is a remarkable cardinal, then there is a countable transitive
model of ZFC with a proper class of 1-iterable cardinals.

Proof. Fix a regular λ > κ+ and let e : M → Hλ, σ : M → N with critical point
e−1(κ) = δ be as in definition 4.6. Note that P(δ) exists in M since P(κ) exists
in Hλ. Arguing exactly as in the proof of Theorem 4.9, we see that δ = e−1(κ) is
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a limit of 1-iterable cardinals. Thus, V M
δ is a countable transitive model of ZFC

with a class of 1-iterable cardinals. �

5. Ramsey-like cardinals and downward absoluteness to K

In this section, we show that the strongly Ramsey and super Ramsey cardinals
introduced in [Git09] are downward absolute to the core model K.

Definition 5.1. A cardinal κ is strongly Ramsey if every A ⊆ κ is contained in a
κ-model M for which there exists a κ-powerset preserving elementary embedding
j : M → N .

Definition 5.2. A cardinal κ is super Ramsey if every A ⊆ κ is contained in
a κ-model M ≺ Hκ+ for which there exists a κ-powerset preserving elementary
embedding j : M → N .

Strongly Ramsey cardinals are limits of completely Ramsey cardinals that top
Feng’s Πα-Ramsey hierarchy [Fen90]. They are Ramsey, but not necessarily com-
pletely Ramsey. They were introduced with the motivation of using them for in-
destructibility arguments involving Ramsey cardinals. Such an application is made
in Section 6. Super Ramsey cardinals are limits of strongly Ramsey cardinals and
have the advantage that the embedding is on a κ-model that is stationarily correct.
Note that we can restate the definition of strongly Ramsey and super Ramsey car-
dinals in terms of the existence of weakly amenable M -ultrafilters. Since we require
the embedding to be on a κ-model, such an ultrafilter is automatically countably
complete and therefore has a well-founded ultrapower.

As a representative core model K here we take that constructed using extender
sequences which are non-overlapping (see [Zem02]). In such a model a strong
cardinal may exist but not a sharp for such. The argument does not depend on any
particular fine structural considerations, simply the definability of K up to κ+ in
any Hκ+ with applications of the Weak Covering Lemma (cf. [Zem02]).

Proposition 5.3. If κ is strongly Ramsey, then κ is strongly Ramsey in K.

Proof. Let κ be strongly Ramsey and fix A ⊆ κ in K. Choose a κ-model M
containing A such that M |= A ∈ K for which there exists a weakly amenable
M -ultrafilter U on κ. To see that we can choose such M , note that A ∈ P =
〈JEK

α ,∈, EK〉 for some α < κ+ where EK is the extender sequence from which K
is constructed. We may assume that a code for P is definable over V as a subset
of κ. Hence we may assume that the M witnessing strong Ramseyness has this
code, and so P , as an element. Note that with P ∈ M , Kκ is an initial segment of
KM . Finally observe that Vκ ∈ M since M is a κ-model. Let κ̄ = (κ+)KM and set
K̄ = KM

κ̄ . The possibility that κ̄ = OrdM is allowed.
Note that P ∈ K̄ and moreover a standard comparison argument shows that K̄ is

an initial segment of K. Consider the structure N = 〈K̄,∈,W 〉 where W = U ∩ K̄,
and observe that W is a weakly amenable K̄-ultrafilter. Note that cf(κ̄) = κ.
If κ̄ = (κ+)M , this follows since M is a κ-model. Otherwise, consider the inner
model WM = ∪α∈OrdH

Mα
κα

obtained by iterating the ultrafilter U out through the
ordinals, in which κ̄ remains the K-successor of κ, and apply the Weak Covering
Lemma to κ̄. Hence N is a premouse iterable by the ultrafilter W . This allows us
to coiterate N with K. We note that for no µ < κ do we have oK(µ) ≥ κ, , that is κ
is not overlapped by any extender on a critical point µ below κ since otherwise the
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ultrafilter W would generate the sharp for an inner model with a strong cardinal
and we are only considering K build using non-overlapping extenders. Hence if
K were to move in this coiteration, either κ̄ = (κ+)K and κ is measurable in K
(and hence already strongly Ramsey) or else K is first truncated to some N ′ ∈ K,
N ′ = 〈K̄,∈, F 〉 with a weakly amenable K̄-ultrafilter F . The next paragraph shows
that N ′ witnesses the strong Ramsey property for A.

It remains to show that K̄<κ ⊆ K̄ in K. Fix α < κ and f : α → K̄ in K.
Without loss of generality we shall assume that f is 1-1. Since M is a κ-model, we
have f ∈ M . Suppose f(γ) ∈ K̄δ(γ) for some δ(γ) < κ̄. Let δ = supγ<α δ(γ). Then
δ < κ̄. Let G ∈ K̄ be such that G : κ → K̄δ is a bijection. Then if C = G−1“ran(f),
then C is a bounded subset of κ with C ∈ K. However C ∈ Vκ → C ∈ KM . As
both f,G are (1-1) there is a permutation π : α −→ C with f = G ◦ π. Again
π ∈ Vκ ∩K ∩M . Hence f ∈ K̄. �

Proposition 5.4. If κ is super Ramsey, then κ is super Ramsey in K.

Proof. Note that if M ≺ Hκ+ , then KM ≺ (K)Hκ+ = Kκ+ . Let κ̄ = (κ+)K . Then
also KM ∩ Kκ̄ ≺ Kκ̄. Let K̄ = KM ∩ Kκ̄. Now argue as in the last proposition
using N = 〈K̄,∈, U ∩ K̄〉 where U is the filter weakly amenable to M . �

6. Virtually Ramsey cardinals

In [WS10], Sharpe and Welch defined a new large cardinal notion, the virtually
Ramsey cardinal. Virtually Ramsey cardinals are defined by an apparently weaker
statement about the existence of good indiscernibles than Ramsey cardinals. The
definition was motivated by the conditions needed to get an upper bound on the
consistency strength of the Intermediate Chang’s Conjecture. In this section, we
separate the notions of Ramsey and virtually Ramsey cardinals using an old forcing
argument of Kunen’s showing how to destroy and then resurrect a weakly compact
cardinal [Kun78].

Definition 6.1. Suppose κ is a cardinal and A ⊆ κ. Then I ⊆ κ is a good set of
indiscernibles for 〈Lκ[A], A〉 if for all γ ∈ I:

(1) 〈Lγ [A ∩ γ], A ∩ γ〉 ≺ 〈Lκ[A], A〉.
(2) I \ γ is a set of indiscernibles for 〈Lκ[A], A, ξ〉ξ∈γ .

Remark 6.2. If for every A ⊆ κ, there is γ < κ such 〈Lγ [A ∩ γ], A ∩ γ〉 ≺
〈Lκ[A], A〉, then it is easy to see that κ must be inaccessible. Also, if I is a set of
good indiscernibles for 〈Lκ[A], A〉 and |I| ≥ 3, then by clause (2), every γ ∈ I is
inaccessible in 〈Lκ[A], A〉.

Theorem 6.3. A cardinal κ is Ramsey if and only if for every A ⊆ κ, the structure
〈Lκ[A], A〉 has a good set of indiscernibles of size κ.

See [DL89] for details on good sets of indiscernibles and proof of above theorem.
In general, for A ⊆ κ, let IA = {α ∈ κ | there is an unbounded set of good
indiscernibles Iα ⊆ α for 〈Lκ[A], A〉}.

Definition 6.4. A cardinal κ is virtually Ramsey if for every A ⊆ κ, the set IA

contains a club.5

5The original definition in [WS10] required that IA contain only an ω1-club.
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There is no obvious reason to suppose that the good sets of indiscernibles below
each of the ordinals in IA can be glued together into a good set of indiscernibles
of size κ, suggesting that virtually Ramsey cardinals are not necessarily Ramsey.
First, we make some easy observations about virtually Ramsey cardinals.

Proposition 6.5. Ramsey cardinals are virtually Ramsey.

Proof. Suppose κ is a Ramsey cardinal. If A ⊆ κ, then there is a good set indis-
cernibles I of size κ for the structure 〈Lκ[A], A〉. Clearly the club of all limit points
of I is contained in IA. This verifies that κ is virtually Ramsey. �

The next proposition confirms that being a virtually Ramsey cardinal is a large
cardinal notion.

Proposition 6.6. Virtually Ramsey cardinals are Mahlo.

Proof. Suppose κ is virtually Ramsey. By remark 6.2, κ is inaccessible. To see
that κ is Mahlo, let A ⊆ κ code Hκ and C ⊆ κ be a club. If I is any good set of
indiscernibles for Lκ[A,C] and γ ∈ I, then γ ∈ C by (1) of 6.1. By remark 6.2,
Lκ[A,C] thinks that γ is inaccessible but it is correct about this since it contains
all of Hκ. �

Next, we give a sufficient condition needed to glue the good sets of indiscernibles
below the ordinals in IA into a good set of indiscernibles of size κ.

Proposition 6.7. If a cardinal is virtually Ramsey and weakly compact, then it is
Ramsey.

Proof. Suppose κ is virtually Ramsey and weakly compact. We will argue that we
can glue together the good sets of indiscernibles coming from the different ordinals
of the club contained in IA into a good set of indiscernibles of size κ. Fix A ⊆ κ
and let C be a club contained in IA. Fix any weak κ-model M containing A, C and
Vκ as elements. By weak compactness, there exists an embedding j : M → N with
critical point κ. Observe that M |= C ⊆ I M

A , where I M
A is the set IA defined

from the perspective of M . By elementarity N |= j(C) ⊆ I N
j(A). Since κ ∈ j(C),

it follows that there is a good set of indiscernibles for 〈Lj(κ)[j(A)], j(A)〉 below κ.
But since j(A)∩ κ = A, it is easy to see that this is a good set of indiscernibles for
〈Lκ[A], A〉 as well. This completes the proof that κ is Ramsey. �

Our strategy to separate virtually Ramsey and Ramsey cardinals will be to
start with a Ramsey cardinal and force to destroy its weak compactness while
preserving virtual Ramseyness. Although ideally we would like to start with a
Ramsey cardinal, we will have to start with a strongly Ramsey cardinal instead.
The reason being that strongly Ramsey cardinals have embeddings on sets with
< κ-closure that is required for indestructibility techniques. The argument below
was worked out jointly with Joel David Hamkins and we would like to thank him
for his contribution.

The forcing we use is Kunen’s well-known forcing from [Kun78] to destroy and
then resurrect weak compactness. The next lemma is a key observation in the
argument.

Lemma 6.8. If P is a < κ-distributive, stationary preserving forcing, G ⊆ P is
V -generic and κ is virtually Ramsey in V [G], then κ was already virtually Ramsey
in V .
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Proof. Fix A ⊆ κ. Since P is < κ-distributive, it cannot add any new good sets of
indiscernibles to ordinals α < κ. It follows that IA = I

V [G]
A . If IA does not con-

tain a club in V , then the complement I A is stationary in V . Since P is stationary
preserving, I A remains stationary in V [G]. This is clearly a contradiction since κ
is virtually Ramsey in V [G] and hence IA contains a club. �

First, we define a forcing Q to add a Souslin tree T together with a group of
automorphisms G that acts transitively on T . A group of automorphisms G of a
tree T is said to act transitively if for every a and b on the same level of T , there
is π ∈ G with π(a) = b. The elements of Q will be pairs (t, f) where t is a normal
α + 1-tree for some α < κ such that Aut(t) acts transitively and f : λ

1−1→
onto

Aut(t) is

some enumeration of Aut(t). We have (t1, f1) ≤ (t0, f0) when
(1) t1 end-extends t0,
(2) for all ξ ∈ Dom(f0), f1(ξ) extends f0(ξ).

The strategy will be to force with Q to add a Souslin tree T thereby destroying
the strong Ramseyness of κ and then to force with T itself to resurrect it. The
argument that the second forcing resurrects the strong Ramseyness of κ will rely
on the fact that the combined forcing Q followed by T has a dense subset that is
< κ-closed. It is to obtain this result that the usual forcing to add a Souslin tree
needs to be augmented with the automorphism groups.

To show that the generic κ-tree T added by Q is Souslin, we need to argue that
every maximal antichain of T is bounded. In the usual forcing to add a Souslin
tree, the conditions are normal α + 1-trees and the argument is made by proving
the Sealing Lemma. The Sealing Lemma states that if a condition forces that Ȧ is
a name for a maximal antichain, then there is a stronger condition forcing that it
is bounded. The argument for the Sealing Lemma goes as follows:
Suppose t0 
 Ȧ is a maximal antichain of Ṫ . Choose t1 ≤ t0 such that for every
s ∈ t0, there is as ∈ t1 compatible with s and t1 
 as ∈ Ȧ. Build a sequence
· · · ≤ tn ≤ · · · ≤ t1 ≤ t0 such that for every s ∈ tn, there is as ∈ tn+1 compatible
with s and tn+1 
 as ∈ Ȧ. Let t be the union of tn and build the top level of t
by adding a branch through every pair s and as. Since every new branch passes
through an element of Ȧ, this seals the antichain. We will carry out a similar
argument with the forcing Q, but it will be complicated by the fact that whenever
we add a node on top of a branch B, we need to add nodes on top of branches
f(ξ)“B. While B passes through an element of Ȧ, there is no reason why f(ξ)“B
should. In fact, since the automorphism groups act transitively, it will suffice to
add a single carefully chosen branch to the limit tree of the conditions and take
the limit level to be all the images of the branch under the automorphism group
on the second coordinate. Thus, we need to build our sequence of conditions such
that the limit of the trees on the sequence has a branch all of whose images under
the automorphism group go through elements of the antichain.

Lemma 6.9 (Sealing Lemma). Suppose p is a condition in Q, Ṫ is the canonical
Q-name for the generic κ-tree added by Q, and p 
 Ȧ is a maximal antichain of Ṫ .
Then there is q ≤ p forcing that Ȧ is bounded.

Proof. Fix p 
 Ȧ is a maximal antichain of Ṫ . Let p = (t0, f0) with t0 of height α+1
and f0 : λ0

1−1→
onto

Aut(t0). Choose some M ≺ Hκ+ of size < κ containing Q, p, and Ȧ
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with the additional property that OrdM ∩κ = β is an initial segment of κ. We will
work inside M to build a condition (t, f) with t of height β+1 strengthening (t0, f0)
and sealing Ȧ. We will need a bookkeeping function ϕ : κ →

onto
κ with the property

that every ξ appears in the range cofinally often. Notice that by elementarity,
M contains some such function ϕ. Working entirely inside M , we carry out the
following construction for κ many steps. By going to a stronger condition, we can
assume without loss of generality that there is a ∈ t0 such that (t0, f0) 
 a ∈ Ȧ.
Let B0 be any branch through a in t0. Let a0 be the top node of B0. The node
a0 begins the branch we are trying to construct. Let (t1, f1) be a condition in Q
strengthening (t0, f0) and having the property that for every s ∈ t0, there is as ∈ t1
compatible with s such that (t1, f1) 
 as ∈ Ȧ. Consult the bookkeeping function
ϕ(1) = γ. This will determine how a0 gets extended. If γ ≥ λ0, let a1 be the node
on the top level of t1 extending a0. Otherwise, consider f0(γ) and f0(γ)(a0) = s.
Let s′ be on the top level of t1 above s and as. Finally, let f1(γ)−1(s′) = a1. This
has the effect that no matter how we extend f0(γ), the image under it of the branch
we are building will pass through Ȧ. At successor stages σ + 1, we will extend the
condition (tσ, fσ) to a condition (tσ+1, fσ+1) having the property that for every
s ∈ tσ, there is as ∈ tσ+1 compatible with s such that (tσ+1, fσ+1) 
 as ∈ Ȧ. Next,
we will consult the bookkeeping function ϕ(σ) = γ and let it decide as above how
aσ gets chosen. At limit stages λ, we will let tλ be the union of tξ for ξ < λ and
fλ be the coordinate-wise union of fξ. Now use the branch through aξ to define a
limit level for tλ, thereby extending to (tλ+1, fλ+1). From the perspective of M , we
are carrying out this construction for κ many steps, but really we are only carrying
it out for β many steps. In V , we build (t, f) by unioning the sequence and adding
a limit level using the branch of the aξ. It should be clear that (t, f) forces that Ȧ
is bounded. �

Corollary 6.10. The generic κ-tree added by Q is Souslin.

In the generic extension by Q, the Souslin tree T it adds can be viewed as a
poset. Next, we will argue that forcing with Q ∗ Ṫ is forcing equivalent Add(κ, 1),
where Add(κ, 1) is the forcing to add a Cohen subset to κ. Since every < κ-closed
poset of size κ is forcing equivalent to Add(κ, 1), it suffices argue that Q ∗ Ṫ has a
dense subset that is < κ-closed.

Lemma 6.11. The forcing Q ∗ Ṫ has a dense subset that is < κ-closed.

Proof. Conditions in Q ∗ Ṫ are triples (t, f, ȧ) where t is an α + 1-tree, f is an
enumeration of the automorphism group of t, and ȧ is a name for an element of
Ṫ . We will argue that conditions of the form (t, f, a) where a is on the top level
of t form a dense < κ-closed subset of Q ∗ Ṫ . Start with any condition (t0, f0, ḃ0)
and strengthen (t0, f0) to a condition (t1, f1) deciding that ḃ is b ∈ t1. Now we
have (t0, f0, ḃ) ≥ (t1, f1, b) ≥ (t1, f1, a) where a is above b on the top level of t1.
Thus the subset is dense. Suppose γ < κ and we have a descending γ-sequence
(t0, f0, a0) ≥ (t1, f1, a1) ≥ . . . ≥ (tξ, fξ, aξ) ≥ . . .. To find a condition that is above
the sequence, we take unions of the first two coordinates and make the limit level of
the tree in the first coordinate consist of images of the branch through 〈aξ | ξ < γ〉
under the automorphisms in the second coordinate. �

Let Pκ be the Easton support iteration which adds a Cohen subset to every
inaccessible cardinal below κ. We will force with the iteration Pκ ∗ Q̇ ∗ Ṫ . This is
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equivalent to forcing with Pκ ∗ Add(κ, 1). The forcing argument will rely crucially
on the following standard theorem about preservation of strong Ramsey cardinals
after forcing.

Theorem 6.12. If κ is strongly Ramsey in V , then it remains strongly Ramsey
after forcing with Pκ ∗Add(κ, 1).

The proof uses standard techniques for lifting embeddings and will appear in
[GJ10].

Now we have all the machinery necessary to produce a model where κ is virtually
Ramsey but not weakly compact.

Theorem 6.13. If κ is a strongly Ramsey cardinal, then there is a forcing exten-
sion, in which κ is virtually Ramsey, but not weakly compact.

Proof. Let κ be a strongly Ramsey cardinal and G ∗ T ∗ B ⊆ Pκ ∗ Q̇ ∗ Ṫ be V -
generic. Since Q adds a Souslin tree, κ is not weakly compact in the intermediate
extension V [G][T ]. But by Theorem 6.12, the strong Ramseyness of κ is resurrected
in V [G][T ][B]. Recall that forcing with a Souslin tree is < κ-distributive. The
Souslin tree forcing is also κ-cc and hence stationary preserving. So by Lemma 6.8,
we conclude that κ remains virtually Ramsey in V [G][T ]. Thus, in V [G][T ], the
cardinal κ is virtually Ramsey but not weakly compact, and hence not Ramsey. �

We showed starting from a strongly Ramsey cardinal that it is possible to have
virtually Ramsey cardinals that are not Ramsey, thus separating the two notions.
The following questions are still open.

Question 6.14. Can we separate Ramsey and virtually Ramsey cardinals starting
with just a Ramsey cardinal?

Question 6.15. Are virtually Ramsey cardinals strictly weaker than Ramsey car-
dinals?

Question 6.16. Are virtually Ramsey cardinals downward absolute to K?
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