A set theoretic approach to Scott's Problem

Victoria Gitman

 $\label{localization} vgitman@nylogic.org\\ http://boolesrings.org/victoriagitman$

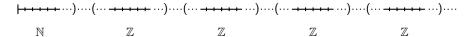
NUS Logic Seminar October 19, 2016

Models of Peano Arithmetic

- The first-order language of arithmetic is $\mathcal{L}_A = \langle +, \cdot, <, 0, 1 \rangle$.
- Peano Arithmetic (PA) is the usual axiomatization of number theory.
 - Commutativity and associativity of addition and multiplication, distributive law, ordering is discrete with least element 0, 0 is the additive identity, etc.
 - ▶ Induction scheme: for every \mathcal{L}_A -formula $\varphi(x, \vec{y})$,

$$\forall \vec{y} [(\varphi(0, \vec{y}) \land (\forall x \varphi(x, \vec{y}) \rightarrow \varphi(x+1, \vec{y}))) \rightarrow \forall x \varphi(x, \vec{y})].$$

- The natural numbers $(\mathbb{N}, +, \cdot, <, 0, 1)$ is the standard model of PA.
- The order-type of a nonstandard model of PA is $\mathbb{N} + \mathbb{A} \cdot \mathbb{Z}$ for a dense linear order \mathbb{A} without endpoints.



- Question: If $M \models PA$ is countable then $\mathbb{A} = \mathbb{Q}$. What can \mathbb{A} be if M is uncountable?
- Tennenbaum's Theorem: (1959) There are no recursive nonstandard models of PA.

The standard system of a nonstandard model of PA

Suppose $M \models PA$ is nonstandard.

Definition: (Friedman, 1973) The standard system of M, denoted SSy(M), is the collection of subsets of $\mathbb N$ that arise as intersections of definable subsets of M with $\mathbb N$.

$$SSy(M) = \{A \subseteq \mathbb{N} \mid A = \bar{A} \cap \mathbb{N} \text{ for some } \bar{A} \in Def(M)\}.$$

Definition:

• An element $a \in M$ codes a set $A \subseteq \mathbb{N}$ if

$$A = \{n \in \mathbb{N} \mid M \models \text{ "the } n\text{-th digit in the binary expansion of } a \text{ is } 1"\}.$$

• A set $A \subseteq \mathbb{N}$ is coded in M if there is $a \in M$ coding A.

Proposition: SSy(M) is the collection of all sets coded in M.

Corollary: If $M \models PA$ is a submodel of $N \models PA$ and M is an initial segment of N, then SSy(M) = SSy(N).

The standard system of a nonstandard model of PA (continued)

Standard systems play an important role in the study of nonstandard models.

Here are some examples:

Proposition: For every $n \in \mathbb{N}$, the \sum_{n} -theory of a model is in its standard system.

Theorem: (Jensen and Ehrenfeucht, Wilmers?, 1970s) Two countable recursively saturated models M and N of PA are isomorphic if and only if they have the same theory and the same standard system.

A model is recursively saturated if it realizes all finitely realizable recursive types.

Friedman's Embedding Theorem: (1973) A countable model $M \models PA$ Σ_n -elementarily embeds into another model $N \models PA$ if and only if N satisfies the Σ_{n+1} -theory of M and $SSy(M) \subseteq SSy(N)$.

Properties of standard systems

Suppose $M \models PA$ is nonstandard.

- **1.** SSy(M) is a Boolean algebra.
- **2.** SSy(M) is closed under relative recursion:

If $A \in SSy(M)$ and $B \leq_T A$, then $B \in SSy(M)$.

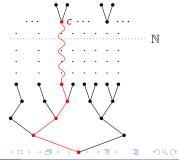
Proof: Suppose $A = \bar{A} \cap \mathbb{N}$ with $\bar{A} \in \mathrm{Def}(M)$.

- Let m be the Turing machine computing B from A.
- Define \bar{B} to be the output of m with oracle \bar{A} .
- $B = \bar{B} \cap \mathbb{N}$. \square
- **3.** SSy(M) has the tree property:

If $T \in SSy(M)$ is an infinite binary tree, then SSy(M) has some infinite branch of T.

Proof: Suppose $T = \overline{T} \cap \mathbb{N}$ with $\overline{T} \in \mathrm{Def}(M)$.

- \bar{T} is a binary tree up to some nonstandard level. (Otherwise, we could define \mathbb{N} .)
- Let $c \in \overline{T}$ be a nonstandard node.
- Let \bar{B} be the predecessors of c in \bar{T} .
- $B = \overline{B} \cap \mathbb{N}$ is an infinite branch of T. \square



Scott sets and Scott's Problem

Definition: (Scott, 1962) A Scott set is a nonempty Boolean algebra of subsets of \mathbb{N} that is closed under relative recursion and satisfies the tree property.

Aside: Scott sets are the ω -models of the second-order arithmetic theory WKL₀.

Suppose ${\mathscr X}$ is a Scott set.

- Every recursive set is in \mathscr{X} .
- ullet Every consistent theory $S\in\mathscr{X}$ has a consistent completion $ar{S}\in\mathscr{X}$. (Use the tree property.)

We just argued that every standard system is a Scott set.

Scott's Problem: Is every Scott set the standard system of some model of PA?

Scott's Problem for countable Scott sets

Theorem: (Scott, 1962) Suppose \mathscr{X} is a countable Scott set and $S \in \mathscr{X}$ is a consistent theory extending PA. Then there is a model $M \models S$ such that $SSy(M) = \mathscr{X}$.

Proof: We carry out the Henkin construction "inside \mathscr{Z} ". Enumerate $\mathscr{X} = \{A_n \mid n < \omega\}$.

Stage 0:

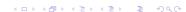
Let \mathcal{L}_0 be \mathcal{L}_A together with

- a new constant a₀,
- Henkin constants $\{c_i^0 \mid i < \omega\}$.

Let T_0' be S together with

- sentences $\{\varphi_i \mid i \in \mathbb{N}\}$ expressing that a_0 codes A_0 : if $i \in A_0$, φ_i says "The i-th digit in the binary expansion of a_0 is 1", if $i \notin A_0$, φ_i says "The i-th digit in the binary expansion of a_0 is 0",
- Henkin sentences for formulas in \mathcal{L}_A .

 $T_0' \in \mathscr{X}$ because it is recursive in S, A_0 . Let $T_0 \in \mathscr{X}$ be some consistent completion of T_0' .



Scott's Problem for countable Scott sets (continued)

Stage n:

Let \mathcal{L}_n be \mathcal{L}_{n-1} together with

- a new constant a_n,
- Henkin constants $\{c_i^n \mid i < \omega\}$.

Let T'_n be T_{n-1} together with

- sentences $\{\varphi_i \mid i \in \mathbb{N}\}$ expressing that a_n codes A_n .
- Henkin sentences for formulas in \mathcal{L}_{n-1} .

 $T'_n \in \mathscr{X}$ because it is recursive in T_{n-1} , A_n .

Let $T_n \in \mathscr{X}$ be some consistent completion of T'_n .

The union:

 $T:=\bigcup_{n<\omega}T_n$ is a complete consistent Henkin theory.

The Henkin model $M \models T$ has $SSy(M) = \mathcal{X}$:

- a_n codes A_n .
- If c_i^n codes A, then $A \in \mathcal{X}$ because A is recursive in the complete theory T_n . \square

Scott's Problem for Scott sets of size ω_1

Ehrenfeucht's Lemma: (1970s) Suppose M is a countable model of PA and $\mathscr X$ is a Scott set such that $\operatorname{SSy}(M) \subseteq \mathscr X$. For every $A \in \mathscr X$, there is an elementary extension N of M such that $A \in \operatorname{SSy}(N) \subseteq \mathscr X$.

Proof:

- Choose a countable Scott set $\mathscr{Y} \subseteq \mathscr{X}$ with $SSy(M) \cup \{A\} \subseteq \mathscr{Y}$.
- The Σ_1 -theory of M, $\operatorname{Th}_{\Sigma_1}(M) \in \operatorname{SSy}(M) \subseteq \mathscr{Y}$.
- By Scott's Theorem, there is a countable $K \models \mathrm{PA} + \mathrm{Th}_{\Sigma_1}(M)$ such that $\mathrm{SSy}(K) = \mathscr{Y}$.
- By Friedman's Embedding Theorem, we can assume $M \prec_{\Delta_0} K$.
- Let N be the closure under initial segment of M in K.

- Since $M \prec_{\Delta_0} N$ and M is cofinal in N, it follows that $M \prec N$.
- $SSy(N) = SSy(K) = \mathcal{Y}$ since N is an initial segment of K. \square

Scott's Problem for Scott sets of size ω_1 (continued)

Theorem: (Knight, Nadel, 1982) Every Scott set of size ω_1 is the standard system of some model of PA.

Proof: Let \mathscr{X} be a Scott set of size ω_1 .

- Enumerate $\mathscr{X} = \{A_{\xi} \mid \xi < \omega_1\}.$
- Choose a countable Scott set $\mathscr{X}_0 \subseteq \mathscr{X}$.
- By Scott's Theorem, there is $M_0 \models PA$ with $SSy(M_0) = \mathscr{X}_0$.
- By Ehrenfeucht's Lemma, given $M_{\xi} \models \mathrm{PA}$, let $M_{\xi} \prec M_{\xi+1}$ with $A_{\xi} \in \mathrm{SSy}(M_{\xi+1}) \subseteq \mathscr{X}$.
- For limit ordinals λ , let $M_{\lambda} = \bigcup_{\xi < \lambda} M_{\xi}$.
- In ω_1 -steps, we obtain a continuous elementary chain:

$$M_0 \prec M_1 \prec \cdots \prec M_{\xi} \prec \cdots \prec M$$

• The model $M = \bigcup_{\xi < \omega_1} M_{\xi}$ has $SSy(M) = \mathscr{X}$.

Corollary: Assuming CH, every Scott set is the standard system of some model of PA. Thus, it is consistent that Scott's Problem has a positive answer.

Open Questions

Question: What is the solution to Scott's Problem if CH fails?

Question: Does Ehrenfeucht's Lemma hold for uncountable models?

Incremental strategy:

- Assume $2^{\omega} = \omega_2$ and some additional set theoretic hypothesis.
- Make additional requirements on a Scott set $\mathscr X$ so that Ehrenfeucht's Lemma holds for models $M \models \operatorname{PA}$ of size ω_1 with $\operatorname{SSy}(M) \subseteq \mathscr X$.

Definition: A family $\mathscr{X} \subseteq \mathcal{P}(\mathbb{N})$ is called arithmetically closed (AC) if it is a nonempty Boolean algebra that is closed under the Turing jump operation.

Aside: Arithmetically closed families are the ω -models of the second-order arithmetic theory ACA_0 .

Question: Is every AC family of size ω_2 the standard system of some model of PA?

An ultrapower construction

Set-up

- $M \models PA$
- \mathscr{X} is a Scott set with $SSy(M) \subseteq \mathscr{X}$.
- U is an ultrafilter on \mathscr{X} .

Ultrapower construction (Kirby, Paris, 1977)

- Let $\Pi_{\mathbb{N}}^{\operatorname{Cod}} M = \{ f : \mathbb{N} \to M \mid f = F \upharpoonright \mathbb{N} \text{ for some } F \in \operatorname{Def}(M) \}.$
- ullet Define an equivalence relation $\sim_{\it U}$ on $\Pi^{
 m Cod}_{\Bbb N} M$ by

$$f \sim_U g \leftrightarrow \{n \in \mathbb{N} \mid f(n) = g(n)\} \in U.$$

- Let $\Pi_N^{\text{Cod}} M/U$ be the collection of equivalence classes.
- ullet $\Pi_{\mathbb{N}}^{\operatorname{Cod}} M/U$ gets the usual ultrapower \mathcal{L}_A -structure, e.g.,

$$[f]_U + [g]_U = [h]_U \leftrightarrow \{n \in \mathbb{N} \mid M \models f(n) + g(n) = h(n)\} \in U.$$

- M embeds into $\Pi_{\mathbb{N}}^{\mathrm{Cod}}M/U$ via the map sending a to $[c_a]_U$, where c_a is the constant function with value a.
- Łoś Theorem holds:

$$\Pi_{\mathbb{N}}^{\text{Cod}} M/U \models \varphi([f]_U) \leftrightarrow \{n \in \mathbb{N} \mid M \models \varphi(f(n))\} \in U.$$

 $\bullet \ |\Pi_{\mathbb{N}}^{\mathrm{Cod}} M/U| = |M|.$

A forcing notion from a Scott set

Suppose A, B are infinite subsets of \mathbb{N} . We say that A is almost contained in B, $A \subseteq^* B$, if there is $n \in \mathbb{N}$ such that $A \setminus n \subseteq B$.

Definition: Suppose \mathscr{X} is a Scott set. Let \mathscr{X}/fin be the partial order whose elements are infinite sets in \mathscr{X} ordered by \subseteq^* .

Example: $\mathcal{P}(\omega)/\text{fin}$ has been extensively studied.

Decisive sets

Definition: Suppose $\mathscr X$ is a Scott set and $\vec B = \langle B_n \mid n \in \mathbb N \rangle$ is coded in $\mathscr X$. A set $C \in \mathscr X$ decides $\vec B$ if whenever U is an ultrafilter on $\mathscr X$ with $C \in U$, then $\{n \mid B_n \in U\} \in \mathscr X$.

Observation: Suppose $\mathscr X$ is an AC family and $\vec B$ is a sequence coded in $\mathscr X$.

- If $C \in \mathscr{X}$ has $C \subseteq^* B_n$ or $C \subseteq^* \mathbb{N} \setminus B_n$ for all $n \in \mathbb{N}$, then C decides \vec{B} .
- There is $C \in \mathscr{X}$ such that $C \subseteq^* B_n$ or $C \subseteq^* \mathbb{N} \setminus B_n$ for all $n \in \mathbb{N}$.

Corollary: If $\mathscr X$ is an AC family, then for every sequence \vec{B} coded in $\mathscr X$, there is $C \in \mathscr X$ deciding \vec{B} .

Lemma (G., 2007) TFAE for a Scott set \mathscr{X} .

- 1. $\mathscr X$ is arithmetically closed.
- 2. For every sequence \vec{B} coded in \mathscr{X} , there is $C \in \mathscr{X}/\text{fin deciding }\vec{B}$.
- 3. For every sequence \vec{B} coded in \mathscr{X} , the set $\mathscr{D}_{\vec{B}}$ of C deciding \vec{B} is dense in \mathscr{X}/fin .

A forcing notion from a Scott set (continued)

Lemma: (G., 2007) Suppose $M \models PA$, \mathscr{X} is an AC family with $SSy(M) \subseteq \mathscr{X}$, and U is an ultrafilter on \mathscr{X} .

- For every $[f]_U \in \Pi_{\mathbb{N}}^{\operatorname{Cod}} M/U$, there is a sequence \vec{B}^f coded in \mathscr{X} such that if there is $C \in U$ deciding \vec{B}^f , then the set coded by $[f]_U$ is in \mathscr{X} .
- For every $A \in \mathcal{X}$, there is $B^A \in \mathcal{X}/\mathrm{fin}$ such that if $B^A \in U$, then $A \in \mathrm{SSy}(\Pi^{\mathrm{Cod}}_{\mathbb{N}} M/U)$.

Theorem: (G., 2007) Suppose

- $M \models PA$,
- \mathscr{X} is an AC family with $SSy(M) \subseteq \mathscr{X}$,
- G is a filter on \mathscr{X}/fin meeting all dense sets $\mathcal{D}_{\vec{B}^f}$ for $f \in \Pi_{\mathbb{N}}^{\mathrm{Cod}}M$.

Then the ultrafilter U on $\mathscr X$ determined by G has the following properties:

- $SSy(\Pi_{\mathbb{N}}^{Cod}M/U)\subseteq \mathscr{X}$.
- For every $A \in \mathscr{X}$, there is a $B_A \in \mathscr{X}/\mathrm{fin}$ such that if $B_A \in G$, then $A \in \Pi_{\mathbb{N}}^{\mathrm{Cod}} M/U$.

Forcing axioms

Question: How we do obtain such a partially generic filter *G*?

A forcing axiom asserts for a class $\mathcal C$ of partial orders and a cardinal κ that for every partial order $\mathbb P\in\mathcal C$ and every collection $\mathcal D$ of κ -many dense sets of $\mathbb P$ there is a filter on $\mathbb P$ meeting every set in $\mathcal D$.

Here are two examples:

- Martin's Axiom (MA): for every ccc partial order $\mathbb P$ and every collection $\mathcal D$ of $\kappa < 2^\omega$ many dense sets of $\mathbb P$, there a filter on $\mathbb P$ meeting every set in $\mathcal D$.
- Proper Forcing Axiom (PFA): for every proper partial order \mathbb{P} and every collection \mathcal{D} of ω_1 -many dense sets of \mathbb{P} , there is a filter on \mathbb{P} meeting every set in \mathcal{D} .

Forcing axioms and Ehrenfeucht's Lemma

Theorem:

- Assuming MA, Ehrenfeucht's Lemma holds for every AC family $\mathscr X$ such that $\mathscr X/\mathrm{fin}$ is ccc and model $M \models \mathrm{PA}$ of size $\kappa < 2^\omega$ with $\mathrm{SSy}(M) \subseteq \mathscr X$.
- Assuming PFA, Ehrenfeucht's Lemma holds for every AC family $\mathscr X$ such that $\mathscr X/\mathrm{fin}$ is proper and model $M \models \mathrm{PA}$ of size ω_1 with $\mathrm{SSy}(M) \subseteq \mathscr X$.

Theorem: (G., 2007) Assuming PFA, every AC family $\mathscr X$ of size ω_2 such that $\mathscr X/\mathrm{fin}$ is proper is the standard system of some model of PA.

Definition: Suppose $\mathscr X$ is an AC family of size ω_2 . We say that $\mathscr X/\mathrm{fin}$ is piecewise proper if $\mathscr X$ is a chain

$$\mathscr{X}_0 \subseteq \mathscr{X}_1 \subseteq \cdots \subseteq \mathscr{X}_{\xi} \subseteq \cdots \subseteq \mathscr{X}$$

of AC families \mathscr{X}_{ξ} of size ω_1 for $\xi < \omega_2$ such that each $\mathscr{X}_{\xi}/\text{fin}$ is proper.

Theorem (G., 2007) Assuming PFA, every AC family \mathscr{X} of size ω_2 such that \mathscr{X}/fin is piecewise proper is the standard system of some model of PA.

When is $\mathscr{X}/\text{fin ccc}$?

Lemma: If $\mathscr X$ is an uncountable Scott set, then $\mathscr X/\mathrm{fin}$ has uncountable antichains. Therefore every Scott set $\mathscr X$ such that $\mathscr X/\mathrm{fin}$ has the ccc is countable.

MA can't help in this approach to establish new instances of Ehrenfeucht's Lemma.

Question: What about PFA?

When is $\mathscr{X}/\text{fin proper?}$

Proper partial orders generalize ccc partial orders.

Theorem: (Todorčević, Veličković, 1992) Assuming PFA, $2^{\omega} = \omega_2$.

Observation: Suppose $\mathscr X$ is an AC family such that for every countable AC family $\mathscr Y\subseteq\mathscr X$ and countable collection $\mathcal D$ of dense sets of $\mathscr Y$, there is $A\in\mathscr X$ such that for every $D\in\mathcal D$, there is $B\in D$ with $A\subseteq^*B$. Then $\mathscr X/\mathrm{fin}$ is proper.

Theorem: (G., 2007) It is consistent that

- There are continuum many AC families $\mathscr X$ of size ω_1 such that $\mathscr X/\mathrm{fin}$ is proper.
- There are continuum many AC families $\mathscr X$ of size ω_2 such that $\mathscr X/\mathrm{fin}$ is piecewise proper.

Proof: An AC family $\mathscr X$ of size ω_1 such that $\mathscr X/\mathrm{fin}$ is proper can be added by a finite support iteration $\mathbb P=\{\mathbb P_\xi\}_{\xi<\omega_1}$ of length ω_1 .

- Stage 0:
 - ▶ Let \mathscr{X}_0 be any countable AC family.
 - ▶ Force with \mathcal{X}_0/fin .
- Stage 1:
 - ▶ Let $g_0 \subseteq \mathcal{X}_0/\text{fin} = \mathbb{P}_0$ be generic.
 - ▶ In $V[g_0]$, choose an $A_0 \subseteq^* A$ for all $A \in g_0$.
 - ▶ Let \mathcal{X}_1 be the arithmetic closure of \mathcal{X}_0 and A_0 .
 - ▶ Force with \mathcal{X}_1/fin .

When is \mathscr{X}/fin proper (continued)

Proof: (continued)

- Stage $\xi + 1$:
 - ▶ Let $G_{\mathcal{E}} * g_{\mathcal{E}} \subseteq \mathbb{P}_{\mathcal{E}+1}$ be generic.
 - $\mathscr{X}_0 \subseteq \mathscr{X}_1 \subseteq \cdots \subseteq \mathscr{X}_{\gamma} \subseteq \cdots \subseteq \mathscr{X}_{\varepsilon}$ are already constructed.
 - ▶ In $V[G_{\mathcal{E}}][g_{\mathcal{E}}]$, choose an $A_{\mathcal{E}} \subseteq^* A$ for all $A \in g_{\mathcal{E}}$.
 - ▶ Let $\mathscr{X}_{\mathcal{E}+1}$ be the arithmetic closure of $\mathscr{X}_{\mathcal{E}}$ and $A_{\mathcal{E}}$.
 - ► Force with $\mathcal{X}_{\gamma}/\text{fin}$ for some chosen* $\gamma < \xi + 1$.
- Stage λ : (limit)
 - ▶ Let $G_{\lambda} \subseteq \mathbb{P}_{\lambda}$ be generic.
 - \mathscr{X}_{γ} for $\gamma < \lambda$ are already constructed.
 - ▶ Let $\mathscr{X}_{\lambda} = \bigcup_{\gamma < \lambda} \mathscr{X}_{\gamma}$.
 - ▶ Force with $\mathcal{X}_{\gamma}/\text{fin}$ for some chosen* $\gamma < \lambda$.
- * We force over each $\mathscr{X}_{\gamma}/\text{fin}$ cofinally often because we keep adding new dense sets.
- Let $G \subseteq \mathbb{P}$ be generic.
- In V[G], let $\mathscr{X} = \bigcup_{\xi < \omega_1} \mathscr{X}_{\xi}$.
- \mathscr{X}/fin is proper in V[G]. \square

Theorem: (Enayat, 2008) There is an AC family \mathscr{X} of size ω_1 such that \mathscr{X}/fin is not proper.

Question: In a model of PFA, are there AC families \mathscr{X} of size ω_2 such that \mathscr{X}/fin is proper or piecewise proper?

Promising construction

A promising construction: Assuming $2^{\omega}=\omega_2$, build an AC family $\mathscr X$ in ω_2 -steps such that $\mathscr X/\mathrm{fin}$ is proper.

- Fix some enumeration $\{\langle \mathscr{Y}_{\xi}, \mathcal{D}_{\xi} \rangle \mid \xi < \omega_2 \}$ of $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$.
- Stage 0: Let \mathscr{X}_0 be any countable AC family.
 - ► Consider $\langle \mathscr{Y}_0, \mathcal{D}_0 \rangle$.
 - ▶ Suppose \mathscr{Y}_0 codes an AC family $\mathscr{Y} \subseteq \mathscr{X}_0$ and \mathcal{D}_0 codes a collection \mathcal{D} of dense subsets of \mathscr{Y}
 - ▶ Cleverly choose some partial generic filter $G_0 \subseteq \mathcal{Y}/\text{fin}$ meeting all sets in \mathcal{D} .
 - ▶ Let $A_0 \subseteq^* A$ for all $A \in G_0$.
 - ▶ Let \mathcal{X}_1 be the arithmetic closure of \mathcal{X}_0 and A_0 .
- Stage ξ : $\mathscr{X}_0 \subseteq \mathscr{X}_1 \subseteq \cdots \subseteq \mathscr{X}_{\gamma} \subseteq \cdots \subseteq \mathscr{X}_{\xi}$ are already constructed.
 - ► Consider $\langle \mathscr{Y}_{\gamma}, \mathcal{D}_{\gamma} \rangle$ for some chosen* $\gamma \leq \xi$.
 - ▶ Suppose \mathscr{Y}_{γ} codes an AC family $\mathscr{Y} \subseteq \mathscr{X}_{\xi}$ and \mathcal{D}_{γ} codes a collection \mathcal{D} of dense subsets of \mathscr{Y} .
 - ▶ Cleverly choose some partial generic filter $G_{\varepsilon} \subseteq \mathscr{Y}/\text{fin}$ meeting all sets in \mathcal{D} .
 - ▶ Let $A_{\xi} \subseteq^* A$ for all $A \in G_{\xi}$.
 - ▶ Let $\mathscr{X}_{\xi+1}$ be the arithmetic closure of \mathscr{X}_{ξ} and A_{ξ} .
- * Consider each $\langle \mathscr{Y}_{\gamma}, \mathcal{D}_{\gamma} \rangle$ cofinally often.
- $\mathscr{X} = \bigcup_{\xi < \omega_2} \mathscr{X}_{\xi}$ is proper.

Why do we have to be clever in choosing the partial generic filters G_{ε} ?

Promising construction (continued)

How can we be clever?

- At the start of the construction fix some $C \notin \mathscr{X}_0$.
- Choose G_{ξ} so that the arithmetic closure of \mathscr{X}_{ξ} and A_{ξ} does not contain C.

Question: Suppose $\mathscr X$ is a countable AC family and $C \notin \mathscr X$. Is there a (partial) generic $G \subseteq \mathscr X/\mathrm{fin}$ and $A \in V[G]$ such that

- $A \subseteq^* B$ for all $B \in G$,
- the arithmetic closure of \mathscr{X} and A avoids C?

Lower semicontinuous submeasures

Definition: A submeasure is a function $\mu: \mathcal{P}(\mathbb{N}) \to [0, \infty]$ such that

- $\bullet \ \mu(\emptyset) = 0,$
- $\mu(X) \le \mu(X \cup Y) \le \mu(X) + \mu(Y)$ for all $X, Y \subseteq \mathbb{N}$.

Definition: A submeasure is lower semicontinuous (LS) if for all $A \subseteq \mathbb{N}$,

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap n).$$

Definition: A code for a LS submeasure is a function $\mu: \mathcal{P}_{<\infty}(\mathbb{N}) \to [0,\infty]$ such that

- $\bullet \ \mu(\emptyset) = 0,$
- $\mu(x) \le \mu(x \cup y) \le \mu(x) + \mu(y)$ for all $x, y \in \mathcal{P}_{<\infty}(\mathbb{N})$.

Examples:

- Fix $n \in \mathbb{N}$. Let $\mu(X) = n$ (the constant submeasure n).
- Fix $A \subseteq \mathbb{N}$. Let $\chi_A(X) = |A \cap X|$ (counting submeasure).
- Let $\mu(x) = n$, where n is the largest element of $x \in \mathcal{P}_{<\infty}(\mathbb{N})$.
- Fix $A \subseteq \mathbb{N}$. Let $\mu(X) = \sum_{i=0}^k \frac{1}{i!}$, where $k = |A \cap X|$.
- Let $x = \{a_1, a_2, \dots, a_n\}$ be an increasing enumeration. Let $\mu(x) = \sum_{i=1}^n b_i$, where $b_i = a_i + 1$ if i is even and $b_i = a_i 1$ if i is odd.

Lower semicontinuous submeasures (continued)

LS submeasures form a lattice.

Definition: Suppose μ and ν are LS submeasures.

- $\mu \leq \nu$ if $\mu(X) \leq \nu(X)$ for all $X \subseteq \mathbb{N}$.
- $\mu \lor \nu(X) = \max(\mu(X), \nu(X))$ (sumpremum).
- $\mu \wedge \nu(X) = \min\{\mu(Y) + \nu(Z) \mid Y \cup Z = X\}$ (infimum).

Say that a LS submeasure μ is good if $\mu(\mathbb{N}) = \infty$ and $\mu \leq \chi_{\mathbb{N}}$.

Definition: Suppose μ, ν are good LS submeasures. We say that $\mu \leq^* \nu$ if there is $n \in \mathbb{N}$ such that $\mu \leq \nu \vee n$ ($\mu(x) \leq \max(\nu(x), n)$).

Definition: Suppose $\mathscr X$ is a Scott set. Let $\mathbb P_\mathscr X$ be the partial order whose elements are good LS submeasures μ in $\mathscr X$ ordered by \leq^* .

Decisive measures

Definition: Suppose $\mathscr X$ is a Scott set and $\vec B=\langle B_n\mid n\in\mathbb N\rangle$ is coded in $\mathscr X$. A submeasure $\mu\in\mathbb P_\mathscr X$ decides $\vec B$ if whenever U is an ultrafilter on $\mathscr X$ of μ -infinite sets, then $\{n\mid B_n\in U\}\in\mathscr X$.

Observation: Suppose \mathscr{X} is an AC family and \vec{B} is a sequence coded in \mathscr{X} .

- If $\mu \in \mathbb{P}_{\mathscr{X}}$ has $\mu(B_n) < \infty$ or $\mu(\mathbb{N} \setminus B_n) < \infty$ for all $n \in \mathbb{N}$, then μ decides \vec{B} .
- There is $\mu \in \mathbb{P}_{\mathscr{X}}$ such that $\mu(B_n) < \infty$ or $\mu(\mathbb{N} \setminus B_n) < \infty$ for all $n \in \mathbb{N}$.

Corollary: If $\mathscr X$ is an AC family, then for every sequence \vec{B} coded in $\mathscr X$, there is $\mu \in \mathbb P_\mathscr X$ deciding \vec{B} .

Lemma (Dorais, G.) TFAE for a Scott set \mathscr{X} .

- 1. $\mathscr X$ is arithmetically closed.
- 2. For every sequence \vec{B} coded in \mathscr{X} , there is $\mu \in \mathbb{P}_{\mathscr{X}}$ deciding \vec{B} .
- 3. For every sequence \vec{B} coded in \mathscr{X} , the set $\mathscr{D}_{\vec{B}}$ of $\mu \in \mathbb{P}_{\mathscr{X}}$ deciding \vec{B} is dense in $\mathbb{P}_{\mathscr{X}}$.

Another forcing notion from a Scott set

Lemma (Dorais, G.) TFAE for a Scott set \mathscr{X} .

- 1. $\mathscr X$ is arithmetically closed.
- 2. For every sequence \vec{B} coded in \mathscr{X} , there is $\mu \in \mathbb{P}_{\mathscr{X}}$ deciding \vec{B} .
- 3. For every sequence \vec{B} coded in \mathscr{X} , the set $\mathscr{D}_{\vec{B}}$ of $\mu \in \mathbb{P}_{\mathscr{X}}$ deciding \vec{B} is dense in $\mathbb{P}_{\mathscr{X}}$.

Lemma: (Dorais, G.) Suppose $M \models PA$, \mathscr{X} is an AC family with $SSy(M) \subseteq \mathscr{X}$, and U is an ultrafilter on \mathscr{X} .

- For every $[f]_U \in \Pi_{\mathbb{N}}^{\operatorname{Cod}} M/U$, there is a sequence \vec{B}^f coded in \mathscr{X} such that if there is $\mu \in \mathbb{P}_{\mathscr{X}}$ deciding \vec{B}^f and U consists of μ -infinite sets, then the set coded by $[f]_U$ is in \mathscr{X} .
- For every $A \in \mathcal{X}$, there is $\mu \in \mathbb{P}_{\mathscr{X}}$ such that if U consists of μ -infinite sets, then $A \in \mathrm{SSy}(\Pi^{\mathrm{Cod}}_{\mathbb{N}}M/U)$.

Another forcing notion from a Scott set (continued)

Suppose $\mathscr X$ is an AC family. If G is a filter on $\mathbb P_{\mathscr X}$, then there is an ultrafilter U on $\mathscr X$ whose elements are μ -infinite for every $\mu \in G$. We will say that such U is G-good.

Theorem: (Dorais, G., 2013) Suppose

- $M \models PA$,
- \mathscr{X} is an AC family with $SSy(M) \subseteq \mathscr{X}$,
- G is a filter on $\mathbb{P}_{\mathscr{X}}$ meeting all dense sets $\mathcal{D}_{\vec{B}^f}$ for $f \in \Pi_{\mathbb{N}}^{\text{Cod}} M$.

Then any G-good ultrafilter U has the following properties:

- $SSy(\Pi_{\mathbb{N}}^{Cod}M/U)\subseteq \mathcal{X}$.
- For every $A \in \mathscr{X}$, there is a $\mu \in \mathbb{P}_{\mathscr{X}}$ such that if $\mu \in G$, then $A \in \Pi_{\mathbb{N}}^{\text{Cod}} M/U$.

Theorem: (Dorais, 2013) Suppose $\mathscr X$ is a countable AC family, $\mathcal D$ is a countable family of dense subsets of $\mathbb P_\mathscr X$ and $C\notin \mathscr X$. Then there is a filter G on $\mathbb P_\mathscr X$ meeting every set in $\mathcal D$ and a good LS submeasure $\mu\leq^*A$ for all $A\in G$ such that the arithmetic closure of $\mathscr X$ and μ does not contain C.

Theorem: (Dorais, G., 2013) Assuming CH, there are continuum many AC families \mathscr{X} of size ω_1 such that $\mathbb{P}_{\mathscr{X}}$ is proper.

Thank you!

Observation: Suppose $\mu_0 \stackrel{*}{\geq} \mu_1 \stackrel{*}{\geq} \cdots \stackrel{*}{\geq} \mu_n \stackrel{*}{\geq} \cdots$ is a decreasing sequence of good LS submeasures. Then there is a good LS submeasure μ such that $\mu \leq^* \mu_n$ for all $n \in \mathbb{N}$.

Definition: A LS submeasure μ decides a sequence $\langle B_n \mid n \in \mathbb{N} \rangle$ if $\mu(B_n) < \infty$ or $\mu(\mathbb{N} \setminus B_n) < \infty$ for all $n \in \mathbb{N}$.

Observation: For every sequence $\vec{B} = \langle B_n \mid n \in \mathbb{N} \rangle$, there is a good LS submeasure μ deciding \vec{B} .

