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Euclid and the Axiomatic Method

Around 300 BC, Euclid revolutionized mathematics with the introduction of the
axiomatic method.

@ In his treatise on geometry, Elements, propositions are proved using rules of
logical inference from a small collection of “obviously true” statements - axioms.

@ Euclid’s crucial assumption was that the axioms capture ALL geometrical truths:
every true geometrical statement must follow from the axioms.

Did Euclid get it right?
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Axiomatizing Number Theory

Ancient Greek mathematicians (including Euclid) made some of the earliest
contributions to number theory:
the study of the properties of the set of natural numbers N = {0, 1,2, ...} with

@ operations: +, -,
@ ordering: <.

Many of the greatest contributions followed nearly 2 millennia later in the period 16-19"
century (Fermat, Euler, Gauss, etc.).

But not until the 19th century did mathematicians become concerned with explicitly
formulating the axioms of number theory.

The 19" century saw a strong revival of formal mathematics that would continue well
into the beginning of the 20" century.

In 1889, Giuseppe Peano (1858-1932) proposed the Peano Axioms (PA):
o fundamental properties of +, -, <,
@ induction.
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The Peano Axioms

The Peano Axioms: modern formulation

Peano Axioms
Addition and Multiplication

o VxVyWz (x+y)+z=x+(y+2) (associativity of addition)
@ VXVYy X+y=y+Xx (commutativity of addition)
@ VXVYWz (x-y)-z=x-(y-2) (associativity of multiplication)
OVXVy x-y=y-x (commutativity of multiplication)
O VXYYWZX-(y+2)=Xx-y+Xx-2 (distributive law)
O VX (X+0=xAx-1=x) (additive and multiplicative identity))
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The Peano Axioms

Peano Axioms (continued)

Order

O VXVYWZ (X<yAy<2z)—x<2) (the order is transitive)
@ Vx ~x < X (the order is anti-reflexive)
O VXVy (X<yVx=y)Vy<Xx) (any two elements are comparable)
@ VXVWZ (X<y—oXx+z<y+2) (order respects addition)
@ VXVYWz (0<zZzAX<Yy)—=X-2<X-2) (order respects multiplication)
VXYY X<y« 3Jz(z>0AX+2z=Y))

VX (X>0A(Xx>0—x2>1)) (the order is discrete)

Induction Scheme
For every statement ¢(x):

® (p(0) AVX (p(x) = p(x +1))) = Vxp(X)
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The Peano Axioms: comments and questions

@ The Peano Axioms are formalized in first-order logic:

» formulated by Thoralf Skolem in the early 20t century
» alphabet+grammer of formal mathematics
> rules of logical inference

@ The induction scheme consists of infinitely many axioms:

» one for every number theoretic statement
» first-order logic does not allow quantification over subsets of the model (equivalently,
over number theoretic statements)

@ The Peano Axioms are computable:

» there is an algorithm to recognize whether a string of symbols is a Peano axiom
» this is an inherent property of any axiom system defined by human beings

@ Every familiar theorem of number theory follows from the Peano Axioms, e.g.,
> divisibility
» infinitude of prime numbers
@ Do the Peano Axioms satisfy Euclid’s “crucial assumption”?
Does every true number theoretic statement follow from the Peano Axioms?
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Tarski and Euclid’s Axioms

Alfred Tarski (1901-1983) reformulated Euclid’s axioms in first-order logic.

Theorem (Tarski, 1930’s)

@ Every true geometric statement follows from Euclid’s axioms.

@ There is an algorithm to decide whether a given geometric statement is true or
false (caveat: the algorithm might take a couple billion years to answer!).

So Euclid is vindicated!

But what about Peano?
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The Peano Axioms

Godel and the Peano Axioms

Kurt Godel (1906-1978) proved that number theory is too informationally rich to be
captured by a computable collection of axioms.

Theorem (Gddel’s First Incompleteness Theorem, 1931)
@ There is a true number theoretic statement that cannot be proved from PA.

@ Every consistent computable collection of statements extending PA is incomplete:
there is a statement that can be neither proved nor disproved from this collection.

@ Godel’s theorem forces a philosophical reformulation of the axiomatic method.

@ This leads to the modern view of axioms as “constraints” rather than “obvious
truths” from which all other truths follow.
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Nonstandard models of the Peano Axioms

@ A model of PA is a set M with:
> the operations: +M, .M
» ordering <M

satisfying the Peano Axioms.
@ The natural numbers: (N, +, -, <) is the standard model of PA.
@ All others are nonstandard.

By Gddel's incompleteness theorem, there is a true number theoretic statement ¢ that
cannot be proved from PA.

Theorem: (fol) If a statement v can be neither proved nor disproved from a collection of
statements T, then T together with —¢) is consistent.

Theorem: (fol) Every consistent collection of statements has a model of every infinite
cardinality.

Conclusion: There is a countable model M of PA in which —¢ is true.

Clearly M is nonstandard!

What does M look like?
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The order on a countable nonstandard model of PA

@ Nis the initial segment of M.
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The order on a countable nonstandard model of PA

@ N is the initial segment of M.

@ M must have an element ¢ > N.
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The order on a countable nonstandard model of PA

@ Nis the initial segment of M.
@ M must have an element ¢ > N.

@ Mmusthave c+ 1,c+2,c+ 3,

...aswellasc—1,c—2,c—3,..
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The order on a countable nonstandard model of PA

@ Nis the initial segment of M.

@ M must have an element ¢ > N.

@ Mmusthavec+1,c+2,¢+3,...aswellasc—1,c—2,¢c—3,..
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The order on a countable nonstandard model of PA

@ N is the initial segment of M.

@ M must have an element ¢ > N.

@ Mmusthavec+1,c+2,¢+3,...aswellasc—1,c—2,¢c—3,....
@ M must have 2c: 2¢ > ¢+ nforall n € N.
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The order on a countable nonstandard model of PA

@ Nis the initial segment of M.

@ M must have an element ¢ > N.

@ Mmusthavec+1,c+2,c+3,...aswellasc—1,c—2,c—3,....
@ M musthave 2c: 2c > c+ nforalln e N.

@ If we assume cis even, then M must have §: £ < c—nforallne N
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The order on a countable nonstandard model of PA

N is the initial segment of M.

M must have an element ¢ > N.

M musthavec+1,c+2,c+3,...aswellasc—1,c—2,¢—3,....
M must have 2¢: 2¢ > ¢+ nforalln € N.

If we assume c is even, then M must have £: § < c—nforallne N

If we assume c is even, then M must have %:
% > c+nforallneNand 3¢ < 2¢c —nforallneN.
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The order on a countable nonstandard model of PA

N is the initial segment of M.

M must have an element ¢ > N.

M musthavec+1,c+2,c+3,...aswellasc—1,c—2,c—3,....
M must have 2¢: 2¢ > ¢+ nforalln e N.

If we assume c is even, then M must have §: § < c—nforallne N

If we assume c is even, then M must have %:
% > c+nforallne Nand % <2c—nforallneN.

Q many copies of Z
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The order on a countable nonstandard model of PA

N is the initial segment of M.

M must have an element ¢ > N.

M musthavec+1,c+2,c+3,...aswellasc—1,c—2,c—3,....
M must have 2¢: 2¢ > ¢+ nforalln e N.

If we assume c is even, then M must have §: £ < c—nforallne N

If we assume c is even, then M must have %:
% > c+nforallne Nand 3¢ < 2¢c —nforallneN.

Q many copies of Z
Brain Teaser: The Peano Axioms imply that every subset has a least element but
clearly this is not true!
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An iphone app for a nonstandard model of PA

Fundamentally, an algorithm manipulates natural numbers. In order for a computer to
manipulate other objects (text, images), they must be coded by natural numbers.

Can we code elements of a countable nonstandard model of PA by natural numbers?
Theoretically YES, since the model is countable.

Can we have a computing device adding and multiplying nonstandard numbers?
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Coding a nonstandard model by natural numbers: a sensible approach

Step 1: Assign a natural number to every block of M (N or Z).
@ Assign 0 to the N block
@ Assign a rational number in (0, 1) to every Z block (there are Q many)
@ Assign a natural number to every Z block using Cantor’s pairing function:

f(x,y) = (X+Y)(X2+}’+1) ty

Step 2: Assign a natural number to every element of M.
@ Consider a block indexed by the number n
@ Let p, be the n'™ prime number.
@ View the block as Z (N)
@ Assign the natural number p, to 0 (of the block)
@ Assign the natural number p2? to a (of the block)

@ Assign the natural number p22~" to —a (of the block)

é_2,2_2|4_,_,_...) (..._,_p|3_|_|_,_...) (ot ) (e o) (- )
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An app for the ordering?

The algorithm to decide when p2 <y p5:

eifn=m
» compare powers aand b
@ else

> find f(x,y) = nand f(v,w) =m

» check whether § < ¥
The ordering of M is computable!
Is there a nonstandard model of PA for which the operations +" and -" are
computable?
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An app for addition and multiplication?

Stanley Tennenbaum (1927-2005) proved that the addition and multiplication of a
nonstandard model of PA codes information that cannot be accessed algorithmically!

Theorem (Tennenbaum, 1959)
The addition and multiplication of a nonstandard model of PA are NEVER computable. J
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Standard systems of nonstandard models of PA

@ Every natural number codes a finite subset of N through its binary expansion:
128810 = 2° 4 28 + 2'° = 10100001000, codes the set {3,8,10}.

@ Every element of a nonstandard model of PA codes a possibly infinite subset of N
through the restriction of its binary expansion to powers in N:
c=2"42% 4254+ ... +2% =101010...)...(...1010101...)...(...101010,.

Definition (Friedman, 1973)

The standard system of a nonstandard model of PA consists of all the subsets of N
coded by elements of the model.
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Standard systems: comments and questions

@ Different nonstandard models of PA have different elements and therefore different
standard systems.

@ Certain subsets of N are in the standard system of every nonstandard model of

» A standard system is a collection of subsets of the natural numbers.

» Nis in every standard system:
every nonstandard model of PA has an element a whose binary expansion contains 2"
for every n € N.
Use induction on the statement:
©(x) - there is y whose binary expansion has all powers of 2 less than x.

> The set of all even numbers is in every standard system:
every nonstandard model of PA has an element a whose binary expansion contains 227
but not 22"+ for every n € N.
Use induction on the statement:
»(x) - there is y whose binary expansion contains exactly the even powers of 2 less
than x.

What general properties do standard systems possess?

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 16/21



Boolean algebras and computable sets

Definitions:
@ A collection of subsets of N is a Boolean algebra if it is closed under union,
intersection, and complement.
@ Aset A C Nis computable if there is an algorithm that returns YES whenever
n € A and NO otherwise.

@ A set A C Nis computable relative to another set B C N if it is computable with an
an oracle for B.
Idea: there is an algorithm to retrieve A from B.
Example: the complement of B is always computable relative to B.

@ A collection . of subsets of N is closed under relative computability if whenever
B € .# and Ais computable relative to B, then A € .7.

@ Any nonempty collection .7 closed under relative computability must contain all
the computable sets.
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Binary trees

binary tree.

@ The collection of all finite binary sequences ordered by end extension is a full
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Binary trees
@ The collection of all finite binary sequences ordered by end extension is a full
binary tree.
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Binary trees
@ The collection of all finite binary sequences ordered by end extension is a full

binary tree.
@ A binary tree is a subset of the full binary tree that is closed downwards.

|
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0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 10100 1011 1100 1101 11100 1111

. . . . . . . .
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Binary trees
@ The collection of all finite binary sequences ordered by end extension is a full

binary tree.
@ A binary tree is a subset of the full binary tree that is closed downwards.
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Binary trees

@ The collection of all finite binary sequences ordered by end extension is a full
binary tree.

@ A binary tree is a subset of the full binary tree that is closed downwards.

Theorem (Konig’s Lemma, 1936)
Every infinite binary tree has an infinite branch. J

@ A binary tree can be coded by a subset of N.

@ A collection of subsets of N has the tree property if whenever it contains a binary
tree, it also an infinite branch of that tree.
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Properties of standard systems

Theorem (Scott, 1962)

The standard system of a nonstandard model of PA
@ /s a Boolean algebra,
@ s closed under relative computability,
@ has the tree property.

Corollary

The standard system of a nonstandard model of PA contains all the computable sets.

What about non-computable sets?
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A computable tree with no computable branches

Here is an algorithm to build a binary tree .7:
@ Order all number theoretic statements of first-order logic: ¢o, ¢1, 2, ...
@ Order all the Peano Axioms: 1o, 11, U2, ...
. i | en if i =1
@ define ¢, = { Ton fi=0

@ for every binary sequence s of length /, associate the sequence of number

theoretic statements:

0 -1
&03( ) 305( )

s(1)
7§01 LA o |

@ a binary sequence s of length / is good if there is no proof of a contradiction from
the sequence

oS0 20 oS together with 4, . .., s

that uses at most / many symbols
@ 7 consists of all good sequences s

Every branch of the tree .7 gives a consistent collection of number theoretic
statements extending PA and containing every statement or its negation!
By Goédel’s incompleteness theorem, .7 cannot have a computable branch!
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Proof of Tennenbaum’s Theorem

@ Every standard system has a non-computable set!

o But,
numbers so that we could compute +" and -™, then every set in the standard

if we could code elements of a nonstandard model M of PA by natural

system of M would be computable!
There is a divisibility algorithm: given aand b, it returns ¢, d such thata=c¢-M b +M d

>

| 4
>

(perform a brute force search)
Using divisibility, there is an algorithm for determining binary expansions
Suppose A is in the standard system of M and fix a in M whose binary expansion
contains 2" exactly for n € A.
Is 0 € A? Check whether ais odd or even!
a if ais even
a—1 ifaisodd
Is 1 € A? Check whether a; is divisible by 22!
leta, — | @ if ais not divisible by 22
2 a; —22  if ais divisible by 22
Is 2 € A? Check whether a, is divisible by 23!
leta.—{ @ if ais not divisible by 23
3 a — 2%  if ais divisible by 23

Let a4 :{
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