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The Peano Axioms

Euclid and the Axiomatic Method

Around 300 BC, Euclid revolutionized mathematics with the introduction of the
axiomatic method.

In his treatise on geometry, Elements, propositions are proved using rules of
logical inference from a small collection of “obviously true” statements - axioms.

Euclid’s crucial assumption was that the axioms capture ALL geometrical truths:
every true geometrical statement must follow from the axioms.

Did Euclid get it right?
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The Peano Axioms

Axiomatizing Number Theory

Ancient Greek mathematicians (including Euclid) made some of the earliest
contributions to number theory:
the study of the properties of the set of natural numbers N = {0, 1, 2, . . .} with

operations: +, ·,
ordering: <.

Many of the greatest contributions followed nearly 2 millennia later in the period 16-19th

century (Fermat, Euler, Gauss, etc.).

But not until the 19th century did mathematicians become concerned with explicitly
formulating the axioms of number theory.

The 19th century saw a strong revival of formal mathematics that would continue well
into the beginning of the 20th century.

In 1889, Giuseppe Peano (1858-1932) proposed the Peano Axioms (PA):

fundamental properties of +, ·, <,

induction.
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The Peano Axioms

The Peano Axioms: modern formulation

Peano Axioms
Addition and Multiplication

∀x∀y∀z (x + y) + z = x + (y + z) (associativity of addition)

∀x∀y x + y = y + x (commutativity of addition)

∀x∀y∀z (x · y) · z = x · (y · z) (associativity of multiplication)

∀x∀y x · y = y · x (commutativity of multiplication)

∀x∀y∀z x · (y + z) = x · y + x · z. (distributive law)

∀x (x + 0 = x ∧ x · 1 = x) (additive and multiplicative identity)
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The Peano Axioms

Peano Axioms (continued)
Order

∀x∀y∀z ((x < y ∧ y < z)→ x < z) (the order is transitive)

∀x ¬x < x (the order is anti-reflexive)

∀x∀y ((x < y ∨ x = y) ∨ y < x) (any two elements are comparable)

∀x∀y∀z (x < y → x + z < y + z) (order respects addition)

∀x∀y∀z ((0 < z ∧ x < y)→ x · z < x · z) (order respects multiplication)

∀x∀y (x < y ↔ ∃z (z > 0 ∧ x + z = y))

∀x (x ≥ 0 ∧ (x > 0→ x ≥ 1)) (the order is discrete)

Induction Scheme
For every statement ϕ(x):

(ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1)))→ ∀xϕ(x)
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The Peano Axioms

The Peano Axioms: comments and questions

The Peano Axioms are formalized in first-order logic:
I formulated by Thoralf Skolem in the early 20th century
I alphabet+grammer of formal mathematics
I rules of logical inference

The induction scheme consists of infinitely many axioms:
I one for every number theoretic statement
I first-order logic does not allow quantification over subsets of the model (equivalently,

over number theoretic statements)
The Peano Axioms are computable:

I there is an algorithm to recognize whether a string of symbols is a Peano axiom
I this is an inherent property of any axiom system defined by human beings

Every familiar theorem of number theory follows from the Peano Axioms, e.g.,
I divisibility
I infinitude of prime numbers

Do the Peano Axioms satisfy Euclid’s “crucial assumption”?
Does every true number theoretic statement follow from the Peano Axioms?
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The Peano Axioms

Tarski and Euclid’s Axioms

Alfred Tarski (1901-1983) reformulated Euclid’s axioms in first-order logic.

Theorem (Tarski, 1930’s)
Every true geometric statement follows from Euclid’s axioms.

There is an algorithm to decide whether a given geometric statement is true or
false (caveat: the algorithm might take a couple billion years to answer!).

So Euclid is vindicated!

But what about Peano?
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The Peano Axioms

Gödel and the Peano Axioms

Kurt Gödel (1906-1978) proved that number theory is too informationally rich to be
captured by a computable collection of axioms.

Theorem (Gödel’s First Incompleteness Theorem, 1931)
There is a true number theoretic statement that cannot be proved from PA.

Every consistent computable collection of statements extending PA is incomplete:
there is a statement that can be neither proved nor disproved from this collection.

Gödel’s theorem forces a philosophical reformulation of the axiomatic method.

This leads to the modern view of axioms as “constraints” rather than “obvious
truths” from which all other truths follow.
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Nonstandard models of PA

Nonstandard models of the Peano Axioms

A model of PA is a set M with:
I the operations: +M , ·M
I ordering <M

satisfying the Peano Axioms.

The natural numbers: (N,+, ·, <) is the standard model of PA.

All others are nonstandard.

By Gödel’s incompleteness theorem, there is a true number theoretic statement ϕ that
cannot be proved from PA.

Theorem: (fol) If a statement ψ can be neither proved nor disproved from a collection of
statements T , then T together with ¬ψ is consistent.
Theorem: (fol) Every consistent collection of statements has a model of every infinite
cardinality.

Conclusion: There is a countable model M of PA in which ¬ϕ is true.

Clearly M is nonstandard!

What does M look like?
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Nonstandard models of PA

The order on a countable nonstandard model of PA

N is the initial segment of M.
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Nonstandard models of PA

The order on a countable nonstandard model of PA

N is the initial segment of M.
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Nonstandard models of PA

The order on a countable nonstandard model of PA

N is the initial segment of M.

M must have an element c > N.

M must have c + 1, c + 2, c + 3, . . . as well as c − 1, c − 2, c − 3, . . ..
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Brain Teaser: The Peano Axioms imply that every subset has a least element but
clearly this is not true!
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Nonstandard models of PA

An iphone app for a nonstandard model of PA

Fundamentally, an algorithm manipulates natural numbers. In order for a computer to
manipulate other objects (text, images), they must be coded by natural numbers.

Can we code elements of a countable nonstandard model of PA by natural numbers?
Theoretically YES, since the model is countable.

Can we have a computing device adding and multiplying nonstandard numbers?
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Nonstandard models of PA

Coding a nonstandard model by natural numbers: a sensible approach

Step 1: Assign a natural number to every block of M (N or Z).

Assign 0 to the N block

Assign a rational number in (0, 1) to every Z block (there are Q many)

Assign a natural number to every Z block using Cantor’s pairing function:

f (x , y) =
(x + y)(x + y + 1)

2
+ y

Step 2: Assign a natural number to every element of M.

Consider a block indexed by the number n

Let pn be the nth prime number.

View the block as Z (N)

Assign the natural number pn to 0 (of the block)

Assign the natural number p2a
n to a (of the block)

Assign the natural number p2a−1
n to −a (of the block)

p
2
−p

22
−p

24
−p−p− ···) (···−p−p

p3
8

−p
p8
−p

p2
8

−p− ···) (···−p−p−p−p−p− ···) (···−p−p−p−p−p− ···) (···−p−p−p−p−p− ···)
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Nonstandard models of PA

An app for the ordering?

The algorithm to decide when pa
n <M pb

m:

if n = m
I compare powers a and b

else
I find f (x , y) = n and f (v ,w) = m
I check whether x

y < v
w

The ordering of M is computable!

Is there a nonstandard model of PA for which the operations +M and ·M are
computable?
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Tennenbaum’s Theorem

An app for addition and multiplication?

Stanley Tennenbaum (1927-2005) proved that the addition and multiplication of a
nonstandard model of PA codes information that cannot be accessed algorithmically!

Theorem (Tennenbaum, 1959)
The addition and multiplication of a nonstandard model of PA are NEVER computable.
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Tennenbaum’s Theorem

Standard systems of nonstandard models of PA

Every natural number codes a finite subset of N through its binary expansion:
128810 = 23 + 28 + 210 = 101000010002 codes the set {3, 8, 10}.
Every element of a nonstandard model of PA codes a possibly infinite subset of N
through the restriction of its binary expansion to powers in N:
c = 21 + 23 + 25 + . . .+ 22b+1 = 101010 . . .) . . . (. . . 1010101 . . .) . . . (. . . 1010102.

Definition (Friedman, 1973)
The standard system of a nonstandard model of PA consists of all the subsets of N
coded by elements of the model.
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Tennenbaum’s Theorem

Standard systems: comments and questions

Different nonstandard models of PA have different elements and therefore different
standard systems.
Certain subsets of N are in the standard system of every nonstandard model of
PA.

I A standard system is a collection of subsets of the natural numbers.
I N is in every standard system:

every nonstandard model of PA has an element a whose binary expansion contains 2n

for every n ∈ N.
Use induction on the statement:
ϕ(x) - there is y whose binary expansion has all powers of 2 less than x .

I The set of all even numbers is in every standard system:
every nonstandard model of PA has an element a whose binary expansion contains 22n

but not 22n+1 for every n ∈ N.
Use induction on the statement:
ϕ(x) - there is y whose binary expansion contains exactly the even powers of 2 less
than x .

What general properties do standard systems possess?
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Tennenbaum’s Theorem

Boolean algebras and computable sets

Definitions:

A collection of subsets of N is a Boolean algebra if it is closed under union,
intersection, and complement.

A set A ⊆ N is computable if there is an algorithm that returns YES whenever
n ∈ A and NO otherwise.

A set A ⊆ N is computable relative to another set B ⊆ N if it is computable with an
an oracle for B.
Idea: there is an algorithm to retrieve A from B.
Example: the complement of B is always computable relative to B.

A collection S of subsets of N is closed under relative computability if whenever
B ∈ S and A is computable relative to B, then A ∈ S .

Any nonempty collection S closed under relative computability must contain all
the computable sets.
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Tennenbaum’s Theorem

Binary trees

The collection of all finite binary sequences ordered by end extension is a full
binary tree.

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 18 / 21



Tennenbaum’s Theorem

Binary trees

The collection of all finite binary sequences ordered by end extension is a full
binary tree.

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 18 / 21



Tennenbaum’s Theorem

Binary trees

The collection of all finite binary sequences ordered by end extension is a full
binary tree.

A binary tree is a subset of the full binary tree that is closed downwards.

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 18 / 21



Tennenbaum’s Theorem

Binary trees

The collection of all finite binary sequences ordered by end extension is a full
binary tree.

A binary tree is a subset of the full binary tree that is closed downwards.

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 18 / 21



Tennenbaum’s Theorem

Binary trees

The collection of all finite binary sequences ordered by end extension is a full
binary tree.

A binary tree is a subset of the full binary tree that is closed downwards.

Theorem (König’s Lemma, 1936)
Every infinite binary tree has an infinite branch.

A binary tree can be coded by a subset of N.

A collection of subsets of N has the tree property if whenever it contains a binary
tree, it also an infinite branch of that tree.
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Tennenbaum’s Theorem

Properties of standard systems

Theorem (Scott, 1962)
The standard system of a nonstandard model of PA

is a Boolean algebra,

is closed under relative computability,

has the tree property.

Corollary
The standard system of a nonstandard model of PA contains all the computable sets.

What about non-computable sets?
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Tennenbaum’s Theorem

A computable tree with no computable branches

Here is an algorithm to build a binary tree T :

Order all number theoretic statements of first-order logic: ϕ0, ϕ1, ϕ2, . . .

Order all the Peano Axioms: ψ0, ψ1, ψ2, . . .

define ϕi
n =

{
ϕn if i = 1
¬ϕn if i = 0

for every binary sequence s of length l , associate the sequence of number
theoretic statements:

ϕ
s(0)
0 , ϕ

s(1)
1 , . . . , ϕ

s(l−1)
l−1

a binary sequence s of length l is good if there is no proof of a contradiction from
the sequence

ϕ
s(0)
0 , ϕ

s(1)
1 , . . . , ϕ

s(l−1)
l−1 together with ψ0, . . . , ψl−1

that uses at most l many symbols

T consists of all good sequences s

Every branch of the tree T gives a consistent collection of number theoretic
statements extending PA and containing every statement or its negation!
By Gödel’s incompleteness theorem, T cannot have a computable branch!
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Tennenbaum’s Theorem

Proof of Tennenbaum’s Theorem

Every standard system has a non-computable set!
But, if we could code elements of a nonstandard model M of PA by natural
numbers so that we could compute +M and ·M , then every set in the standard
system of M would be computable!

I There is a divisibility algorithm: given a and b, it returns c, d such that a = c ·M b +M d
(perform a brute force search)

I Using divisibility, there is an algorithm for determining binary expansions
I Suppose A is in the standard system of M and fix a in M whose binary expansion

contains 2n exactly for n ∈ A.
I Is 0 ∈ A? Check whether a is odd or even!
I Let a1 =

{
a if a is even
a− 1 if a is odd

I Is 1 ∈ A? Check whether a1 is divisible by 22!

I Let a2 =

{
a1 if a is not divisible by 22

a1 − 22 if a is divisible by 22

I Is 2 ∈ A? Check whether a2 is divisible by 23!

I Let a3 =

{
a2 if a is not divisible by 23

a2 − 23 if a is divisible by 23

...

Victoria Gitman (CUNY) Nonstandard Models of PA February 14, 2012 21 / 21


	The Peano Axioms
	Nonstandard models of PA
	Tennenbaum's Theorem

