The old and the new of virtual large cardinals

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

Turin-Udine Logic Seminar

June 11, 2021

A large cardinal chart

Large cardinal embeddings in a forcing extension

Question: What happens if we ask that elementary embeddings characterizing a given large cardinal exist in a forcing extension of V?

Versions of Measurability

In a forcing extension V[G]:

- There is $j: V \to M$ with $\operatorname{crit}(j) = \kappa$ and $M \subseteq V$.
 - This is not formalizable (no equivalent ultrafilter definition).
 - Equiconsistent with a measurable cardinal.
 - Is κ measurable in V?
- (generically measurable) There is $j: V \to M \subseteq V[G]$ with $crit(j) = \kappa$.
 - Has an equilavent ultrafilter definition.
 - Equiconsistent with a measurable cardinal.
 - κ can be a small cardinal like ω_1 .
- (virtually measurable) For every $\lambda > \kappa$, there is $j : V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa$ and $M \subseteq V$.
 - Equivalently $M \in V$.
 - κ is completely ineffable and more.
 - Downward absolute to L.

Large cardinal embeddings in a forcing extension (continued)

Versions of Supercompactness

For every $\lambda > \kappa$, in a forcing extension V[G]:

- There is $j : V \to M$ with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$, $j \upharpoonright \lambda \in M$ and $M \subseteq V$ $(M^{\lambda} \subseteq M \text{ in } V)$.
 - This is not formalizable.
 - Is κ supercompact in V?
- (generically supercompact) There is $j: V \to M \subseteq V[G]$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda$, and $j \upharpoonright \lambda \in M$.
 - At least measurable in consistency strength.
- (virtually supercompact) There is $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda, M \subseteq V$, and $M^{\lambda} \subseteq M$ in V.
 - Equivalently $M \in V$.
 - Downward absolute to L.
- (generically setwise supercompact) There is $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda$, and $M^{\lambda} \subseteq M$ in V[G].
 - Recently defined by Schlicht and Nielsen.
 - (Usuba) Equiconsistent with a virtually extendible cardinal.

イロト 不得下 イヨト イヨト 二日

Large cardinal embeddings in a forcing extension (continued)

Versions of extendibility

For every $\lambda > \kappa$, in a forcing extension V[G]:

- (virtually extendible) There is $j: V_{\lambda} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.
 - Downward absolute to L.
- (generically extendible) There is $j: V_{\lambda} \to V_{\beta}^{V[G]}$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.
 - Recently defined by Ikegami and Vänäänen.
 - (Ikegami, Vänäänen) Strong compactness cardinal for second-order Boolean-valued logic.
 - (Usuba) Equiconsistent with a virtually extendible cardinal.

Virtual vs generic large cardinals

Virtual

- set embeddings
- the target M is in V
- the target M has closure in V
- completely ineffable and more
- Downward absolute to L

Generic

- class or set embeddings
- the target *M* may not be a subset of *V*
- the target M has closure in V[G]
- could be a small cardinal like ω₁
- usually high consistency strength

• • • • • • • • • • • • •

Virtual embeddings

There is a virtual elementary embedding between first-order structures M and N if they elementarily embed in a forcing extension.

Proposition: There is a virtual isomorphism between the reals \mathbb{R} and the rationals \mathbb{Q} . **Proof**:

- Force with $\operatorname{Coll}(\omega, \mathbb{R})$ to make \mathbb{R} countable in the forcing extension V[G].
- In V[G], \mathbb{R}^V is a countable dense linear order without endpoints. \Box

Absoluteness lemma for countable embeddings

Lemma: (Silver) Suppose M and N are first-order structures such that

- *M* is countable,
- there is an elementary $j: M \to N$.

Suppose ${\it W}$ is a transitive (set or class) model of (a large enough fragment of) $\rm ZFC$ such that

- $M, N \in W$,
- M is countable in W.

Then for any finite $\bar{a} \subseteq M$, W has an elementary $j^* : M \to N$ agreeing with j on \bar{a} , and (where applicable) crit $(j) = crit(j^*)$.

Proof:

- Enumerate $M = \{a_n \mid n < \omega\}$ in W. Let $M \upharpoonright n = \{a_i \mid i < n\}$.
- Let T be the tree of all partial finite isomorphisms

 $f: M \upharpoonright n \to N$,

satisfying the requirements, ordered by extension.

- M elementarily embeds into N if and only if T has a cofinal branch.
- T is ill-founded in V, and hence in W. \Box

- 3

Virtual embeddings and collapse extensions

Lemma: Suppose M and N are first-order structures and some set-forcing extension has an elementary $j: M \to N$. Then for every finite $\bar{a} \subseteq M$, $V^{\operatorname{Coll}(\omega,M)}$ has an elementary $j^*: M \to N$ agreeing with j on \bar{a} and (where applicable) $\operatorname{crit}(j) = \operatorname{crit}(j^*)$.

Proof: Suppose a set-forcing extension V[G] has an elementary $j: M \to N$.

- Let $|M|^V = \delta$.
- Consider a further extension V[G][H] by $Coll(\omega, \delta)$.
- $j \in V[G][H]$ and M is countable in V[G][H].
- $V[H] \subseteq V[G][H]$ has the elementary $j^* : M \to N$ (by Absoluteness lemma). \Box

Virtual rank-into-rank embeddings in L

Proposition: Assuming $0^{\#}$, *L* has virtual rank-into-rank embeddings.

Proof:

- Let $\{i_{\xi} \mid \xi \in \text{Ord}\}$ be the Silver indiscernibles.
- Let $j: L \to L$ be such that $j(i_n) = i_{n+1}$ for $n \in \omega$ and $j(i_{\xi}) = i_{\xi}$ for $\xi \ge \omega$.
- Let $i_{\gamma} = \alpha \gg i_{\omega}$ so that $j(\alpha) = \alpha$.
- The restriction $j: L_{\alpha} \rightarrow L_{\alpha}$ is elementary.
- Let $H \subseteq \operatorname{Coll}(\omega, L_{\alpha})$ be V-generic.
- $j: L_{\alpha} \to L_{\alpha}$ is in the forcing extension V[H].
- In L[H], there is $j^*: L_{\alpha} \to L_{\alpha}$ with $\operatorname{crit}(j^*) \leq i_0$ and $j^*(i_{\omega}) = i_{\omega}$. \Box

Observations:

- The supremum of the critical sequence of j^* is at most i_{ω} .
- Kunen's Inconsistency fails for virtual embeddings!
- Stronger choiceless large cardinals also have consistent virtual versions.

A game characterization of virtual embeddings

Suppose *M* and *N* are first-order structures in the same language. Let G(M, N) be a game played for ω -many steps:

- Player I plays elements $a_n \in M$.
- Player II plays elements $b_n \in N$.
- Players I and II alternate moves.

• Player II wins if for every $n \in \omega$ and formula $\varphi(x_0, \ldots, x_n)$

 $M\models\varphi(a_0,\ldots,a_n)\leftrightarrow N\models\varphi(b_0,\ldots,b_n),$

the map sending a_i to b_i for $i \le n$ is a finite partial isomorphism between M and N. • Otherwise, Player I wins.

A game characterization of virtual embeddings (continued)

Theorem: (Schindler) The following are equivalent.

- (1) There is a virtual elementary embedding between M and N.
- (2) Player II has a winning strategy in G(M, N).
- (3) *M* elementarily embeds into *N* in $V^{\text{Coll}(\omega,M)}$.

Proof:

- $(2) \Rightarrow (3)$:
 - A winning strategy for Player II, remains winning in V^{Coll(ω, M)} because no new finite sequences are added.
 - In $V^{\operatorname{Coll}(\omega,M)}$, *M* can be enumerated in an ω -sequence.
- (3) \Rightarrow (2): Fix a condition $p \Vdash$ " $\tau : \check{M} \to \check{N}$ is an elementary embedding".
 - To every finite ā from M, associate p_ā ⊢ τ(ā) = b below p so that: if ā' extends ā, then p_{ā'} ≤ p_ā.
 - A winning strategy for Player II: play \overline{b} in response to \overline{a} .

- 3

```
Virtual large cardinals and L
```

Fill the blank with your favorite virtual large cardinal.

Theorem: (G., Schindler)

- If $0^{\#}$ exists, then every Silver indiscernible is virtually _____.
- Every virtually _____ is downward absolute to L.

Virtually Berkeley and rank-into-rank cardinals

A cardinal δ is Berkeley if for every transitive set M, with $\delta \subseteq M$, and $\gamma < \delta$, there is $j: M \to M$ with $\gamma < \operatorname{crit}(j) < \delta$.

- Inconsistent with ZFC.
- Consistent with ZF?

A cardinal δ is virtually Berkeley if for every transitive set M, with $\delta \subseteq M$, and $\gamma < \delta$, there is a virtual $j: M \to M$ with $\gamma < \operatorname{crit}(j) < \delta$.

Theorem: (Wilson) The least ω -Erdős cardinal is the least virtually Berkeley cardinal.

A cardinal κ is virtually rank-into-rank if there is a virtual $j: V_{\lambda} \to V_{\lambda}$ with crit $(j) = \kappa$.

Theorem: (G., Schindler) The least ω -Erdős cardinal is a limit of virtually rank-into-rank cardinals.

Proof hint: Use indiscernibles.

<ロ> (日) (日) (日) (日) (日)

$C^{(n)}$ -extendible cardinals

A cardinal κ is extendible if for every $\kappa < \lambda$, there is $j : V_{\lambda} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.

Let $C^{(n)} = \{ \alpha \in \text{Ord} \mid V_{\alpha} \prec_{\Sigma_n} V \}.$

A cardinal κ is $C^{(n)}$ -extendible if for every $\kappa < \lambda \in C^{(n)}$, there is $j : V_{\lambda} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$, and $\beta \in C^{(n)}$.

Theorem: (Folklore, see Kanamori) We can omit the condition $j(\kappa) > \lambda$. **Proof hint**: If there is $j : V_{\lambda} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$, then either:

- there is $j^*: V_{\lambda} \to V_{\beta^*}$ with $\operatorname{crit}(j) = \kappa$ and $j^*(\kappa) > \lambda$, or
- there is $j^*: V_{\gamma+2} \to V_{\gamma+2}$ for some γ (Kunen's Inconsistency).

Theorem: (G., Hamkins) A cardinal κ is $C^{(n)}$ -extendible if and only if for every \sum_{n} -definable class A and $\lambda > \kappa$, there is

 $j: (V_{\lambda}, A \cap \lambda) \rightarrow (V_{\beta}, A \cap \beta)$

with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.

- 3

Virtually $C^{(n)}$ -extendible cardinals

A cardinal κ is virtually $C^{(n)}$ -extendible if for every $\kappa < \lambda \in C^{(n)}$, there is a virtual $j: V_{\lambda} \to V_{\beta}$ with crit $(j) = \kappa$, $j(\kappa) > \lambda$, and $\beta \in C^{(n)}$.

A cardinal κ is weakly virtually $C^{(n)}$ -extendible if for every $\kappa < \lambda \in C^{(n)}$, there is a virtual $j: V_{\alpha} \to V_{\beta}$ with crit $(j) = \kappa$ and $\beta \in C^{(n)}$.

Theorem: (G., Schindler) If κ is virtually rank-into-rank, then V_{κ} is a model of proper class many virtually $C^{(n)}$ -extendible cardinals.

Theorem: (G.) If there is a weakly virtually extendible cardinal which is not virtually extendible, then there is a virtually rank-into-rank cardinal.

Corollary: A weakly virtually $C^{(n)}$ -extendible cardinal is equiconsistent with a virtually $C^{(n)}$ -extendible cardinal.

Vopěnka's Principle

Vopěnka's Principle: Every proper class of first-order structures in the same language has at least two structures which elementarily embed.

Theorem: (Bagaria) The following are equivalent.

- Vopěnka's Principle.
- For every $n < \omega$, there is a proper class of $C^{(n)}$ -extendible cardinals.
- For every $n < \omega$, there is a $C^{(n)}$ -extendible cardinal.

(日) (同) (日) (日)

Virtual Vopěnka's Principle

Virtual Vopenka's Principle: Every proper class of first-order structures in the same language has at least two structures which virtually elementarily embed.

Theorem: (G., Hamkins) Virtual Vopenka's Principle holds if and only if for every $n < \omega$, there is a proper class of weakly virtually $C^{(n)}$ -extendible cardinals.

Theorem: (G., Hamkins) It is consistent that Virtual Vopěnka's Principle holds, but there are no virtually supercompact cardinals.

(日) (同) (日) (日)

Virtually supercompact cardinals

A cardinal κ is virtually supercompact if for every $\lambda > \kappa$, there is a virtual $j : V_{\lambda} \to M$ with crit $(j) = \kappa$, $j(\kappa) > \lambda$, and $M^{\lambda} \subseteq M$.

Theorem: (G., Schindler) A cardinal κ is virtually supercompact if and only if it is remarkable.

Theorem: (G., Schindler) A virtually extendible cardinal is a limit of virtually supercompact cardinals.

イロト 不得下 イヨト イヨト

Virtually strong cardinals

A cardinal κ is virtually strong if for every $\lambda > \kappa$, there is a virtual $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \lambda$, and $V_{\lambda} \subseteq M$.

A cardinal κ is weakly virtually strong if for every $\lambda > \kappa$, there is a virtual $j : V_{\lambda} \to M$ with crit $(j) = \kappa$ and $V_{\lambda} \subseteq M$.

Theorem: (Nielsen) If there is a weakly virtually strong cardinal which is not virtually strong, then there is a virtually rank-into-rank cardinal.

Corollary: A weakly virtually strong cardinal is equiconsistent with a virtually strong cardinal.

Theorem: (G., Schindler) A cardinal κ is virtually supercompact if and only if it is virtually strong.

(Virtually) Woodin cardinals

A cardinal κ is (virtually) (λ , A)-strong if there is a (virtual)

 $j: (V_{\lambda}, A \cap V_{\lambda}) \rightarrow (M, \overline{A})$

with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$, $V_{\lambda} \subseteq M$, and $\overline{A} \cap V_{\lambda} = A \cap V_{\lambda}$.

A cardinal δ is (virtually) Woodin if for every set A, there is $\kappa < \delta$ which is (virtually) ($<\delta$, A)-strong.

Aside:

A cardinal κ is (virtually) (λ, A) -supercompact if there is a (virtual) $j : (V_{\lambda}, A) \to (M, \overline{A})$ with crit $(j) = \kappa$, $j(\kappa) > \lambda$, $M^{\lambda} \subseteq M$ and $\overline{A} \cap V_{\lambda} = A \cap V_{\lambda}$.

Theorem: (Perlmutter) Vopěnka's Principle holds if and only if for every class A, there is a ($\langle Ord, A \rangle$ -supercompact cardinal (Ord is Woodin for supercompactness).

Theorem: (Dimopolous, G., Nielsen) Virtual Vopěnka's Principle holds if and only if Ord is weakly virtually Woodin.

Virtually measurable cardinals

A cardinal κ is virtually measurable if for every $\lambda > \kappa$, there is a virtual $j : V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa$.

Theorem: (Nielsen) Virtually measurable cardinals are equiconsistent with virtually supercompact cardinals.

Proof: A virtually measurable cardinal κ is weakly virtually strong in L. \Box

Theorem: (G.) It is consistent that there is a virtually measurable cardinal which is not weakly virtually strong.

Some generic large cardinals

Theorem: (Usuba) The following are equiconsistent.

- virtually extendible cardinal
- (ω_1 or ω_2 is a) generically setwise supercompact cardinal
 - $\kappa > \omega_2$ is generically setwise supercompact implies $0^{\#}$.
- generically extendible cardinal

イロト 不得下 イヨト イヨト

Some generic large cardinals (continued)

A cardinal κ is faintly strong if for every $\lambda > \kappa$, in a forcing extension V[G], there is $j: V_{\lambda} \to N$ with crit $(j) = \kappa$, $j(\kappa) > \lambda$, $V_{\lambda} \subseteq N$, and $N \in V[G]$.

A cardinal δ is faintly Woodin if for every set A, there is $\kappa < \delta$ which is faintly $(<\delta, A)$ -strong.

Proposition: A faintly strong cardinal is virtually strong in *L*. So the two notions are equiconsistent.

Proof: Fix $\bar{\lambda} > \lambda$ and $j : V_{\bar{\lambda}} \to N$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \bar{\lambda}$. The restriction $j : L_{\lambda} \to j(L_{\lambda}) = L_{j(\lambda)}$.

- $L_{\lambda} \subseteq L_{j(\lambda)}$
- $j(\kappa) > \lambda$
- By Absoluteness lemma, there is $j^* : L_{\lambda} \to L_{j(\lambda)}$ in L. \Box

Theorem: (G.) It is consistent that there is a cardinal which is weakly compact (and more), faintly strong, but not virtually strong.

Theorem: (Dimopolous, G., Nielsen) A cardinal κ is virtually Woodin if and only if it is faintly Woodin.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Applications

The model $L(\mathbb{R})$

- Start the *L*-construction with \mathbb{R} instead of \emptyset .
- Satisfies ZF.
- Assuming large cardinals, satisfies the Axiom of Determinacy.

Even though forcing easily changes the theory of V, it is consistent (from large cardinals) that the theory of $L(\mathbb{R})$ cannot be changed by forcing.

Theorem: (Woodin) If there is a supercompact cardinal, then there is a model in which theory of $L(\mathbb{R})$ cannot be changed by forcing.

Theorem: (Schindler) The assertion that the theory of $L(\mathbb{R})$ cannot be changed by proper forcing is equiconsistent with a remarkable (virtually supercompact) cardinal.

Application (continued)

A set of reals is universally Baire if its preimages under all continuous functions from all topological spaces have the Baire property.

- include Σ_1^1 -sets and Π_1^1 -sets
- Lebesgue measurable
- Baire property
- assuming large cardinals, perfect set property

Theorem: (Schindler, Wilson) The assertion that every universally Baire set has the perfect set property is equiconsistent with a virtually Shelah cardinal.

(日) (同) (日) (日)

A wrong version of virtual strongness?

A cardinal κ is (W)-virtually strong if for every $\lambda > \kappa$, in a forcing extension V[G], there is $j: V_{\lambda} \to M$ with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$, and $V_{\lambda} = V_{\lambda}^{M}$, but M may be ill-founded above λ .

- defined by Wilson
- κ is (W)- κ + 1-virtually strong if and only if κ is completely ineffable
- (G.) "much weaker" than virtually supercompact cardinals

Weak Vopěnka's Principle: Technical weakening of Vopěnka's Principle.

Theorem: (Wilson) Weak Vopěnka's Principle holds if and only if for every class A, there is a ($\langle \text{Ord}, A \rangle$ -strong cardinal (Ord is Woodin).

Theorem: (Wilson) Virtual Weak Vopenka's Principle holds if and only if for every class *A*, there is a weakly (W)-virtually (<Ord, *A*)-strong cardinal (Ord is weakly (*W*)-virtually Woodin).

- 31

Virtual large cardinal chart

