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Abstract. Galeotti, Khomskii and Väänänen recently introduced the notion

of the upward Löwenheim-Skolem-Tarski number for a logic, strengthening the

classical notion of a Hanf number. A cardinal κ is the upward Löwenheim-
Skolem-Tarski number (ULST) of a logic L if it is the least cardinal with the

property that whenever M is a model of size at least κ satisfying a sentence ϕ

in L, then there are arbitrarily large models satisfying ϕ and having M as a
substructure. The substructure requirement is what differentiates the ULST

number from the Hanf number and gives the notion large cardinal strength.
While it is a theorem of ZFC that every logic has a Hanf number, Galeotti,

Khomskii and Väänänen showed that the existence of the ULST number for

second-order logic implied the existence of a partially extendible cardinal. We
answer positively their conjecture that the ULST number for second-order

logic is the least extendible cardinal.

We define the strong ULST number by strengthening the substructure re-
quirement to elementary substructure. We investigate the ULST and strong

ULST numbers for several classical strong logics: infinitary logics, the equicar-

dinality logic, logic with the well-foundedness quantifier, second-order logic,
and sort logics. We show that the ULST and the strong ULST numbers are

characterized in some cases by classical large cardinals and in some cases by

natural new large cardinal notions that they give rise to. We show that for
some logics the notions of the ULST number, strong ULST number and least

strong compactness cardinal coincide, while for others, it is consistent that
they can be separated. Finally, we introduce a natural large cardinal notion

characterizing strong compactness cardinals for the equicardinality logic.

1. Introduction

First-order logic relies, however minimally, on the set-theoretic background uni-
verse in which we work because it uses properties of the natural numbers. Tarski’s
definition of truth, for instance, requires recursion. The dependence on the set-
theoretic background universe becomes more apparent when we consider stronger
logics, such as infinitary logics and second-order logic. In these logics, we can
express more properties of the models at the cost of having to use more of the
set-theoretic universe to define the logic itself. Model-theoretic properties of strong
logics have been shown to be connected to and often equivalent to the existence
of large cardinals. For many classical strong logics, for instance, the existence of
a strong compactness cardinal is equivalent to the existence of some classical large
cardinal. For example, strongly compact cardinals were originally defined in terms
of compactness properties of infinitary logics (see [Kan09, 4]), and extendible car-
dinals are connected to compactness properties of second-order logic (see [Mag71]).
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In this article, we investigate upward Löwenheim-Skolem principles for various clas-
sical logics1 and show that these principles are equivalent to the existence of large
cardinals, some classical and some new.

The upward Löwenheim-Skolem Theorem for first-order logic says that any infi-
nite structure has arbitrarily large elementary superstructures. A very weak version
of the upward Löwenheim-Skolem Theorem holds for all logics: the Hanf number of
a logic L is the least cardinal δ such that for every language τ and L(τ)-sentence ϕ,
if a τ -structure M |=L ϕ has size γ ≥ δ, then for every cardinal γ > γ, there is a τ -
structure M of size at least γ such that M |=L ϕ. The upward Löwenheim-Skolem
Theorem implies, in particular, that the Hanf number of first-order logic is ω. ZFC
proves that every logic has a Hanf number (see, for instance, [BF16, Chapter II,
Theorem 6.1.4]). Galeotti, Khomskii and Väänänen [GKV24] strengthened the no-
tion of the Hanf number by requiring that the model M |=L ϕ of size at least γ is a
(not necessarily elementary) superstructure of M . The notion was first introduced
in Galeotti’s PhD thesis [Gal19] and all results from [GKV24] mentioned below
were also proven there.

Definition 1.1 ([GKV24, Definition 2.4]). Fix a logic L. The upward Löwenheim-
Skolem-Tarski number ULST(L), if it exists, is the least cardinal δ such that for
every language τ and L(τ)-sentence ϕ, if a τ -structure M |=L ϕ has size γ ≥ δ,
then for every cardinal γ > γ, there is a τ -structure M of size at least γ such that
M |=L ϕ and M ⊆M is a substructure of M .

The differences in the definitions of the Hanf and ULST numbers mirror differences
in notions of varying strengths generalizing the downward Löwenheim-Skolem The-
orem. The Löwenheim-Skolem number LS(L) of a logic L is the smallest cardinal
κ such that any satisfiable sentence ϕ of L has a model of size smaller than κ.
Similar to the ULST number, the Löwenheim-Skolem-Tarski number LST(L) adds
the requirement, that any model of ϕ has to have a substructure of size smaller
than κ satisfying ϕ. As with the Hanf number, it can be shown in ZFC that every
logic has an LS number. On the other hand, there is a long history going back to
[Mag71] that shows that LST numbers of logics can have large cardinal strength
(see [MV11]).

Similar to this gain in strength that occurs when switching attention from LS
numbers to LST numbers, Galeotti, Khomskii and Väänänen showed that the exis-
tence of the ULST number for second-order logic, ULST(L2), implies the existence
of very strong large cardinals.

Theorem 1.2 ([GKV24, Corollary 7.7]). If ULST(L2) exists, then for every n ∈ ω
there is an n-extendible cardinal λ ≤ ULST(L2).

They further conjectured (see [GKV24, Conjecture 7.8]) that the strength of the
existence of ULST(L2) is exactly that of an extendible cardinal, and the question
regarding the strength of ULST(L2) was explicitly asked in [Gal19, Question 6.65].
We positively answer their conjecture.

Theorem 1.3. If ULST(L2) exists, then it is the least extendible cardinal.

In [GKV24], their main aim was to show how the existence of ULST(L) is equiv-
alent to certain upwards directed reflection principles in classes defined via some

1We will give a formal definition of a logic in Section 2.
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set-theoretic predicate R, provided that L and R are symbiotic (see [Vää79]). They
then used the fact that L2 is symbiotic with the powerset predicate to derive the
existence of an n-extendible cardinal from set-theoretic reflection principles equiva-
lent to the existence of ULST(L2). We will deviate from this approach, and instead
work directly with the model-theoretic constructions ULST(L2) allows.

We further strengthen the notion of the ULST number to capture the full power
of the upward Löwenheim-Skolem Theorem.

Definition 1.4. Fix a logic L. The strong upward Löwenheim-Skolem-Tarski num-
ber SULST(L), if it exists, is the least cardinal δ such that for every language τ and
every τ -structure M of size γ ≥ δ, for every cardinal γ > γ, there is a τ -structure
M of size at least γ such that M ≺L M is an L-elementary substructure of M .

Notice that we could equivalently define the strong upward Löwenheim-Skolem-
Tarski number analogously to the upward Löwenheim-Skolem-Tarski number but
preserving theories instead of single sentences.

We pinpoint large cardinal notions that are equivalent to the existence of the
ULST and strong ULST numbers for second-order logic L2, Väänänen’s Σn-sort log-
ics Ls,n, the logic L(QWF) - first-order logic augmented with the well-foundedness
quantifier, the infinitary logics Lκ,κ, and the logic L(I) - first-order logic augmented
with the equicardinality quantifier.

For the (downward) LST number, it is folklore that the strong and weak ver-
sions of the notion are equivalent for many logics (and in fact, the definitions given
in the literature deviate in whether they demand of the LST number to provide
L-elementary substructures or substructures preserving satisfaction of a single sen-
tence; compare [MV11] and [BV16]). Our results show that for some logics the
same is true, i.e., the existence of ULST(L) and SULST(L) are equivalent, while
for some logics, they can consistently be separated. For a general result, formulat-
ing some sufficient conditions on L for the equivalence of the existence of ULST(L)
and SULST(L), see [Osi24, Section 4.9].

2. Abstract logics

The concept of an abstract logic abstracts away the properties of what it means
to reasonably assign truth values to statements of a formal system interpreted in
structures over a given language. Informally, a logic consists of an assignment
of formulas to every language and a satisfaction relation telling us which of the
formulas a given structure of the language satisfies. In first-order logic, for instance,
the formulas consist of the atomic formulas closed under negation, conjunction,
disjunction, and quantification and the satisfaction relation is given by Tarski’s
definition of truth. The notion of a formula of an abstract logic and the satisfaction
relation must be constrained by properties that we expect a reasonable notion of
formulas and satisfaction of them to obey.

A logic is a pair of classes (L, |=L). The class L is a function on the class of all
languages, and we call the image L(τ) of a language τ the set of τ -sentences. The
class |=L is the satisfaction relation consisting of pairs (M,ϕ), where ϕ ∈ L(τ) and
M is a τ -structure. The relation |=L is required to respect reducts, isomorphisms,
and renamings of a language. If σ ⊆ τ are languages, then every L(σ)-sentence is
an L(τ)-sentence and if a τ -structure M satisfies an L(σ)-sentence ϕ (according to
|=L), then it also satisfies the sentence ϕ as the reduct σ-structure. If τ -structures
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M and N are isomorphic, then they satisfy the same L(τ)-sentences. Next, we
define that f is a renaming between languages σ and τ if it is an arity-preserving
bijective map between the functions and the relations of the languages and a bi-
jective map between the constants. Informally, a renaming renames the relations,
functions, and constants of the language σ by different names resulting in the lan-
guage τ . A renaming between two languages σ and τ induces an obvious way to
turn every σ-structure into a τ -structure, and vice versa. We demand that a re-
naming induces a bijection between L(τ) and L(σ) and if the bijection associates
an L(σ)-sentence ϕ with an L(τ)-sentence ϕ, then a σ-structure M should satisfy
ϕ if and only if it satisfies ϕ as the associated τ -structure. Finally, for technical
reasons, we require that our logics have an occurrence number. The occurrence
number property captures our intuition that there should be a bound on the num-
ber of elements of a language that a single assertion can reference. The occurrence
number of a logic L is the least cardinal κ such that for every ϕ ∈ L(τ), there is
τ ⊆ τ of size less than κ such that ϕ ∈ L(τ). We only allow set-sized languages
and the collection of all sentences for a given language is required to be a set. For
a fully formal definition of an abstract logic, see, e.g., [BDGM24].

The occurrence number requirement plays an important role in proofs involving
properties of abstract logics. Without it, we can end up with logics such as LOrd,Ord,
which, for instance, can never have a strong compactness cardinal. Although the
definition of an abstract logic only mentions sentences, it is easy to extend it to
formulas by introducing and interpreting constants. Using this observation, we
will assume that our logics can handle formulas with free variables. Additional
properties that can be included in the definition of an abstract logic, which we
do not assume here, include, for example, closure under Boolean connectives and
quantifiers.

In this article, we will work with several classical abstract logics, whose defini-
tions and properties we will now review. To distinguish an abstract logic from a
specific logic, we use L to denote abstract logics and L (with some decoration) to
denote specific logics.

Given regular cardinals µ ≤ κ, the infinitary logic Lκ,µ extends first-order logic
by closing the rules of formula formation under conjunctions and disjunctions of
<κ-many formulas that are jointly in <µ-many free variables, and under quan-
tification of <µ-many variables. The logic Lω,ω, usually written simply as L, is
first-order logic. While first-order logic relies on the properties of natural numbers,
the infinitary logics expand on this by relying on the properties of the ordinals. In
the logic Lω1,ω, in an arithmetic or set-theoretic structure, we can express that the
natural numbers are standard. In the logic Lω1,ω1 , we can express that a binary
relation is well-founded. In the logic Lκ,ω, for every ordinal ξ < κ and definable

binary relation ψ(y, x), there is a corresponding formula ϕξψ(x) expressing that the
relation given by ψ when restricted to the predecessors of x is isomorphic to the
well-order (ξ,∈). Thus, in particular, every ordinal ξ < κ is definable in a transitive
model of set theory in the logic Lκ,ω. For every α < κ, there is a sentence ψα in
the logic Lκ,κ, which over a transitive model of set theory N , expresses closure
under α-sequences, Nα ⊆ N . See, for example, [Osi24, Lemma 1.2.4] for a concrete
construction of the above mentioned sentences.

Second-order logic L2 extends first-order logic by allowing quantification over
all relations on the underlying set of the model from the background set-theoretic
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universe. In structures where coding is available, such as arithmetic or set theory,
this reduces to quantification over all subsets of the underlying set. In the logic L2,
we can express that a definable binary relation ψ(y, x) is well-founded and moreover
for every x, we can express that the relation given by ψ on the predecessors of x is
isomorphic to a rank initial segment (Vα,∈) for some ordinal α. Thus, in particular,
given a set in a transitive model of set theory, we can express that the set is some
rank initial segment Vα. This was first observed in [Mag71].

The logic L(QWF) is first-order logic augmented by the quantifier QWF that takes
in two variables x and y so that QWFxyϕ(x, y) is true whenever ϕ(x, y) defines a
well-founded relation. Note that L(QWF) ⊆ Lω1,ω1

and also L(QWF) ⊆ L2.
The logic L(I) is first-order logic augmented by the Härtig or equicardinality

quantifier I that takes in two variables x and y and two formulas ϕ(x) and ψ(y) so
that Ixyϕ(x)ψ(y) is true whenever the sets defined by ϕ(x) and ψ(y) have the same
cardinality in the background set-theoretic universe. Note that L(I) ⊆ L2. In the
logic L(I), in an arithmetic or set-theoretic structure, we can express that the nat-
ural numbers are standard (unlike a standard natural number, the predecessors of
a nonstandard natural number are bijective with the predecessors of its successor).
More generally, we can express that a set-theoretic structure is cardinal correct in
the sense that for any predecessor of a cardinal, the set of all its predecessors is
smaller in cardinality than the set of the predecessors of the cardinal.

The sort logics Ls,n, for n < ω, introduced by Väänänen in [Vää79], are some of
the strongest logics available (see [Vää14] for a modern definition; see also [Osi24,
Section 1.2.4] for an overview of the main properties of sort logics): it is folklore
that any logic is bounded in its strength by some level of (an infinitary version of)
sort logic (for a precise statement and a proof of this fact, see, e.g., [Osi24, Corollary
1.2.24]). The logic Ls,n is an extension of second-order logic and deals with many-
sorted structures, i.e., structures that are possibly equipped with multiple sorts,
each with its own universe of objects and possible relations between them. The key
addition of Ls,n to L2 are the sort quantifiers ∃̃ and ∀̃. These quantifiers range over
all sets in V (and note merely over the powerset of the model, like ordinary second-
order quantifiers do) searching for additional sorts with which we can expand the
model to satisfy some desired property for how the old and new sorts should look
and interact. We are however restricted to n-alternations of the sort quantifiers
because if we allowed arbitrary formulas with these quantifiers, the existence of the
satisfaction relation would violate Tarski’s undefinability of truth. Since sort logics
extend second-order logic, we can, in particular, pick out the structures (isomorphic
to) (Vα,∈), and now using the power of sort quantifiers we are able to express that
Vα is Σn-elementary in V (see, for instance, [BDGM24]).2

3. Generalized compactness

Given a logic L, an L-theory (a set of L-sentences in a fixed language) is said
to be <κ-satisfiable when every <κ-sized subset of it has a model. A cardinal κ

2To get an intuition of the strength of different levels of sort logics, note that L2 cannot even
express that a Vα is Σ2-elementary in V . In fact, Väänänen’s results about symbiosis show that
classes definable by L2 are ∆2-definable in the Lévy hierarchy (see, e.g., [BV16, Lemma 7.1]),

while the class of (structures isomorphic to some) Vα which is Σ2-elementary in V is not Σ2 (see,
e.g., [Bag12, 1]). On the other hand, Väänänen showed that Ls,n can define all ∆n-definable
classes closed under isomorphism (see, e.g., [Vää14, Theorem 3.2] or [Osi24, Corollary 1.2.23]).
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is a strong compactness cardinal of a logic L if every <κ-satisfiable L-theory is
satisfiable. Observe that if a cardinal κ is a strong compactness cardinal for a logic
L, then indeed every cardinal γ > κ is also a strong compactness cardinal for L.

The Compactness Theorem states that ω is a strong compactness cardinal of
first-order logic. In a pioneering result in this area, Tarski showed that a cardinal κ
is a strong compactness cardinal of Lκ,κ if and only if it is strongly compact [Tar62].
Magidor showed that the least extendible cardinal is the least strong compactness
cardinal for second-order logic L2 [Mag71]. Magidor also showed that a cardinal κ
is a strong compactness cardinal for the logics Lω1,ω1 or L(QWF) if and only if it is
ω1-strongly compact (see Section 5 for details). Surprisingly little is known about
strong compactness cardinals for the logic L(I).

Most generally, Makowsky showed that every logic has a strong compactness
cardinal if and only if Vopěnka’s Principle holds [Mak85, Theorem 2].

It is known that, for a logic L, the least strong compactness cardinal, if it exists,
implies the existence of and bounds the ULST number (see [Gal19, Theorem 6.68]).
It is easy to adapt the proof to the case of the strong ULST number in the following
way.

Proposition 3.1. If a logic L has a strong compactness cardinal κ, then SULST(L)
exists and is at most κ.

Proof. Suppose that κ is a strong compactness cardinal of L. Fix a τ -structure
M of size γ ≥ κ and a cardinal γ > γ. Let τ ′ be the language τ extended by
adding γ-many constants {cξ | ξ < γ}. Let T be the L(τ ′)-theory consisting of the
L-elementary diagram of M and assertions cξ 6= cη for ξ < η < γ. Clearly, the
theory T is <κ-satisfiable because it holds true in M (with the distinct constants
cξ mapped to distinct elements of M). Thus, T has a model N . By construction,
N has size at least γ and is an L-elementary superstructure of M . �

It follows, by Makowsky’s theorem, that if Vopěnka’s Principle holds, then every
logic L has a strong ULST-number.

4. From substructure to elementarity

For sufficiently closed transitive set-theoretic structures, we can expand the
language with additional predicates so that there is a first-order sentence in the
expanded language such that given two of these structures, both satisfying the
sentence, if there is an embedding between them, then then the embedding is al-
ready (first-order) elementary. This is a folklore argument and known at least since
[Mag71], but we point out how to carry it out in this section. We will use this obser-
vation to derive strength from the existence of upward Löwenheim-Skolem-Tarski
numbers.

Suppose that (M,∈) is a transitive model closed under the pairing function. We

shall say that TrM ⊆ M is a truth predicate for M if for all first-order formulas
ϕ(x1, . . . , xn) and all tuples (a1, . . . , an):

(M,∈) |= ϕ(a1, . . . , an) if and only if (ϕ, a1, . . . , an) ∈ TrM.

There is a sentence ϕtruth of first-order logic such that for any T ⊆M ,

(M,∈, T ) |= ϕtruth if and only if T = TrM.
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The sentence ϕtruth can be obtained by taking the conjunction of the following
sentences, which go through Tarski’s truth definition in the usual way:

(1) ∀x(x = (pxi ∈ xjq, a1, . . . , an)→ (T (x)↔ ai ∈ aj)).
(2) ∀x(x = (pxi = xjq, a1, . . . , an)→ (T (x)↔ ai = aj)).
(3) ∀x(x = (pψ∧χq, a1, . . . , an)→ (T (x)↔ T ((pψq, a1, . . . , an))∧T ((pχq, a1, . . . , an)))).
(4) ∀x(x = (p¬ψq, a1, . . . , an)→ (T (x)↔ ¬T ((pψq, a1, . . . , an)))).
(5) ∀x(x = (p∃xψq, a1, . . . , an)→ (T (x)↔ ∃yT ((pψq, a1, . . . , an, y)))).

Now let us further expand the structure (M,∈,TrM) to (M,∈, ∅, SM , PM ,TrM) by
adding a constant for the emptyset, the graph SM of the successor function, and
the graph PM of the pairing function. There is a sentence ϕbasic of first-order logic
such that for any constant c, binary relation S, and ternary relation P ,

(M,∈, c, S, P ) |= ϕbasic if and only if c = ∅, S = SM , and P = PM .

The sentence ϕbasic is obtained by taking a conjunction of the following sentences:

(1) ¬∃x(x ∈ c).
(2) ∀x, y(S(x, y)↔ ∀z(z ∈ y ↔ x = z ∨ x ∈ z)).
(3) ∀x, y, z(P (x, y, z)↔ ∃v, w(v, w ∈ z ∧ ∀v0(v0 ∈ v ↔ v0 = x) ∧
∀v0(v0 ∈ w ↔ v0 = x ∨ v0 = y) ∧ ∀v1(v1 ∈ z → v1 = v ∨ v1 = w))),

Proposition 4.1. Suppose that (M,∈) and (N,∈) are transitive structures closed
under the pairing function. Suppose there is an embedding

j : (M,∈, ∅, SM , PM ,TrM)→ (N,∈, ∅,SN,PN,TrN).

Then j is a first-order elementary embedding between the structures (M,∈) and
(N,∈).

Proof. Let (M,∈) |= ϕ(a1, . . . , an). Then (ϕ, a1, . . . , an) ∈ TrM. Because j is an

embedding, j((ϕ, a1, . . . , an)) ∈ TrN. We claim that

j((ϕ, a1, . . . , an)) = (ϕ, j(a1), . . . , j(an)),

which will imply that (N,∈) |= ϕ(j(a1), . . . , j(an)). To prove our claim, let us
first argue that j(n) = n for all n ∈ ω. We have j(0) = 0, as j is an embedding.
Suppose that j(n) = n. Then (n, n+1) ∈ SM . Because j is an embedding, therefore
(n, j(n+ 1)) = (j(n), j(n+ 1)) ∈ SN . Thus, j(n+ 1) = n+ 1, as desired. Now let
us argue that j((a1, . . . , an)) = (j(a1), . . . , j(an)) for all a1, . . . , an ∈ M . Because
(a1, . . . , an) = (a1, (a2, . . . , an)) it is sufficient to argue that j((a, b)) = (j(a), j(b))
for all a, b ∈ M . We have that (a, b, (a, b)) ∈ PM . Because j is an embedding,
therefore (j(a), j(b), j((a, b))) ∈ PN . Thus, N |= j((a, b)) = (j(a), j(b)). It follows
that j(ϕ, a1, . . . , an)) = (j(ϕ), j(a1), . . . , j(an)). It is thus sufficient to argue that
j(ϕ) = ϕ. We may assume that any first-order formula ϕ in the language of set
theory is coded as a finite tuple of natural numbers. Therefore then because j
respects pairing and j(n) = n for all n ∈ ω, as just argued, j(ϕ) = ϕ. �

5. The logic L(QWF)

In this section we show that ULST(L(QWF)) = SULST(L(QWF)) is the least
measurable cardinal.

Theorem 5.1. If there is a measurable cardinal κ, then SULST(L(QWF)) exists
and is at most κ.
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Proof. Suppose that κ is a measurable cardinal. Suppose that N is a τ -structure
of size γ ≥ κ. Let γ > γ be any cardinal. Let j : V → M be an elementary
embedding with crit(j) = κ and j(κ) > γ+. We can obtain such an embedding by
iterating the ultrapower construction with a κ-complete ultrafilter enough times.
Consider the j(τ)-structure j(N) ∈ M . Since j " τ ⊆ τ , (a reduct of) j(N) is a
τ -structure modulo the renaming which takes τ to j " τ . The renaming gives rise
to the associated bijection between formulas over τ and j " τ , so specifically, let it
send ϕ to ϕ. It is easy to see that N = j "N ⊆ j(N) is a τ -substructure of j(N).
Clearly, the bijection j witnesses that N ∼= N as τ -structures because, for instance,
if R(x) is a relation in τ and N |= R(a), then, by elementarity, j(R)(j(a)) holds in
j(N), so j(N) |= R(j(a)) via the renaming, and so N |= R(j(a)). Next, let us show
that N ≺L(QWF) j(N). Suppose that

N |=L(QWF) ϕ(j(a)).

Via the isomorphism, it follows that

N |=L(QWF) ϕ(a).

But then by elementarity of j, M satisfies that j(N) |=L(QWF) ϕ(j(a)) (as a j(τ)-
structure). Since M is well-founded, and thus correct about the well-foundedness
quantifier, and first-order satisfaction is absolute, it is actually the case that

j(N) |=L(QWF) ϕ(j(a))

as a j " τ -structure, and hence

j(N) |=L(QWF) ϕ(j(a))

modulo the renaming as a τ -structure. Finally, since |N | = γ ≥ κ, M satisfies that
|j(N)| ≥ j(κ) > γ+, but then in V , |j(N)| ≥ γ+ > γ as desired. �

Theorem 5.2. If ULST(L(QWF)) = δ, then there is a measurable cardinal ≤δ.

Proof. Suppose ULST(L(QWF)) = δ. Consider the model

M = (Hδ+ ,∈, δ, ∅, S, P,Tr)

where S is the successor function, P is the pairing function, and Tr is the truth
predicate for (Hδ+ ,∈). ThenM satisfies the sentence ϕ in the logic L(QWF), which
is the conjunction of the sentences:

(1) I am well-founded.
(2) δ is the largest cardinal.
(3) ∅ is the empty set, S is the successor function, P is the pairing function,

and Tr is a truth predicate for (Hδ+ ,∈).

Since ULST(L(QWF)) = δ, there is a structure

N = (N,E, δ, ∅, S, P ,Tr)

of size much larger than δ having M as a substructure and which is a model of
the above sentences. Since N is well-founded, we can assume, by collapsing, that
E =∈, N is transitive, and there is an embedding

j : Hδ+ → N

such that j(δ) = δ. Observe that since δ̄ is the largest cardinal of N and |N | is
much larger than δ, it follows that δ > δ. By Proposition 4.1, the embedding j is
elementary, and since j(δ) = δ > δ, j has a critical point crit(j) = κ ≤ δ. Since the
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powerset of κ is contained in Hδ+ , we can use j to derive a κ-complete ultrafilter
on κ witnessing that κ is measurable. �

Corollary 5.3. The following are equivalent for a cardinal κ.

(1) κ is the least measurable cardinal.
(2) κ = ULST(L(QWF)).
(3) κ = SULST(L(QWF)).

Next, we would like to understand the relationship between the least strong
compactness cardinal for L(QWF) and SULST(L(QWF)). A cardinal δ is γ-strongly
compact for γ ≤ δ if every δ-complete filter (on any set) can be extended to a
γ-complete ultrafilter (see [BM14a]). Note that this is not a typical large cardinal
notion because if δ is γ-strongly compact, then it is easy to see that every cardinal
δ′ ≥ δ is also γ-strongly compact. This property is, however, necessary for the
theorem below because the same holds for strong compactness cardinals.

Theorem 5.4 (Magidor). A cardinal δ is a strong compactness cardinal for L(QWF)
if and only if δ is ω1-strongly compact.

We are not aware of any published proof of this result, so we give one here.

Proof. Suppose that δ is ω1-strongly compact. Fix a language τ . Let T be a <δ-
satisfiable theory in L(QWF)(τ). We have to find a model of T . By
[BM14b, Theorem 1.2], ω1-strong compactness of δ gives us an elementary em-
bedding j : V → M with crit(j) = κ ≥ ω1 and d ∈ M such that j " T ⊆ d and
M |= |d| < j(δ). In M , let S = j(T ) ∩ d. Observe that M |= |S| < j(δ) and
j " T ⊆ S ⊆ j(T ). By elementarity, M believes that every subset of j(T ), a theory
in L(QWF)(j(τ)) of size <j(δ), is satisfiable. It follows that M has a j(τ)-structure
A |= S. As M is transitive, it is correct about the well-foundedness quantifier, so
A is really a model of S and, in particular, of j "T ⊆ S. Using the renaming which
takes τ to j " τ , we get that A is a model of T as a τ -structure.

Next, suppose that δ is a strong compactness cardinal for L(QWF). To show
that δ is ω1-strongly compact, by the proof of [BM14a, Theorem 4.7] it is sufficient
to produce for every α ≥ δ a fine ω1-complete ultrafilter on Pδ(α). If γ is an
ordinal with P(α) ∈ Vγ and we have an elementary embedding j : Vγ → M with
M transitive, crit(j) ≥ ω1, d ∈M with j " α ⊆ d ⊆ j(α) and M |= |d| < j(δ), then
it is routine to check that U defined by

X ∈ U iff X ⊆ Pδ(α) and d ∈ j(X)

is a fine ω1-complete ultrafilter on Pδ(α). Let τ be the language consisting of
a binary relation ∈ and constants {cx | x ∈ Vγ} ∪ {d}. Let T be the following
L(QWF)(τ)-theory:

EDL(QWF)(Vγ ,∈, cx)x∈Vγ ∪ {cξ ∈ d | ξ < α} ∪ {|d| < cδ},
where EDL(QWF) stands for the elementary diagram and each cx is interpreted by
the associated set x.

The theory T is clearly <δ-satisfiable as witnessed by the model (Vγ ,∈, cx)x∈Vγ .
So T has a well-founded model M , and by collapsing we can assume without loss of
generality that M is transitive. Thus, we get an elementary embedding j : Vγ →M
with crit(j) ≥ ω1 because the embedding is into a well-founded target. Letting dM

be the interpretation of d in M , let d′ = dM ∩ j(α). Then, in M , |d′| ≤ |dM | < j(δ)
and j " α ⊆ d′ as desired.
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�

It is not difficult to see that if δ is ω1-strongly compact, then there is a mea-
surable cardinal ≤δ. Magidor showed in [Mag76] that it is consistent, relative to
a supercompact cardinal, that the least measurable cardinal is the least strongly
compact cardinal, and hence, in particular, the least measurable cardinal can be
the least ω1-strongly compact cardinal. Bagaria and Magidor showed that it is
consistent, relative to a supercompact cardinal, that the least ω1-strongly compact
cardinal is singular of cofinality greater than or equal to the least measurable car-
dinal [BM14a]. In this situation, a strong compactness cardinal for L(QWF) exists,
but is greater than the least measurable cardinal. Note also that the canonical
model L[U ] cannot have an ω1-strongly compact cardinal δ. The only elementary
embeddings in L[U ] are iterates of the ultrapower by the unique measure on the
unique measurable cardinal κ and only finite iterates have a target that is closed
under ω-sequences. But the existence of an ω1-strongly compact cardinal δ im-
plies that there are elementary embeddings with targets closed under ω-sequences
mapping δ arbitrarily high in the ordinals. Thus, L[U ] does not have a strong com-
pactness cardinal for L(QWF). Combining Corollary 5.3 with the above results, we
get the following corollary.

Corollary 5.5. It is consistent that:

(1) ULST(L(QWF)) = SULST(L(QWF)) is the least strong compactness cardi-
nal for L(QWF).

(2) ULST(L(QWF)) = SULST(L(QWF)) is smaller than the least strong com-
pactness cardinal for L(QWF).

(3) ULST(L(QWF)) = SULST(L(QWF)) exists, but L(QWF) doesn’t have a
strong compactness cardinal.

Thus, we have an example of a logic for which the ULST number is always equal
to the strong ULST number, but consistently, it is possible that either the strong
compactness cardinal does not exist, or it exists and is larger than the the strong
ULST number, or it exists and is equal to the strong ULST number.

6. Second-order logic

A cardinal κ is extendible if for every α > κ, there is β > κ and an elementary
embedding j : Vα → Vβ with crit(j) = κ (see [Kan09, 23]).3 As mentioned above,
the least extendible cardinal is the least strong compactness cardinal for the logic
L2 and thus, SULST(L2) is bounded by the least extendible cardinal by Proposi-
tion 3.1. In this section, we show that ULST(L2) = SULST(L2) is precisely the
least extendible cardinal.

Theorem 6.1. If ULST(L2) exists, then it is the least extendible cardinal.4

Proof. Let ULST(L2) = δ. By Proposition 3.1 and the leastness property of δ,
it suffices to show that there is an extendible cardinal ≤δ. So suppose towards
a contradiction that there is no extendible cardinal ≤δ. Fix γ ≤ δ. If γ is not

3The assertion that j(κ) > α is often included in the definition of an extendible cardinal, but

it can be shown that this leads to an equivalent notion (see [Kan09, Theorem 23.15]).
4Independently, this result was also obtained by Yair Hayut, and, also independently, by Will

Boney and the second author (see [Osi24, Section 4.5]), using different proofs, respectively.
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γ + 1-extendible, let αγ = γ and let βγ = γ. So suppose that γ is at least γ + 1-
extendible. Given α ≥ γ + 1 such that γ is α-extendible, let β(α) be the least β
such that there is an elementary embedding jα : Vα → Vβ with crit(jα) = γ. Let
αγ be the supremum of ordinals α such that γ is α-extendible and let βγ be the
supremum of the corresponding β(α). Let α∗ be the supremum of the αγ for γ ≤ δ
and let β∗ be the supremum of the βγ . Let ρ be the least cardinal above |Vβ∗+1|.
In particular, Vβ∗+1 ∈ Hρ+ . Consider the structure

M = (Hρ+ ,∈, δ, α∗, β∗, ρ, ∅, S, P,Tr).

ThenM satisfies the sentence ϕ of second-order logic L2, which is the conjunction
of the sentences:

(1) I am well-founded.
(2) δ is a cardinal.
(3) α∗ is the supremum of the αγ for γ ≤ δ, where αγ are defined as above.
(4) β∗ is the supremum of the βγ for γ ≤ δ, where βγ are defined as above.
(5) Vβ∗+1 exists.
(6) ∅ is the empty set, S is the successor function, P is the pairing function,

and Tr is the truth predicate for (Hρ+ ,∈).
(7) ρ is the largest cardinal.
(8) ρ is the least cardinal above |Vβ∗+1|.

Since δ = ULST(L2), there is a model

N = (N,E, δ, α∗, β
∗
, ρ, ∅, S, P ,Tr〉 |=L2 ϕ,

of cardinality much larger than ρ and having M as a substructure. Since E is
well-founded, we can assume, by collapsing, that E =∈ and there an embedding

j : Hρ+ → N

such that j(δ) = δ, j(α∗) = α∗, j(β∗) = β
∗
, and j(ρ) = ρ. By Proposition 4.1, the

embedding j is elementary. The model N must contain the correct Vβ∗+1 because

of our usage of second-order logic. Since |N | � ρ, it follows that ρ � ρ. Thus,

since ρ is the least cardinal above |Vβ∗+1| in N , it must be the case that β
∗ � β∗.

Let us argue that δ < δ. If δ = δ, then since N has the correct Vβ∗+1, it would

compute α∗ and β∗ the same as V , but this would contradict its definition of β
∗
.

Thus, j has a critical point κ ≤ δ. Let

j : Vα∗+1 → Vα∗+1

be the restriction of j. Then j witnesses that κ is α∗ + 1-extendible, contradicting
that α∗ was the supremum of extendibility for γ ≤ δ. �

Corollary 6.2. The following are equivalent for a cardinal κ.

(1) κ is the least extendible cardinal.
(2) κ is the least strong compactness cardinal for L2.
(3) κ = SULST(L2).
(4) κ = ULST(L2).

Thus, we have an example of a logic stronger than first-order logic for which
the ULST number is same as the strong ULST number and the same as the least
strong compactness cardinal.
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7. Sort logics

In this section we show that for every n < ω, ULST(Ls,n) = SULST(Ls,n) is the
least C(n)-extendible cardinal.

For every n < ω, we denote by

C(n) = {α ∈ Ord | Vα ≺Σn V }
the class of Σn-reflecting cardinals. A cardinal κ is C(n)-extendible if for every
α > κ in C(n), there is β ∈ C(n) and an elementary embedding j : Vα → Vβ with
crit(j) = κ. The notion is due to Bagaria.5 Boney showed in [Bon20] that the least
C(n)-extendible cardinal is the least strong compactness cardinal for the sort logic
Ls,n.

By exactly mimicking the proof of Theorem 6.1 and using that the assertion
Vα ≺Σn V is expressible in the logic Ls,n, we get:

Theorem 7.1. Fix n < ω. If ULST(Ls,n) exists, then it is the least C(n)-extendible
cardinal.6

Corollary 7.2. The following are equivalent for a cardinal κ and n < ω.

(1) κ is the least C(n)-extendible cardinal.
(2) κ is the least strong compactness cardinal for Ls,n.
(3) κ = SULST(Ls,n).
(4) κ = ULST(Ls,n).

As mentioned earlier, Makowsky [Mak85] showed that Vopěnka’s Principle is
equivalent to the assertion that every logic has a strong compactness cardinal.
Bagaria showed that Vopěnka’s Principle is equivalent to the assertion that for
every n < ω, there is a C(n)-extendible cardinal [Bag12]. It follows that:

Theorem 7.3. Vopěnka’s Principle holds if and only if for every logic L, ULST(L)
exists.

8. The logics Lη,η
In this section, we consider infinitary logics Lη,η with η an uncountable regular

cardinal. We show that SULST(Lκ,κ) = κ if and only if κ is a tall cardinal (we will
give the definition of tallness after Proposition 8.1), and, more generally, that the
existence of ULST and SULST numbers for these logics is related to the existence
of tall-like cardinals.

We would first like to state a general observation that ULST(Lη,η), and thus
SULST(Lη,η), is bounded from below by η. For this purpose, recall from Section 2
that for every α < η, there is a sentence ψα in Lη,η, which over a transitive model
of set theory N expresses closure under α-sequences, Nα ⊆ N . And moreover,
for every ordinal ξ < η and every formula ψ(y, z) ∈ Lη,η, there is a corresponding

5Again, the assertion that j(κ) > α is often included in the definition, but it follows without

loss of generality. Bagaria’s original definition from [Bag12] was that κ is C(n)-extendible if for
every α > κ there is an elementary embedding j : Vα → Vβ such that crit(j) = κ, j(κ) > α,

and j(κ) ∈ C(n). That the above is equivalent when the condition j(κ) > α is adjoined was
independently shown in [GH19, Theorem 15] and [Tsa18, Corollary 3.5]. That the condition that

j(κ) > α can be dropped can then be argued analogously to [Kan09, Theorem 23.15].
6Independently, this results was also obtained by Will Boney and the second author, using a

different proof (see [Osi24, Section 4.6]).
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formula ϕξψ(x) expressing that the relation given by ψ when restricted to the ψ(y, z)-

predecessors of x is isomorphic to the well-order (ξ,∈), i.e., for a structure A and

x ∈ A such that A |= ϕξψ(x), then letting X = {y ∈ A : A |= ψ(y, x)} and R =

{(y, z) ∈ X2 : A |= ψ(y, z)}, we get (X,R) ∼= (ξ,∈),

Proposition 8.1. If ULST(Lη,η) exists, then ULST(Lη,η) ≥ η.

Proof. Suppose that ULST(Lη,η) = δ < η. Consider the model M = (δ,∈) and
let ψ(y, x) := y ∈ x. Then M satisfies that ∈ is a well-order and there is no x
satisfying ϕδψ(x). Because |M | = δ and δ = ULST(Lη,η) there is thus a model N
of size > δ satisfying this statement. But any well-order of size > δ must have a
witness for ϕδψ(x). �

As noted before, we will relate ULST and SULST numbers of Lη,η to tall(-like)
cardinals. A cardinal κ is θ-tall, for θ > κ, if there exists an elementary embedding
j : V →M with crit(j) = κ, j(κ) > θ and Mκ ⊆M , and a cardinal κ is tall if it is
θ-tall for every θ > κ. The difference between a tallness embedding and an iterated
measurability embedding is the closure on the target model M . More generally,
a cardinal κ is θ-tall with closure λ (ω ≤ λ ≤ κ) if there exists an elementary
embedding j : V →M with crit(j) = κ, j(κ) > θ and Mλ ⊆M , and a cardinal κ is
tall with closure λ if it is θ-tall with closure λ for every θ > κ. If the target model
M has closure M<λ ⊆M , then we say that κ is (θ-)tall with closure <λ. All these
cardinals were introduced in [Ham09].

Proposition 8.2 (Theorem 5.1, Hamkins [Ham09]). If a cardinal κ is tall with
closure <κ, then κ is tall.

The following lemma can be shown using similar (in fact, easier) arguments as
Corollary 8.13, so we will omit the proof here.

Lemma 8.3. A cardinal κ is θ-tall with closure <κ if and only if for some α > κ
there is an elementary embedding h : Vα → N with crit(h) = κ, h(κ) > θ and such
that N has, for all λ < κ, all functions λ→ [j(κ)]<ω.

We can therefore witness tallness by embeddings between set-sized structures.
We proceed to consider the relationship of SULST(Lη,η) with tall cardinals.

Theorem 8.4. If there is a tall cardinal κ ≥ η with closure <η, then SULST(Lη,η)
exists and is at most κ. In particular, if κ is tall, then

SULST(Lκ,κ) = ULST(Lκ,κ) = κ.

Proof. Suppose that N is a τ -structure of size γ ≥ κ. Let γ > γ be a cardinal.
Let j : V → M be an elementary embedding with crit(j) = κ, j(κ) > γ+ and
M<η ⊆ M . We now argue as in the proof of Theorem 5.1. Consider the j(τ)-
structure j(N) ∈M . Since j "τ ⊆ j(τ), j(N) is a τ -structure modulo the renaming
which takes τ to j " τ . The renaming gives rise to the associated bijection between
formulas in τ and j"τ , so specifically, let it send ϕ to ϕ. Consider the τ -substructure
N = j " N ⊆ j(N). The bijection j witnesses that N ∼= N as τ -structures.
Next, let us show that N ≺Lη,η j(N). Suppose that N |=Lη,η ϕ(j(a)). Via the
isomorphism, it follows that N |=Lη,η ϕ(a). But then by elementarity of j, M
satisfies that j(N) |=Lη,η ϕ(j(a)) because Lη,η-formulas are fixed by j whose critical
point is κ ≥ η. Since M is closed under <η-sequences, it is correct about Lη,η
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satisfaction, and so it is actually the case that j(N) |=Lη,η ϕ(j(a)) in j(τ). Hence
j(N) |=Lη,η ϕ(j(a)) modulo the renaming. Finally, since |N | ≥ γ ≥ κ, M satisfies

that |j(N)| ≥ j(κ) > γ+, but then in V , |j(N)| ≥ γ+ > γ as desired.
We just argued that SULST(Lη,η) ≤ κ. By Proposition 8.1, ULST(Lη,η) ≥ η.

Thus, in particular, if κ is tall, then SULST(Lκ,κ) = ULST(Lκ,κ) = κ. �

Recall that L(QWF) ⊆ Lω1,ω1 , as well-foundedness is definable by Lω1,ω1 . In
particular, the ULST number of Lω1,ω1 must be greater or equal than the least
measurable cardinal. Since strongly compact cardinals are tall [Ham09, Theorem
2.11] and it is consistent that the least measurable is the least strongly compact,
we get the following:

Theorem 8.5. It is consistent that the following are equivalent for a cardinal κ:

(1) κ is the least measurable cardinal.
(2) κ is the least strong compactness cardinal for L(QWF).
(3) κ is the least strong compactness cardinal for Lκ,κ.
(4) κ = SULST(L(QWF)).
(5) κ = SULST(Lη,η) for all uncountable regular η ≤ κ.
(6) κ = ULST(L(QWF))
(7) κ = ULST(Lη,η) for all uncountable regular η ≤ κ.

Theorem 8.6. If SULST(Lκ,κ) = κ, then κ is tall.

Proof. By Proposition 8.2, it suffices to show that κ is tall with closure <κ. We will
show that for every cardinal θ > κ, there is an elementary embedding jθ : Vκ+1 → Nθ
with crit(jθ) = κ, jθ(κ) > θ and such that Nθ has all functions λ → [j(κ)]<ω for
all λ < κ. This suffices by Lemma 8.3. Consider the structure

M = (Hκ+ ,∈, κ).

Because Lκ,κ can define well-foundedness, using an argument analogous to the
proof of Theorem 5.2, we can see that there is an Lκ,κ-elementary embedding
h : Hκ+ → N with crit(h) ≤ κ. But since every ξ < κ is definable in Lκ,κ, it follows
that crit(h) = κ. Thus, κ is at least measurable, and in particular, Vκ+1 ⊆ Hκ+ .
Note that M |=Lκ,κ ψα (witnessing that Hα

κ+ ⊆ Hκ+) for every α < κ. Fix θ > κ.
Since κ = SULST(Lκ,κ), there is a model N = (N,E, κ) of size larger than the
smallest i-fixed point iρ = ρ > θ and such that M ≺Lκ,κ N . It follows that E is
well-founded, so we can assume, by collapsing, that E =∈, N is transitive and

j : M → N

is an Lκ,κ-elementary embedding. Then ρ ∈ N and since κ̄ is the largest cardinal
of N , we get κ < θ < ρ ≤ κ̄ = j(κ). Since the embedding j is Lκ,κ-elementary, and
every ordinal ξ < κ is Lκ,κ-definable, it follows that crit(j) = κ. We also have, for
every α < κ, N |=Lκ,κ ψα, and so N<κ ⊆ N . Further, N believes that V Nj(κ)+1 has

all functions λ → [j(κ)]<ω and, by its own closure, it is correct about this. Thus,
the restriction j : Vκ+1 → V Nj(κ)+1 has all the required properties.

�

Corollary 8.7. A cardinal κ is tall if and only if ULST(Lκ,κ) = SULST(Lκ,κ) = κ.

Since consistency-wise strongly compact cardinals are much stronger than tall
cardinals (which are equiconsistent with strong cardinals (see [Ham09])), it is con-
sistent to have a tall cardinal that is not strongly compact.
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Corollary 8.8. It is consistent that ULST(Lκ,κ) = SULST(Lκ,κ) = κ, but κ is not
a strong compactness cardinal for Lκ,κ.

Next, we introduce a version of tall cardinals κ, where the defining embeddings,
instead of mapping κ as high as desired, map some fixed ordinal δ ≥ κ as high as
desired.

Definition 8.9. A cardinal κ ≤ δ is θ-tall pushing up δ with closure λ ≤ κ if there
is an elementary embedding j : V → M with crit(j) = κ, Mλ ⊆ M , and j(δ) > θ.
A cardinal κ ≤ δ is tall pushing up δ with closure λ if it is θ-tall pushing up δ with
closure λ for all θ > κ. If the target model M has closure M<λ ⊆M , then we say
that κ is (θ-)tall pushing up δ with closure <λ.

Observe that a θ-tall cardinal κ with closure λ is θ-tall pushing up κ with closure
λ. But in our more general definition it might be a larger ordinal than κ that gets
mapped beyond θ. We note that tall cardinals may consistently be separated from
tall cardinal pushing up some δ.

Proposition 8.10 (Hamkins). It is consistent that there is a cardinal κ which is
not tall, but for which there is an ordinal δ > κ such that κ is tall pushing up δ.7

Proof. Suppose we have a model in which κ is measurable but not tall and δ > κ
is tall. Let’s argue that κ is tall pushing up δ. Fix an ordinal θ and let j : V →M
be an elementary embedding with M δ ⊆ M , crit(j) = δ, and j(δ) > θ, witnessing
the θ-tallness of δ. Let h : V → N be the ultrapower embedding by a κ-complete
ultrafilter on κ, so that we have crit(h) = κ and Nκ ⊆ N . Let j : N → N be the

restriction of j to N . Since Nκ ⊆ N , by elementarity, we get that N
j(κ) ⊆ N in

M . By the closure of M , we get that N
κ ⊆ N . The composition j ◦ h : V → N

now witnesses that κ is θ-tall pushing up δ. �

Question 8.11. Is the existence of a tall cardinal κ pushing up some δ > κ
equiconsistent with a tall cardinal?

We want to show that κ being tall pushing up δ with closure <η is witnessed
by extenders and, thus, by set-sized embeddings. We assume that δ is a strong
limit cardinal, η ≤ κ is regular, and θω > θ (e.g., cof(θ) = ω). Suppose we have an
embedding j : V → M with crit(j) = κ, j(δ) > θ and such that M is <η-closed
witnessing that κ is θ-tall pushing up δ with closure <η. For the moment, for
cardinals β and ζ, let us write βζ for the set of functions β → ζ to distinguish it from
the cardinal ζβ . By the closure of M , for any β < η we get that βθ = (βθ)M and
thus θβ ≤ (θβ)M . Further, because M believes that j(δ) is a strong limit cardinal
and β < θ < j(δ), we have that θβ ≤ (θβ)M < j(δ). Let γ = sup{(θβ)M : β < η}.
Notice that by our remarks we have that γ ≤ j(δ) and, thus, it makes sense to
derive an extender E from j by letting for a ∈ [γ]<ω and X ⊆ [δ]|a|:

X ∈ Ea iff a ∈ j(X).

Let Ma be the ultrapower of V by Ea and let ME be the direct limit of the Ma.
Standard results (see [Kan09, 26.1 and 26.2]) imply that there are canonical embed-
dings jE : V → ME and k : ME → M such that j = k ◦ jE and with crit(jE) = κ,
jE(δ) ≥ γ and crit(k) ≥ γ, where k is the inverse transitive collapse. Further

ME = {jE(f)(a) | a ∈ [γ]<ω, f : [δ]|a| → V }

7We would like to thank Joel David Hamkins for pointing this result out to us.
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and

ran(k) = {j(f)(a) | a ∈ [γ]<ω, f : [δ]|a| → V }.
Notice that ran(k) is an elementary substructure of M . We want to see that
jE : V → ME witnesses that κ is θ-tall pushing up δ with closure <η. It remains
to check the closure of ME . So let ν < η and fix

{jE(fα)(aα) | α < ν} ⊆ME

with each aα ∈ [γ]<ω and fα : [δ]|aα| → V . We have that

j({fα | α < ν}) = {j(fα) | α < ν} ∈ME .

So if we can show that {aα | α < ν} ∈ ME , we are done as then the pointwise
evaluation of {j(fα) | α < ν} will also be in ME . Because

crit(k) ≥ γ ≥ (θν)M ≥ θν

we know that γ ⊆ ran(k) and as we assumed θν ≥ θω > θ > η > ν, we have
θ, η, ν ∈ ran(k). Because M is closed under ν-sequences, ν([γ]<ω) ⊆ M , and so
M ’s version of ν([γ]<ω) is the real ν([γ]<ω). Now notice that γ is definable from η
and θ in M and, thus, by elementarity, γ must be in ran(k). Similarly, ν([γ]<ω) is
definable from ν and γ and so again by elementarity we get that ν([γ]<ω) has to be
in ran(k) as well. Further, M believes that there is an enumeration g of ν([γ]<ω)
and g has domain (γν)M . Thus, ran(k) also has such an enumeration, say h. We
claim that (γν)M = γ. Notice that by definition of γ and regularity of η, we either
have that γ = (θβ)M for some β < η or cof(γ) = η. In the first case, in M , we have
γν = (θβ)ν = θβ = γ. So let’s assume that cof(γ) = η. Thus, because ν < η, if
f : ν → γ is a function in M , then ran(f) ⊆ (θβ)M for some β < η, and we have

(γν)M ≤ sup{((θβ)ν)M | β < η} = sup{(θβ)M | β < η} = γ.

Thus (γν)M = γ. Therefore h is an enumeration of ν([γ]<ω) with domain γ ⊆ ran(k)
and we get that the evaluation h(α) at any α < γ ⊆ ran(k) is in ran(k), and so
ν([γ]<ω) ⊆ ran(k). In particular, {aα | α < ν} ∈ ran(k). Fix f ∈ ν([γ]<ω) ⊆ ran(k).
Our argument above also shows that f : ν → [θβ ]<ω for some β < η. Since k fixes
β and θ, it follows that k(θβ) = θβ . If θβ < γ, then k(f) = f and if θβ = γ, then
crit(k) > γ, and so also, k(f) = f . It follows that

{aα | α < ν} = k−1({aα | α < ν}) ∈ME .

Notice that in the above argument, the fact that VMj(δ)+1 has all functions

f : ν → [γ]<ω is sufficient to show that ME is <η-closed. Thus we can con-
clude that θ-tallness pushing up δ with closure <η is, under the above conditions,
already witnessed by set sized embeddings:

Lemma 8.12. Suppose that δ is a strong limit cardinal, η ≤ κ is regular and θ > δ
is such that θω > θ. Assume that for some α > δ there is an elementary embedding
j : Vα → N with crit(j) = κ and j(δ) > θ. Further let γ = sup{(θβ)N | β < η}
and assume that N has, for all ν < η, all functions ν → [γ]<ω. Let E be the
extender with seed set [γ]<ω derived from j consisting of ultrafilters on [δ]n. Then
the canonical embedding jE : V →ME into the extender power of V by E witnesses
that κ is θ-tall pushing up δ with closure <η.

Because jE restricts to an embedding jE : Vδ+1 → VME

j(δ)+1, we therefore get:
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Corollary 8.13. Suppose that δ is a strong limit cardinal, η ≤ κ is regular and
θ > δ is such that θω > θ. Then κ is θ-tall pushing up δ with closure <η if and only
if for some α > δ there is an elementary embedding h : Vα → N with N transitive,
crit(h) = κ, h(δ) > θ and such that for all ν < η, N has all functions ν → [γ]<ω,
where γ = sup{(θβ)N | β < η}.

Note that the following characterization follows as a special case, letting η = λ+.

Corollary 8.14. Suppose that δ is a strong limit cardinal, λ < κ and θ > δ is such
that θω > θ. Then κ is θ-tall pushing up δ with closure λ if and only if for some
α > δ there is an elementary embedding h : Vα → N with N transitive, crit(h) = κ,
h(δ) > θ and such that N has all functions λ→ [(θλ)N ]<ω.

We will use these results to get more general versions of Theorems 8.4 and 8.6
as well as results about the ULST numbers.

Theorem 8.15. If there is a tall cardinal κ pushing up δ with closure <η for some
δ ≥ κ and regular η ≤ κ, then SULST(Lη,η) exists and is at most δ.

The proof of the above theorem is completely analogous to the proof of Theo-
rem 8.4 and indeed, Theorem 8.4 can now be derived as a corollary.

Theorem 8.16. If SULST(Lη,η) = δ, then there is a cardinal η ≤ κ ≤ δ that is
tall pushing up δ with closure <η.

Proof. Let ρ be the first i-fixed point above δ. We first argue that for any i-fixed
point θ > δ there is an elementary embedding jθ : Vρ → Nθ with η ≤ crit(jθ) ≤ δ,
jθ(δ) > θ and such that Nθ has all functions f : ν → [α]<ω for all ν < η and all
ordinals α ∈ Nθ. We consider the structure M = (Vρ,∈, δ). Since SULST(Lη,η) =
δ, there is a modelN = (N,E, δ̄), with |N | � θ, and such thatM≺Lη,η N . Because
M satisfies the Lη,η-sentence asserting well-foundedness, we can assume that N is
transitive, E =∈ and j : M → N is Lη,η-elementary with j(δ) = δ̄. Further, M
satisfies, for every ν < η, the sentence χν of Lη,η, truthfully asserting that Vρ has
all functions λ → [α]<ω for any ordinal α in Vρ. Because |N | � θ, we get that
θ ∈ N . By elementarity, N believes that there is no i-fixed point above δ̄, so since
N sees that θ is a i-fixed point, it follows that δ̄ > θ > δ. In particular, crit(j) ≤ δ.
Since every ordinal ξ < η is definable in the logic Lη,η, we must have η ≤ crit(j).
Because N satisfies the sentences χν for all ν < η, it has all the required functions.
So j is how we promised.

Because there are unboundedly many θ > δ but boundedly many κ ≤ δ, we can
fix a single η ≤ κ ≤ δ such that for any θ > δ, there is an elementary embedding
jθ : Vρ → Nθ with crit(jθ) = κ, jθ(δ) > θ and such that Nθ has all functions
ν → [α]<ω for all ν < η and all ordinals α ∈ Nθ. Let κ ≤ δ∗ ≤ δ be the least
cardinal such that for any θ > δ∗, there is an elementary embedding jθ : Vρ∗ → Nθ,
where ρ∗ is the least i-fixed point above δ∗, with crit(jθ) = κ, jθ(δ

∗) > θ and such
that Nθ has all functions ν → [α]<ω for all ν < η and all ordinals α ∈ Nθ. Let’s
argue that δ∗ is a strong limit. If δ∗ is not a strong limit, then there is γ < δ∗ with
ρ∗ > 2γ ≥ δ∗. Note that ρ∗ is the least i-fixed point above γ. Consider any strong
limit θ > ρ∗. By assumption, there is an elementary embedding jθ : Vρ∗ → Nθ with
crit(jθ) = κ∗ and jθ(δ

∗) > θ. Now because 2γ ≥ δ∗, by elementarity

Nθ |= 2j(γ) ≥ j(δ∗) > θ.



18 VICTORIA GITMAN AND JONATHAN OSINSKI

But then because θ is a strong limit, also Nθ |= j(γ) ≥ θ. Because this works
for any θ, this is a contradiction to the minimality of δ∗, verifying that δ∗ is a
strong limit cardinal. Since the target models Nθ have all the functions required in
Corollary 8.13, the embeddings we produced verify that κ∗ is tall pushing up δ∗,
so in particular also pushing up δ ≥ δ∗, with closure < η. �

Corollary 8.17. SULST(Lη,η) = δ if and only if δ is the smallest cardinal ≥ η
such that there is a tall cardinal η ≤ κ ≤ δ pushing up δ with closure < η.

Observe that with the same argument we gave after the proof of Theorem 5.4 we
can show that in the canonical model L[U ], there are no tall cardinals γ ≤ δ pushing
up δ with closure ω. Thus, in particular, it is consistent that there is a measurable
cardinal, but there is no pair γ ≤ δ such that γ is a tall cardinal pushing up δ
with closure ω. In particular, by Theorem 8.16, if SULST(Lω1,ω1

) exists, we must
already have a pair κ ≤ δ such that κ is a tall cardinal pushing up δ with closure ω.
So having an SULST number for Lω1,ω1

is stronger than having an SULST number
for L(QWF).

To consider situations where ULST(Lη,η) = η, we introduce the following con-
cept.

Definition 8.18. A cardinal δ is supreme for tallness if for all λ < δ and ordinals
θ, there is a cardinal λ < κ ≤ δ that is θ-tall pushing up δ with closure λ.

Observe that a cardinal δ is supreme for tallness if and only if for every λ < δ,
there is a cardinal λ < κ ≤ δ that is tall pushing up δ with closure λ. This
follows because there are proper class many θ and the cardinals κ are bounded
by δ. Observe also that a tall cardinal is trivially supreme for tallness. A non-
tall cardinal that is a limit of tall cardinals is also supreme for tallness. Thus, a
supreme for tallness cardinal can be singular. On the other hand, a regular supreme
for tallness cardinal is inaccessible because it is a limit of measurable cardinals. But
we show below that it need not be weakly compact (Theorem 8.22).

Theorem 8.19. If δ is supreme for tallness, then for every regular η ≤ δ, ULST(Lη,η)
exists and is at most δ. In particular, if δ is regular, then ULST(Lδ,δ) = δ.

Proof. Suppose that N is a τ -structure of size γ ≥ δ, η ≤ δ, and ϕ is a sentence in
Lη,η(τ) such that N |=Lη,η ϕ. Since η is regular, there is λ < η such that the length
of all conjunctions and quantifiers in ϕ is at most λ. Let γ > γ be a cardinal. By our
assumption there exists a cardinal λ < κ ≤ δ such that κ is γ+-tall pushing up δ with
closure λ. Let j : V →M be an elementary embedding with crit(j) = κ, j(δ) > γ+,
and Mλ ⊆ M . Consider the j(τ)-structure j(N). Since j " τ ⊆ τ , j(N) is a τ -
structure modulo the renaming which takes τ to j"τ . The renaming gives rise to the
associated bijection between formulas in τ and j " τ , so specifically, let it send ψ to
ψ. Consider the τ -substructure N = j"N ⊆ j(N). Clearly, the bijection j witnesses
that N ∼= N as τ -structures. Thus, via the isomorphism, we have that N is a τ -
substructure of j(N). By elementarity, M satisfies that j(N) |=Lj(η),j(η)

j(ϕ). Since

the length of all conjunctions and disjunctions in ϕ is bounded by λ < κ, j(ϕ) = ϕ
is the renamed version of ϕ, which means that M satisfies that j(N) |=Lη,η ϕ,
and by closure of M , it is correct about it. It follows that j(N) |=Lη,η ϕ as the
τ -structure via our renaming. Since |N | = γ, by elementarity, M satisfies that
|j(N)| = j(γ) ≥ j(δ) ≥ γ+. Thus, in V , |j(N)| > γ. �
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Theorem 8.20. If ULST(Lη,η) = η, then η is supreme for tallness.

Proof. Because Lη,η can define well-foundedness and all ordinals < η, it is easy to
see that η is either measurable or a limit of measurables. In particular it follows that
η is a strong limit cardinal. Now let λ < η and let θ > η be an ordinal with θω > θ.
We need to find a cardinal λ < κ ≤ η that is θ-tall pushing up η with closure λ.
Take the smallest ordinal ν > η of cofinality > λ. Notice that ν < η+. We produce
an embedding j : Vν → N with λ < crit(j) ≤ η, j(η) > θ and such that Nλ ⊆ N .
By Corollary 8.14 this is sufficient. For ξ ≤ λ take constant symbols cξ, let cMξ = ξ

and consider the structure M = (Vν ,∈, η, cMξ , ∅, S, P,Tr)ξ≤λ. Notice that because
ν has cofinality greater than λ, Vν is closed under λ-sequences. Then M satisfies
the sentence ϕ of Lη,η which is the conjunction of the following sentences:

(1) I am well-founded.
(2) ∅ is the empty set, S is the successor function, P is the pairing function,

Tr is the truth predicate.
(3) η is the largest cardinal.
(4) ψλ.

(5)
∧
ξ≤λ ϕ

ψ
ξ (cξ) (where ψ := y ∈ x).

Since η = ULST(Lη,η), there is a model N = (N,E, η̄, cNξ , ∅, S, P ,Tr)ξ≤λ, with

|N | � θ and having M as a substructure. It follows that E is well-founded,
so we can, by collapsing, assume that ∈= E, N is transitive and j : M → N
is an elementary embedding by Proposition 4.1. Since |N | � θ, we have that

η < θ < j(η) = η̄. In particular, crit(j) ≤ η. Because N |=Lη,η
∧
ξ≤λ ϕ

ψ
ξ (cξ), it

follows that cNξ = ξ, and so j(ξ) = ξ for all ξ ≤ λ. It follows that crit(j) > λ.

Finally, N |= ψλ and therefore Nλ ⊆ N . �

Corollary 8.21. For regular cardinals η, ULST(Lη,η) = η if and only if η is
supreme for tallness.

Next, we consistently separate the existence of ULST(Lη,η) and SULST(Lη,η).

Theorem 8.22. It is consistent that η is an inaccessible cardinal, ULST(Lη,η)
exists, but SULST(Lη,η) does not exist.

Proof. Let η be a supercompact cardinal with an inaccessible cardinal ν above it,
and assume that ν is the least such inaccessible. Then η is a limit of strong cardinals,
and hence a limit of tall cardinals. In Vν , η is also a supercompact limit of tall
cardinals. Thus, we can assume without loss of generality that V = Vν , so that
there are no inaccessible cardinals above η. First, we go to a forcing extension V [c]
by Cohen forcing. Since small forcing preserves tall cardinals (see [Ham09, Theorem
2.13]) and supercompact cardinals (see, e.g., [Jec03, Theorem 21.2]) by standard
embedding lifting arguments, η is still a supercompact limit of tall cardinals in V [c].
Next, we go to a forcing extension V [c][G] by Add(η, 1). The forcing Add(η, 1) is
<η-closed and hence, in particular, ≤κ-distributive for every tall cardinal κ < η
in V [c][G]. Thus, every tall cardinal κ < η remains tall in V [c][G] (see [Ham09,
Theorem 3.1]). The cardinal η remains inaccessible by the closure of Add(η, 1), but
since the Cohen forcing makes η super destructible, it is not even weakly compact
in V [c][G] by [Ham98, Main Theorem]. In particular, η is not tall. Thus, in V [c][G],
η cannot be SULST(Lη,η), and since there are no inaccessible cardinals above η,
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SULST(Lη,η) doesn’t exist. But since η is a limit of tall cardinals in V [c][G], it is, in
particular, supreme for tallness there, and hence, in V [c][G], η = ULST(Lη,η). �

Next, we show that consistently we can have ULST(Lη,η) < SULST(Lη,η).

Theorem 8.23. It is consistent that η is an inaccessible cardinal, ULST(Lη,η) and
SULST(Lη,η) both exists, and ULST(Lη,η) < SULST(Lη,η).

Proof. We will argue as in the proof of Theorem 8.22, but start with a model in
which there is a supercompact η and a tall cardinal ν above the supercompact
cardinal. We again go to the forcing extension V [c][G], in which η = ULST(Lη,η),
but SULST(Lη,η) 6= η. Next, observe that since tall cardinals are preserved by small
forcing and Add(η, 1) is small relative to ν, it remains a tall cardinal in V [c][G].
Thus, SULST(Lη,η) exists. �

9. Cardinal correct extendible cardinals

In this section, we introduce new large cardinal notions: cardinal correct ex-
tendible cardinals and their variants. We will see in Sections 10 and 11 that these
large cardinals arise naturally from trying to characterize strong compactness cardi-
nals and the ULST numbers for the logic L(I). We will say that a transitive model
M of set theory is cardinal correct if whenever M believes that γ is a cardinal, then
γ is a cardinal of V .

Definition 9.1. A cardinal κ is cardinal correct extendible if for every α > κ,
there is an elementary embedding j : Vα → M with crit(j) = κ, j(κ) > α and M
cardinal correct. A cardinal κ is weakly cardinal correct extendible if we remove the
requirement that j(κ) > α.

Clearly, extendible cardinals are cardinal correct extendible because the rank
initial segments Vβ are always cardinal correct. Recall that the property that
j(κ) > α comes for free in the case of extendible cardinals, but it is not clear
whether this is the case for cardinal correct extendibles.

Question 9.2. Are weakly cardinal correct extendible cardinals and cardinal cor-
rect extendible cardinals equivalent?

Next, we show how cardinal correct extendible cardinals and their weak version
are related to strongly compact cardinals.

A cardinal κ is called λ-compact for some λ ≥ κ if there is a fine κ-complete
ultrafilter on Pκ(λ) and a cardinal κ is strongly compact if it is λ-compact for
every λ ≥ κ (see [Kan09, 22]). By a theorem of Ketonen, if κ and λ are regular,
then κ is λ-compact if and only if every regular α in the interval [κ, λ] carries
a uniform κ-complete ultrafilter [Ket73, Theorem 5.9]. As Goldberg points out
in [Gol], using a theorem of Kunen and Prikry, if λ is a successor cardinal, it
suffices to show this only for successor cardinals in the interval [κ, λ]. Kunen and
Prikry showed that if κ is regular and U is a κ+-descendingly incomplete ultrafilter
on some set, then U is already κ-descendingly incomplete [KP71, Theorem 0.2].
An ultrafilter U is δ-descendingly incomplete if there is a decreasing sequence of
sets in U whose intersection is empty. It is easy to see that if an ultrafilter U
is κ-complete and δ-descendingly incomplete, then there is a uniform κ-complete
ultrafilter W ≤RK U on δ. Now suppose there is a uniform κ-complete ultrafilter
on β+ that is κ-complete. In particular, U is β+-descendingly incomplete, and
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hence by Kunen and Prikry’s theorem, it is β-descendingly incomplete. Thus, by
our earlier observation, there is a uniform κ-complete ultrafilter W ≤RK U on β.
Thus, we get:

Theorem 9.3 (Goldberg). If κ is regular and λ is a successor, then κ is λ-compact
if and only if every successor cardinal in the interval [κ, λ] carries a uniform κ-
complete ultrafilter.

We will use the following lemma which is implicit in [Gol].

Lemma 9.4 (Goldberg). If j : Vλ → M is an elementary embedding with M
cardinal correct, crit(j) = κ and such that λ = sup{jn(κ) : n ∈ ω}, then j(κ) is
inaccessible and Vj(κ) |= “κ is strongly compact”.

Proposition 9.5. If κ is cardinal correct extendible, then κ is strongly compact.

Proof. By Theorem 9.3, it suffices to argue that every successor cardinal β+ > κ
carries a uniform κ-complete ultrafilter. Let α > β+ and take j : Vα → M with
crit(j) = κ, j(κ) > α and M cardinal correct. Since j(κ) > α > β+, it follows that
j(β) > β. Because M is cardinal correct, we have that j(β) is a cardinal and

(j(β)+)M = j(β+) = j(β)+ > β+.

This means that j(β+) is regular, and so, in particular, j is discontinuous at β+,
i.e., j " β+ is bounded in j(β+). Thus, we can let γ = sup(j " β+) < j(β+). It is
then easy to check that we can define a uniform κ-complete ultrafilter U on β+ by
letting X ∈ U if and only if γ ∈ j(X).

�

Theorem 9.6. If κ is weakly cardinal correct extendible, then κ is strongly compact
or there is an inaccessible cardinal α such that Vα satisfies that κ is a strongly
compact cardinal.

Proof. Suppose that κ is not strongly compact. Choose some successor λ > κ such
that κ is not λ-compact. Let j : Vλ+ → M be an elementary embedding with
crit(j) = κ and M cardinal correct. If j(κ) ≥ λ, then the argument of the proof
of Proposition 9.5 would show that κ is λ-compact. Thus, we have j(κ) < λ. This
means we can apply j to j(κ) = γ to get j2(κ) = j(γ). Again, assuming that
j(γ) ≥ λ, we will argue that κ must be λ-strongly compact, and so will be able to
conclude that j(γ) < λ. By the same argument as before, we get a discontinuity for
successors of γ ≤ β < λ. But if κ ≤ β < γ, then β < γ = j(κ) ≤ j(β). Repeating
this argument, we get that jn(κ) < λ for all n < ω. Letting γ = sup{jn(κ) | n < ω}
we get that j restricts to j : Vγ → VMγ and the latter is cardinal correct, because
M is. By Lemma 9.4, j(κ) is inaccessible and Vj(κ) satisfies that κ is a strongly
compact cardinal. Thus, we proved what we promised. �

Thus, either a weakly cardinal correct extendible κ is strongly compact or there
is some ordinal λ such that for cofinally many α > κ, if j : Vα →M with crit(j) = κ
and M cardinal correct, then jn(κ) < λ for all n < ω. It is not clear whether this
situation is consistent.

The following variant of cardinal correct extendibility will be especially signifi-
cant in characterizing the strong compactness cardinals and ULST numbers for the
logic L(I). Notice the similarity with our notion of tall cardinals pushing up some
ordinal δ.
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Definition 9.7. A cardinal κ ≤ δ is cardinal correct extendible pushing up δ if for
every α > δ, there is an elementary embedding j : Vα → M with crit(j) = κ, M
cardinal correct, and j(δ) > α.

Clearly, κ is cardinal correct extendible pushing up κ if and only if it is cardinal
correct extendible. Also, if κ is cardinal correct extendible pushing up δ, then it is
weakly cardinal correct extendible.

The following lemma will be used to separate supercompact cardinals from car-
dinal correct extendible cardinals.

Lemma 9.8. If κ is cardinal correct extendible pushing up δ and the GCH fails at
some cardinal γ ≥ δ, then the GCH fails cofinally often.

Proof. Suppose δ ≤ γ and 2γ > γ+. Fix an ordinal λ > 2γ and let α > λ. We will
show that the GCH fails somewhere above λ. Let j : Vα →M with crit(j) = κ, M
cardinal correct, and j(δ) > α. We have j(γ) ≥ j(δ) > α > λ. Since Vα |= 2γ > γ+,
by elementarity, M |= 2j(γ) > j(γ)+. Since M is cardinal correct, the j(γ)+ of M is
the real j(γ)+ and (2j(γ))M is a cardinal. Thus, the GCH really must fail at j(γ)+.
Since λ was chosen arbitrarily, it follows that the GCH fails cofinally often. �

Theorem 9.9. It is consistent, relative to an extendible cardinal, that there is an
extendible cardinal and for every pair κ ≤ δ such that κ is cardinal correct extendible
pushing up δ, δ is bigger than the least supercompact cardinal.

Proof. We can force the GCH to hold at all regular cardinals while preserving an
extendible cardinal [Tsa13]. So we can suppose that we start in a model V in which
the GCH holds at all regular cardinals and there is an extendible cardinal χ. Let
ν be the least supercompact cardinal, and note that ν < χ. We force with the
Laver preparation [Lav78] to make the supercompactness of ν indestructible by all
<ν-directed closed forcing and let V [G] be the resulting forcing extension. Since
the Laver preparation has size ν, the GCH still holds above ν in V [G] (while it
fails badly below ν) and χ remains extendible. Now fix any cardinal ν < γ < χ
and force with Add(γ, γ++), the forcing to add γ++-many Cohen subsets to γ, and
let V [G][g] be the forcing extension. By the indestructibility of ν in V [G], since
Add(γ, γ++) is <ν-directed closed, ν remains supercompact in V [G][g]. Also, the
GCH holds above γ in V [G][g] and χ remains extendible. Thus, by Lemma 9.8, in
V [G][g], there cannot be a pair κ ≤ δ such that δ ≤ γ and κ is cardinal correct
extendible pushing up δ. �

Corollary 9.10. It is consistent that a supercompact cardinal is not cardinal correct
extendible.8

10. Strong compactness cardinals for L(I)

In this section, we introduce a large cardinal variant of cardinal correct ex-
tendibles characterizing being a strong compactness cardinal for the logic L(I).

In order to obtain our theorem, we first need to argue that under certain circum-
stances, we can expresses well-foundedness in the logic L(I). Unlike other logics
considered so far, we cannot generally express well-foundedness in the logic L(I),

8This result was first pointed out to us by Alejandro Poveda with a more complicated proof
using Radin forcing. See [Pov24, Theorem 5.2] for Poveda’s argument.
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i.e., there is no sentence ϕ ∈ L(I) over the vocabulary including a single binary rela-
tion symbol < such that (M,<M ) |= ϕ if and only if <M is well-founded. However,
it turns out that we can express well-foundeness over models of a sufficiently large
fragment of set theory that are cardinal correct in the sense described in Section 2.

Suppose that (M,E) is a model of some sufficiently large fragment of ZFC. Given

ξ, η ∈ OrdM , we shall say that ξ <M η if M |= ξ E η. We shall say that M is cardinal

correct if whenever κ ∈ CardM , then for every α ∈ OrdM with α <M κ,

|{ξ ∈ OrdM | ξ <M α}|V < |{ξ ∈ OrdM | ξ <M κ}|V .

Note that this definition of cardinal correctness reduces to the definition we gave
in Section 9 for transitive models of set theory. Clearly, in the logic L(I), there is
a formula ϕcor expressing that M is cardinal correct.

Let ZFC∗ be a sufficiently large finite fragment of ZFC such that:

(1) ZFC∗ proves:
• the ordinals form a well-ordered class,
• every set can be well-ordered,
• for every ordinal there is an increasing sequence of cardinals of that

order-type,
• the sets are the union of the von Neumann hierarchy.

(2) If λ = ℵλ is an ℵ-fixed point, then Vλ |= ZFC∗.

The following result was pointed out to us by Gabe Goldberg.

Theorem 10.1 (Goldberg). If (M,E) |= ZFC∗ and (M,E) |=L(I) ϕcor, then E is
well-founded.

Proof. Suppose that E is not well-founded. Since the sets are the union of the von
Neumann hierarchy, every set has a rank and therefore, it suffices to show that
the ordinals of M are well-founded. Let κ be a cardinal in M such that the set
of E-predecessors of κ is not well-founded. Let {αξ | ξ <M κ} be a sequence with

αξ ∈ CardM which exists by our assumption. For ξ <M κ, let

α∗ξ = |{η ∈ OrdM | η <M αξ}|V

be the cardinality in V . Since M |= ϕcor, we must have that for ξ <M η <M κ,
α∗ξ < α∗η as ordinals in V , but this means that there is an ω-descending sequence
in the actual ordinals of V , which is impossible. �

Theorem 10.2. The following are equivalent for a cardinal δ:

(a) δ is a strong compactness cardinal for L(I).
(b) For every γ > δ there is α > γ, a transitive set M and an elementary

embedding j : Vα → M such that M is cardinal correct, crit(j) ≤ δ and
there exists d ∈M such that j " γ ⊆ d and M |= |d| < j(δ).

Proof. First assume (a) and fix γ > δ. Take any ℵ-fixed point α > γ. Let τ be a
language consisting of a binary relation ∈ and constants {cx | x ∈ Vα} ∪ {d}. Let
T be the L(I)(τ)-theory consisting of the following:

(1) EDL(I)(Vα,∈, cx)x∈Vα (each cx is interpreted by the associated set x)
(2) {cξ ∈ d | ξ < γ}
(3) |d| < cδ
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Clearly, the theory T is <δ-satisfiable, as witnessed by the model (Vα,∈, cx)x∈Vα .
Thus, since δ is a strong compactness cardinal of L(I), we can fix a model

N = (N,E, cx, d)x∈Vα |= T.

The model N is well-founded by Theorem 10.1 because ZFC∗ and ϕcor are in the
elementary diagram. It also follows that N is cardinal correct. Thus, associating
N with its collapse and E with ∈, we get an elementary embedding j : Vα → N
with crit(j) ≤ δ. Since N |= T , it follows that |d| < j(δ) and j " γ ⊆ d.

Next, we assume (b). Let τ be a language and let T be a <δ-satisfiable L(I)(τ)-
theory. Assume without loss of generality that |T | = γ > δ. Let γ′ > γ be large
enough that T, τ, δ ∈ Vγ′ . By (b), take α > γ′ and j : Vα → M such that M
is transitive and cardinal correct, crit(j) ≤ δ and there is a d ∈ M such that
j " T ⊆ d and |d|M < j(δ). We can assume without loss of generality that d is a
L(I)(j(τ))-theory. Thus, M has a j(τ)-structure N , which it thinks satisfies the
L(I)(j(τ))-theory d. Since M is cardinal correct, N is a really is a model of d.
Thus, in particular, (the reduct of) N is a j " τ -structure which satisfies j " T . As
usual, via the renaming given by j, N is a τ -structure satisfying T . �

Notice that, as there is a proper class of γ > δ but only boundedly many possible
critical points ≤ δ, if δ is a strong compactness cardinal for L(I), then there is a
fixed κ ≤ δ such that for any γ > δ there is α > γ and an elementary embedding
j : Vα → M with M transitive and cardinal correct, crit(j) = κ and d ∈ M such
that j " γ ⊆ d and |d|M < j(δ). We therefore get:

Corollary 10.3. If δ is a strong compactness cardinal for L(I), then there is κ ≤ δ
such that κ is cardinal correct extendible pushing up δ and δ is κ-strongly compact.

Proof. Take κ ≤ δ as a critical point of unboundedly many embeddings witness-
ing (b) of Theorem 10.2 as pointed out above. Then clearly, κ is cardinal correct
extendible pushing up δ. And it follows from the elementary embedding character-
ization of κ-strongly compact cardinals in [BM14a, Theorem 4.7] and (b) that δ is
κ-strongly compact. �

Corollary 10.4. Consistency of a strong compactness cardinal for L(I) implies
the consistency of a strongly compact cardinal.

Corollary 10.5. It is consistent that the least strong compactness cardinal for L(I)
is above the least supercompact cardinal.9

Proof. Consider the model from Theorem 9.9. Since it has an extendible cardinal,
we know that there is a strong compactness cardinal for L(I). But then the least
such cardinal must be above the least supercompact cardinal ν. �

Question 10.6. If δ is a cardinal and there is a cardinal correct extendible cardinal
κ ≤ δ pushing up δ, then is δ a strong compactness cardinal for the logic L(I)?

For a cardinal δ, the logic Lδ,δ(I) is obtained by adding conjunctions and disjunc-
tions and first-order quantifiers of size < δ to L(I). Considering strong compactness
cardinals of this logic gives us a sharper version of Corollary 10.3.

9This result was first observed by Will Boney and the second author using a different argument.
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Theorem 10.7. If δ is a strong compactness cardinal for Lδ,δ(I), then δ is cardi-
nal correct extendible. Moreover, the cardinal correct extendibility embeddings also
witness the strong compactness of δ.

Proof. Since every ordinal <δ is definable in the logic Lδ,δ(I), we can use the same
argument as in the proof of Theorem 10.2 to show that for every γ > δ there is
α > γ, a transitive set M and an elementary embedding j : Vα → M such that
M is cardinal correct, crit(j) = δ and there exists d ∈ M such that j " γ ⊆ d and
M |= |d| < j(δ). �

Question 10.8. If δ is cardinal correct extendible, then is δ a strong compactness
cardinal for Lδ,δ(I)?

11. The logic L(I)

In this section, we show that a strongly compact cardinal is a lower bound on
the consistency strength of the existence of a ULST number for the logic L(I) and
that ULST(L(I)) may be above the least supercompact cardinal. We show that
if there is a pair κ ≤ δ such that κ is cardinal correct extendible pushing up δ,
then SULST(L(I)) exists and is bounded by δ. Almost conversely, we show that
if ULST(L(I)) exists, then there is a pair κ ≤ γ such that κ is cardinal correct
extendible pushing up γ.

Theorem 11.1. If there exists a pair κ ≤ δ such that κ is cardinal correct extendible
pushing up δ, then SULST(L(I)) exists and is at most δ.

Proof. Let N be a τ -structure of size ≥ δ and δ > δ. Take α > δ
+

with N ∈ Vα
and an elementary embedding j : Vα →M with crit(j) = κ and j(δ) > α such that
M is cardinal correct. Consider the j(τ)-structure j(N) ∈ M . Since j " τ ⊆ j(τ),
j(N) is a τ -structure modulo the renaming which takes τ to j " τ . Consider the
τ -substructure N = j " N ⊆ j(N). The bijection j witnesses that N ∼= N as
τ -structures. Because M is cardinal correct, and thus correct about satisfaction
of formulas of L(I), it is easily seen that N ≺L(I) j(N). Since |N | ≥ δ, in M , by

elementarity, we have |j(N)| ≥ j(δ) > α > δ
+

, as desired. �

Theorem 11.2. If ULST(L(I)) exists, then there is a pair κ ≤ γ such that κ is
cardinal correct extendible cardinal pushing up γ.

Proof. Let δ = ULST(L(I)). Suppose α > δ is an ordinal of cofinality ω, as
witnessed by the cofinal sequence 〈αn | n < ω〉 of ordinals below α. Let ρα be the
least ℵ-fixed point above α. Consider the structure

M = (Vρα ,∈, 〈αn | n < ω〉, α, ∅, S, P,Tr).

Then M satisfies the sentence ϕ in the logic L(I), which is the conjunction of the
sentences:

(1) ZFC∗

(2) ϕcor

(3) There are no ℵ-fixed points above α.
(4) ∅ is the empty set, S is the successor function, P is the pairing function,

and Tr is the truth predicate.
(5) 〈αn | n < ω〉 is cofinal in α.
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Since δ = ULST(L(I)), there is a model

N = (N,E, 〈αn | n < ω〉, α, ∅, S, P ,Tr)

of size much larger than ρα withM as a substructure. It follows, by Theorem 10.1,
that E is well-founded, and hence by collapsing, we can assume without loss of gen-
erality that E =∈, N is transitive, and using Proposition 4.1 we get an elementary
embedding jα : Vρα → Nα with crit(j) ≤ α and j(αn) = αn for every n < ω. Since
cof(α) = ω, it follows that κα = crit(jα) < α. We also have that N satisfies that
the sequence 〈αn | n < ω〉 is cofinal in α. Now since α � α, it follows that some
αn > α. Thus, we can let γα be the least αn such that jα(αn) > α. Next, we
define the proper class function F on the ordinals of cofinality ω such that F (α)
is the least (ordinal coding a) pair (κα, γα) arising from one of these embeddings
jα. Since the (ordinal coding the) pair (κα, γα) is less than α, the function F is
regressive on a stationary class, and so it must be constant on a proper class by a
weak version of Fodor’s Lemma which holds for classes. Let (κ, γ) be this constant
value. Then clearly the pair (κ, γ) is as desired. �

Corollary 11.3. The following are equivalent:

(1) There is a pair κ ≤ δ such that κ is cardinal correct extendible pushing up
δ.

(2) ULST(L(I)) exists.
(3) SULST(L(I)) exists.

Theorem 11.4. It is consistent, relative to an extendible cardinal, that ULST(L(I))
is above the least supercompact cardinal.

Proof. We work in the model V [G][g] from the proof of Theorem 9.9, where ν was
the least supercompact cardinal, χ > ν was extendible, 2γ = γ++ for a cardinal
ν < γ < χ, and the GCH held above γ. Note that since we have an extendible
cardinal in this model, ULST(L(I)) exists. Suppose that ULST(L(I)) ≤ ν. Con-
sider the model (Vρ,∈, γ), where ρ is the least ℵ-fixed point above γ. Then by
our usual arguments, there is a model N = (N,∈, γ) of size much larger than ρ
that is cardinal correct and we have an elementary embedding j : Vρ → N such
that j(γ) = γ � γ. It follows, by elementarity, that N satisfies that 2γ > γ+ and
it must be correct about this by cardinal correctness. Thus, we have reached a
contradiction showing that ULST(L(I)) > γ > ν. �

Question 11.5. If ULST(L(I)) = δ exists, is there a cardinal κ ≤ δ such that κ is
cardinal correct extendible pushing up δ?

It follows from Theorem 11.2 that if ULST(L(I)) exists, then either there is
a strongly compact cardinal or there is an inaccessible α such that Vα satisfies
that there is strongly compact cardinal. Below we slightly improve this result by
showing that if ULST(L(I)) = δ, then either there is a strongly compact cardinal
≤δ or there is an inaccessible α such that Vα satisfies that there is a strongly
compact cardinal. This appears to be a step in the direction of getting a positive
answer to Question 11.5.

Suppose that j : V → M is the ultrapower by a fine κ-complete ultrafilter
µ on Pκ(λ). Consider the restriction j : Vλ+2 → VMj(λ)+2, and observe that it

suffices to recover µ since P (Pκ(λ)) ⊆ Vλ+2. Next, observe that by using a flat
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pairing function10 and coding we can assume that Vλ+2 is closed under functions
f : Pκ(λ) → Vλ+2. Such a function f consists of pairs (A,B) where A ⊆ λ and
B ⊆ Vλ+1. Each such pair is, in turn, coded by the collection of pairs (A, b) where
b ∈ B so that b ∈ Vλ+1. Thus, f is coded by the collection of pairs (A, b) where
f(A) = B and b ∈ B. Using a flat pairing function, each of the pairs (A, b) ∈ Vλ+1,
and therefore f ⊆ Vλ+1 is in Vλ+2. We can thus conclude that all the information
about a λ-compactness embedding is already captured by the restriction of the
embedding to Vλ+2. Finally, since every element of VMj(λ)+2 has the form j(f)([id]µ),

where f ∈ Vλ+2, we get that VMj(λ)+2 has size at most |Vλ+2|.

Theorem 11.6. If ULST(L(I)) = δ, then there is a strongly compact cardinal
κ ≤ δ or there is an inaccessible cardinal α such that Vα satisfies that there is a
strongly compact cardinal.

Proof. First, let’s suppose that no cardinal κ ≤ δ is δ+-compact. Consider the
structure

M = (Vρ,∈, δ, S, P,Tr),

where ρ is the least ℵ-fixed point above δ. Then M satisfies the sentence ϕ in the
logic L(I), which is the conjunction of the sentences:

(1) ZFC∗

(2) ϕcor

(3) There are no ℵ-fixed points above δ.
(4) S is a successor function, P is a pairing function, and Tr is the truth

predicate.

Since ULST(L(I)) = δ, there is a model

N = (N,E, δ, S, P ,Tr) |=L(I) ϕ

of size much larger than ρ with M as a substructure. It follows by Theorem 10.1
that E is well-founded, and hence by collapsing, we can assume without loss of
generality that E =∈, N is transitive, and we get an elementary embedding

j : Vρ → N

such that j(δ) = δ. Since |N | is much larger than ρ and N believes that there are no
ℵ-fixed points above δ, it follows that δ > δ, which means j has a critical point and
crit(j) = κ ≤ δ. If crit(j) = δ, then, since j(δ) � δ, we have δ+ < j(δ+) = j(δ)+

(by cardinal correctness), which can be used to obtain a uniform δ-complete ultra-
filter on δ+, which, by Theorem 9.3, means that δ is is δ+-compact, contradicting
our assumption. Thus, crit(j) = κ < δ.

First, suppose that j(κ) ≥ δ, and let’s argue that κ is δ+-compact, which would
contradict our assumption. By Theorem 9.3, it suffices to show that every successor
cardinal β+ in the interval [κ, δ+] carries a uniform κ-complete ultrafilter. And
again, for this it suffices to show that β+ < j(β+) = j(β)+ because then j is
discontinuous at β+, namely j " β+ is bounded in j(β+). This is clearly true for
β = δ. So fix κ ≤ β < δ and consider β+. Since j(β) ≥ j(κ) ≥ δ, it follows that
j(β) > β, and hence j(β)+ = j(β+) > β+. This concludes the argument that κ is
δ+-compact, which is the desired contradiction, showing that j(κ) < δ. This means
we can apply j to j(κ) = γ to get j2(κ) = j(γ). Again, assuming that j(γ) ≥ δ,

10A flat pairing function has the property that it does not increase the rank of the pair beyond
the ranks of its elements.
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we will argue that κ must be δ+-compact, and so will be able to conclude that
j(γ) < δ. By the same argument as before, we get a discontinuity for successors of
γ ≤ β ≤ δ. But if κ ≤ β < γ, then β < γ = j(κ) ≤ j(β). Repeating this argument,
we get that jn(κ) < δ for all n < ω. Thus, by Lemma 9.4, we get that j(κ) is
inaccessible and Vj(κ) satisfies that there is a strongly compact cardinal. Thus, we
proved what we promised.

Otherwise, for some κ ≤ δ, κ is δ+-compact. So we can let λ > δ+ be the least
successor cardinal such that no κ ≤ δ is λ-compact. Let ρ be the least ℵ-fixed point
above |Vλ+2|. In particular, for every successor cardinal θ with δ+ ≤ θ < λ, Vρ will
have an embedding jθ : Vλ+2 →Mθ by a fine κθ-complete ultrafilter on Pκθ (θ) for
some κθ ≤ δ. This is the case because such an embedding has size at most |Vλ+2|.
Consider the structure

M = (Vρ,∈, δ, λ, S, P,Tr).

Then M satisfies the sentence ϕ in the logic L(I), which is the conjunction of the
sentences:

(1) ZFC∗

(2) ϕcor

(3) There are no ℵ-fixed points above |Vλ+2|.
(4) For every successor δ+ ≤ θ < λ, there an elementary embedding jθ : Vλ+2 →Mθ

with crit(jθ) = κθ ≤ δ, and jθ " θ ⊆ d with |d|M < j(κθ).
(5) S is the successor function, P is the pairing function, and Tr is the truth

predicate.

Since δ = ULST(L(I)), there is a model

N = (N,E, δ, λ, S, P ,Tr) |=L(I) ϕ

of size much larger than ρ with M as a substructure. It follows by Theorem 10.1
that E is well-founded, and hence by collapsing, we can assume without loss of
generality that E =∈, N is transitive, and we get an elementary embedding

j : Vρ → N

such that j(δ) = δ and j(λ) = λ. Since |N | is much larger than ρ and N believes
that there are no ℵ-fixed points above |Vλ+2|, it follows that λ > λ, and thus
crit(j) ≤ λ.

Let’s suppose that crit(j) = λ. Then N is correct about P (λ) and j(κ) = κ for
every κ ≤ δ. By elementarity, N satisfies that λ > λ is the least successor cardinal
that is a counterexample for compactness for cardinals κ ≤ δ. Thus, N satisfies
that there is κ ≤ δ that is λ-compact, so that it has a fine κ-complete ultrafilter
on Pκ(λ). But since N has the correct powerset of λ, this object really is a fine
κ-complete ultrafilter on Pκ(λ) which contradicts that κ is not λ-compact. Thus,
χ = crit(j) < λ. The rest of the argument splits into two cases based on whether
χ > δ.

We first suppose that δ < χ < λ. In this case, there is κ ≤ δ such that N thinks
that κ is λ-compact and, by (4), N has an elementary embedding

jλ : V N
λ+2
→Mλ

with crit(jλ) = κ and jλ " λ ⊆ d in Mλ with |d|Mλ < jλ(κ). Consider the composi-
tion

jλ ◦ j : Vλ+2 →Mλ
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(since j(Vλ+2) = V N
λ+2

). Observe that crit(jλ ◦ j) = κ by our assumption that

δ < χ.
First, let’s suppose that j " λ ⊆ λ. If β < λ, then jλ̄ ◦ j(β) = jλ̄(j(β)), where

j(β) = β′ < λ by our assumption. So jλ̄ ◦ j(β) = jλ̄(β′) for some β′ < λ. Thus
jλ̄ ◦ j " λ ⊆ jλ̄ " λ ⊆ d and |d|Mλ̄ < jλ̄(κ) = jλ̄ ◦ j(κ). Thus, we can use the
embedding jλ̄ ◦ j to derive a fine κ-complete ultrafilter on Pκ(λ), contradicting our
assumption that κ is not λ-compact.

Thus, we can choose γ < λ to be least such that j(γ) ≥ λ. Again, we will aim
to show that κ is λ-compact, deriving a contradiction. For γ ≤ β+ ≤ λ, we have
β < j(β) ≤ jλ̄◦j(β) and so we have the desired discontinuity of jλ̄◦j. So it remains
to show that we have uniform κ-complete ultrafilters on successors δ < β+ < γ. For
this it suffices to show that κ is β+-compact, but this follows, by using jλ̄ ◦ j and
observing that jλ̄ ◦ j " β+ ⊆ jλ̄ " λ ⊆ d. So we have again derived a contradiction.

Finally, assume that χ ≤ δ < λ. Then it follows that χ is not λ-compact. Now
if j(χ) ≥ λ, we get for χ ≤ β+ ≤ λ that β < j(β) and thus a discontinuity of
j. In particular, χ is λ-strongly compact, which is again a contradiction. And if
j(χ) < λ, we can reason as before to show that jn(χ) < λ for all n ∈ ω. Thus, with
γ = sup{jn(χ) : n ∈ ω} ≤ λ, we have that j restricts to j : Vγ → V Nγ and the latter
is cardinal correct by correctness of N and hence, by Lemma 9.4, we get that j(χ)
is inaccessible and Vj(χ) believes that χ is a strongly compact cardinal. �
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extensions of first order logic. J. Math. Log., 11(1):87–113, 2011.
[Osi24] Jonatha Osinski. Interactions between Large Cardinals and Strong Logics. PhD thesis,

Universitt Hamburg, 2024.
[Pov24] Alejandro Poveda. Axiom A and supercompactness. Advances in Mathematics,

459:110027, 2024.

[Tar62] Alfred Tarski. Some problems and results relevant to the foundations of set theory. In
Logic, Methodology and Philosophy of Science, Proceedings of the 1960 International

Congress. Stanford University Press, 1962.

[Tsa13] Konstantinos Tsaprounis. On extendible cardinals and the GCH. Arch. Math. Logic,
52(5-6):593–602, 2013.

[Tsa18] Konstantinos Tsaprounis. On C(n)-extendible cardinals. J. Symb. Log., 83(3):1112–

1131, 2018.
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