Upward Löwenheim-Skolem-Tarski numbers for abstract logics

Victoria Gitman

vgitman@gmail.com http://victoriagitman.github.io

Rutgers Logic Seminar December 9, 2024

イロト イヨト イヨト イヨト

This is joint work with Jonathan Osinski.

2

イロト イヨト イヨト イヨト

First-order logic

Modern mathematics is formalized by means of first-order logic. But what is a logic and what is so special about first-order logic?

Logic

- Assigns a collection of formulas to every language.
- Assigns truth values to formulas for every model.

First-order logic $\mathbb{L}_{\omega,\omega}$

- Formulas: close atomic formulas under conjunctions, disjunctions, negations, quantifiers.
- Truth: Tarski's recursive definition.
- Properties:
 - A language has set-many formulas.
 - A formula can mention finitely much of a language.
 - Compactness: every finitely satisfiable theory has a model.
- But first-order logic does not exist outside of mathematics.
- A (fragment of a) set-theoretic background is necessary to interpret first-order logic.
 - natural numbers
 - recursion

Stronger logics require access to more of the set-theoretic background. $E \rightarrow A \equiv A$

Infinitary logics

Add transfinite conjunctions, disjunctions, and quantifier blocks of formulas.

Suppose $\gamma \leq \delta$ are regular cardinals.

Infinitary logics $\mathbb{L}_{\delta,\gamma}$

Close formulas under conjunctions and disjunctions of length $<\!\!\delta$ and quantifier blocks of length $<\!\!\gamma.$

- A language has set-many formulas.
- A formula can mention $<\delta$ -much of a language.

Examples

• $\mathbb{L}_{\omega_1,\omega}$

There is a sentence expressing that the natural numbers are standard:

$$\forall n \in \omega [n = 0 \lor n = 1 \lor n = 2 \lor \cdots]$$

Compactness fails.

• $\mathbb{L}_{\delta,\omega}$

For every ordinal ξ < δ and formula ψ(y, x), there is a formula φ^ξ_ψ(x) expressing that ({y | ψ(y, x)}, ψ) ≅ (ξ, ∈).

イロン イヨン イヨン イヨン 三日

Infinitary logics (continued)

Examples (continued)

• $\mathbb{L}_{\omega_1,\omega_1}$

For every formula $\psi(x, y)$ there is a sentence φ_{ψ}^{WF} expressing that the relation given by ψ is well-founded:

 $\neg \exists x_0, x_1, \ldots, x_n, \ldots \ [\psi(x_1, x_0) \land \psi(x_2, x_1) \land \cdots \land \psi(x_{n+1}, x_n) \land \cdots]$

For every formula $\psi(x)$ there is a sentence $\varphi_{\psi}^{\text{lnf}}$ expressing that $\{x \mid \psi(x)\}$ is infinite:

$$\exists x_0, x_1, \ldots, x_n \ldots \bigwedge_{n, m < \omega} x_n \neq x_m$$

• $\mathbb{L}_{\omega_2,\omega_2}$

For every formula $\psi(x)$ there is a sentence φ_{ψ} expressing that $\{x \mid \psi(x)\}$ is uncountable:

$$\exists x_0, x_1, \dots, x_{\xi} \dots \bigwedge_{\xi, \eta < \omega_1} x_{\xi} \neq x_{\eta}$$

・ロト ・四ト ・ヨト ・ヨト 三国

Second-order logic \mathbb{L}^2

Add second-order quantifiers ranging over all relations on the model.

Expressive power

- The relation given by a formula $\psi(y, x)$ is well-founded: every subset has a least element.
- $\{x \mid \psi(x)\}$ is infinite: there is a bijection with a proper subset.
- $|\{x \mid \psi(x)\}| = |\{y \mid \varphi(y)\}|$
- (Magidor) $(\{y \mid \psi(x, y)\}, \psi) \cong (V_{\alpha}, \in)$ for some α .
- A group *F* is free:
 - Suppose F has cardinality δ .
 - ▶ *F* is free if and only if there is a transitive model $M \models \text{ZFC}^-$ of size δ with $F \in M$ which satisfies that *F* is free.
 - ▶ There is a relation E on F such that (F,E)
 - ★ satisfies ZFC[−],
 - * is well-founded,
 - * has an element isomorphic to F,
 - ★ satisfies that *F* is free.

Equicardinality logic $\mathbb{L}(I)$

Add a quantifier I such that for all formulas $\psi(x)$ and $\varphi(y)$:

Ixy $\psi(x)\varphi(y)$ whenever $|\{x \mid \psi(x)\}| = |\{y \mid \varphi(y)\}|$

Expressive power

• The natural numbers are standard:

 $\forall n \in \omega |\{m \mid m \in n\}| \neq |\{m \mid m \in n+1\}|$

• $|\{x \mid \psi(x)\}|$ is infinite:

 $\exists y \left[\psi(y) \land |\{x \mid \psi(x)\} \right] = |\{x \mid \psi(x) \land x \neq y\}|]$

• A model is cardinal correct: if κ is a cardinal, then for all $\alpha < \kappa$

 $|\xi | \xi < \alpha| \neq |\xi | \xi < \kappa|.$

Relationships

• $\mathbb{L}(I) \subseteq \mathbb{L}^2$

```
Well-foundeness logic \mathbb{L}(Q^{\text{WF}})
```

Add a new quantifier Q^{WF} such that for all formulas $\psi(x, y)$:

 $Q^{\text{WF}}x, y \psi(x, y)$ whenever the relation given by $\psi(x, y)$ is well-founded.

Relationships

- $\mathbb{L}(Q^{\mathrm{WF}}) \subseteq \mathbb{L}_{\omega_1,\omega_1}$ • $\mathbb{L}(Q^{\mathrm{WF}}) \subset \mathbb{L}^2$
- $\mathbb{L}(Q^{m^2}) \subseteq \mathbb{L}^2$

イロン イヨン イヨン イヨン 三日

Sort logics $\mathbb{L}^{s,n}$

(Väänänen) L^{s,n}

- ω -many sorts
- second-order quantifiers for every sort (extends \mathbb{L}^2)
- \bullet Sort quantifiers $\tilde{\forall}$ and $\tilde{\exists}$
 - search the set-theoretic universe for a new sort such that there is a relation on the combination of the new and old sorts satisfying a given formula.
 - at most *n*-alternations of sort quantifiers are allowed

Expressive power

• For every formuala $\psi(y, x)$ there is a sentence $\varphi_{\psi}^{n}(x)$ expressing that $(\{y \mid \psi(y, x)\}, \psi) \cong (V_{\alpha}, \in)$ and $V_{\alpha} \prec_{\Sigma_{n}} V$ for some α .

Languages

A language τ is a quadruple $(\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ where:

- \mathfrak{F} are the functions,
- \mathfrak{R} are the relations,
- C are the constants,
- $a: \mathfrak{F} \cup \mathfrak{R} \to \omega$ is the arity function.

A τ -structure is a set with interpretations for the functions, relations, and constants in τ .

A renaming f between languages $\tau = (\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ and $\sigma = (\mathfrak{F}', \mathfrak{R}', \mathfrak{C}', a')$ is an arity-preserving bijection between the functions, relations, and constants.

Given a renaming f, let f^* be the associated bijection between τ -structures and σ -structures.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Logics

- A logic is a pair $(\mathcal{L}, \vDash_{\mathcal{L}})$ of classes satisfying the following conditions.
 - \mathcal{L} is a class function which takes a language τ to $\mathcal{L}(\tau)$: the set of all sentences in τ .
 - $\models_{\mathcal{L}}$ is the class of all pairs (M, φ) such that M is a τ -structure, $\varphi \in \mathcal{L}(\tau)$ and M satisfies φ according to \mathcal{L} .
 - If $\tau \subseteq \sigma$ are languages, then $\mathcal{L}(\tau) \subseteq \mathcal{L}(\sigma)$.
 - If $\varphi \in \mathcal{L}(\tau)$, $\sigma \supseteq \tau$ are languages, and M is a σ -structure, then $M \vDash_{\mathcal{L}} \varphi$ if and only if the reduct $M \upharpoonright \tau \vDash_{\mathcal{L}} \varphi$.
 - If $M \cong N$ are τ -structures, then for all $\varphi \in \mathcal{L}(\tau)$ $M \models_{\mathcal{L}} \varphi$ if and only if $N \models_{\mathcal{L}} \varphi$.
 - Every renaming f between languages τ and σ induces a bijection f_{*} : L(τ) → L(σ) such that for any τ-structure M and φ ∈ L(τ)

 $M \vDash_{\mathcal{L}} \varphi$ if and only if $f^*(M) \vDash_{\mathcal{L}} f_*(\varphi)$.

There is a least cardinal κ, called the occurrence number of L, such that for every sentence φ ∈ L(τ), there is a sub-language τ* of size less than κ such that φ ∈ L(τ*).

Note: Formulas are accommodated by introducing and interpreting constants.

(ロ) (四) (三) (三) (三)

Strong compactness cardinals

- A cardinal κ is a strong compactness cardinal for a logic \mathcal{L} if every $<\kappa$ -satisfiable \mathcal{L} -theory has a model.
- **Compactness Theorem**: ω is a strong compactness cardinal for first-order logic.

イロト イヨト イヨト イヨト

Compactness for $\mathbb{L}_{\kappa,\kappa}$ and $\mathbb{L}_{\kappa,\omega}$

(Tarski) A cardinal κ is strongly compact if every κ -complete filter can be extended to a κ -complete ultrafilter.

- Strongly compact cardinals are stronger than measurable cardinals.
- (Magidor) It is consistent that the least strongly compact cardinal is the least measurable cardinal.

Theorem: (Tarski) The following are equivalent:

- κ is a strong compactness cardinal for $\mathbb{L}_{\kappa,\omega}$.
- κ is a strong compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.
- κ is strongly compact.

イロン イヨン イヨン イヨン

Compactness for $\mathbb{L}_{\omega_1,\omega_1}$ and $\mathbb{L}(Q^{WF})$

(Magidor) A cardinal κ is ω_1 -strongly compact if every κ -complete filter can be extended to a countably complete ultrafilter.

- ω_1 -strongly compact cardinals are stronger than measurable cardinals.
- (Magidor) It is consistent that the least ω₁-strongly compact cardinal is the least measurable cardinal.
- (Bagaria, Magidor) It is consistent that the least ω₁-strongly compact cardinal is above the least measurable cardinal.

Theorem: (Magidor) The following are equivalent:

- κ is a strong compactness cardinal for $\mathbb{L}_{\omega_1,\omega_1}$.
- κ is a strong compactness cardinal for $\mathbb{L}(Q^{WF})$.
- κ is ω_1 -strongly compact.

Strong compactness cardinals for \mathbb{L}^2 and $\mathbb{L}(I)$

A cardinal κ is extendible if for every $\alpha > \kappa$, there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with crit $(j) = \kappa$, and $j(\kappa) > \alpha$.

Extendible cardinals are stronger than strongly compact cardinals.

Theorem: (Magidor) The least extendible cardinal is the least strong compactness cardinal for \mathbb{L}^2 .

A cardinal κ is supercompact if for every $\alpha > \kappa$, there is an elementary embedding $j: V \to M$ with crit $(j) = \kappa$ and $M^{\alpha} \subseteq M$.

Theorem: (Boney, Osinski) It is consistent that the least strong compactness cardinal for $\mathbb{L}(I)$ is greater than or equal to the least supercompact cardinal.

Strong compactness cardinals for the sort logics $\mathbb{L}^{s,n}$

 $\boldsymbol{C}^{(n)} = \{ \alpha \in \mathrm{Ord} \mid \boldsymbol{V}_{\alpha} \prec_{\boldsymbol{\Sigma}_n} \boldsymbol{V} \}$

(Bagaria) A cardinal κ is $C^{(n)}$ -extendible if for every $\alpha > \kappa$ in $C^{(n)}$, there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with crit $(j) = \kappa$, $\beta \in C^{(n)}$, and $j(\kappa) > \alpha$.

- Extendible cardinals are $C^{(1)}$ -extendible.
- $C^{(n)}$ -extendible cardinals form a hierarchy.

Theorem: (Boney) The least $C^{(n)}$ -extendible cardinal is the least strong compactness cardinal for $\mathbb{L}^{s,n}$.

イロト イポト イヨト イヨト

Universal strong compactness

Vopěnka's Principle holds if for every proper class of first-order structures in the same languages there are two structures which elementarily embed.

Theorem: (Bagaria) Vopěnka's Principle holds if and only if for every $n < \omega$ there is a $C^{(n)}$ -extendible cardinal.

Theorem: (Makowsky) Every logic has a strong compactness cardinal if and only if Vopěnka's Principle holds.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Upwards Löwenheim-Skolem-Tarski numbers

Fix a logic \mathcal{L} .

The Hanf number of \mathcal{L} is the least cardinal δ such that such that for every language τ and $\mathcal{L}(\tau)$ -sentence φ , if a τ -structure $M \models_{\mathcal{L}} \varphi$ has size $\gamma \geq \delta$, then for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $\overline{M} \models_{\mathcal{L}} \varphi$.

Theorem: (Folklore) Every logic has a Hanf number.

(Galeotti, Khomskii, Väänänen) The upward Löwenheim-Skolem-Tarski number $ULST(\mathcal{L})$, if it exists, is the least cardinal δ such that for every language τ and $\mathcal{L}(\tau)$ -sentence φ , if a τ -structure $M \models_{\mathcal{L}} \varphi$ has size $\gamma \geq \delta$, then for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $\overline{M} \models_{\mathcal{L}} \varphi$ and $M \subseteq \overline{M}$ is a substructure of \overline{M} .

The strong upward Löwenheim-Skolem-Tarski number $\operatorname{SULST}(\mathcal{L})$, if it exists, is the least cardinal δ such that for every language τ and every τ -structure M of size $\gamma \geq \delta$, for every cardinal $\overline{\gamma} > \gamma$, there is a τ -structure \overline{M} of size at least $\overline{\gamma}$ such that $M \prec_{\mathcal{L}} \overline{M}$ is an \mathcal{L} -elementary substructure of \overline{M} .

Upward Löwenheim-Skolem Theorem: ω is the strong upward Löwenheim-Skolem-Tarski number of first-order logic.

Theorem: (Galeotti, Khomskii and Väänänen) If $ULST(\mathbb{L}^2)$ exists, then for every $n \in \omega$ there is an *n*-extendible cardinal $\lambda \leq ULST(\mathbb{L}^2)$.

Compactness and upward Löwenheim-Skolem-Tarski numbers

Proposition: If a logic \mathcal{L} has a strong compactness cardinal κ , then $\text{SULST}(\mathcal{L}) \leq \kappa$. **Proof**:

- Fix a τ -structure M of size $\gamma \geq \kappa$.
- Fix a cardinal $\overline{\gamma} > \gamma$.
- Let τ' be the language τ extended by adding $\overline{\gamma}$ -many constants $\{c_{\xi} \mid \xi < \overline{\gamma}\}$.
- Let T be the $\mathcal{L}(\tau')$ -theory:
 - \mathcal{L} -elementary diagram of M
 - $\blacktriangleright \{c_{\xi} \neq c_{\eta} \mid \xi < \eta < \overline{\gamma}\}$
- T is $<\kappa$ -satisfiable (holds in M).
- T has a model. \Box

Corollary: If Vopěnka's Principle holds, then every logic has a strong upward Löwenheim-Skolem-Tarski number.

・ロト ・個ト ・ヨト ・ヨト

The power of substructures in set theory

Suppose (M, \in) and (N, \in) are transitive structures closed under the pairing function.

- $Tr(\varphi, (x_1, \ldots, x_n))$ if and only if $(M, \in) \models \varphi(x_1, \ldots, x_n)$ is the truth predicate.
- S(x, y) if and only if $y = x \cup \{x\}$ is the successor function.
- P(x, y, z) if and only if z = (x, y) is the pairing function.

Proposition: If $j : (M, \in, S, P, Tr) \rightarrow (N, \in, S, P, Tr)$ is an embedding, then j is elementary.

Upward Löwenheim-Skolem-Tarski numbers for $\mathbb{L}(Q^{WF})$ Theorem: If κ is a measurable cardinal, then $\mathrm{SULST}(\mathbb{L}(Q^{WF})) \leq \kappa$.

Proof:

- Fix a τ -structure *N* of size $\gamma \geq \kappa$.
- Fix a cardinal $\overline{\gamma} > \gamma$.
- Let $j: V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \overline{\gamma}^+$ (sufficiently iterated ultrapower).
- $j(N) \in M$ is a $j(\tau)$ -structure, and hence $j " \tau$ -structure.
- j(N) is a τ -structure modulo the renaming which takes τ to $j " \tau$.
- Let the renaming take φ to $\overline{\varphi}$.
- $\overline{N} = j " N \subseteq j(N)$ is a τ -substructure of j(N).
- $N \stackrel{j}{\cong} \overline{N}$
- $\overline{N} \prec_{\mathbb{L}(Q^{\mathrm{WF}})} j(N)$
 - Suppose $\overline{N} \models_{\mathbb{L}(Q^{WF})} \varphi(j(a)).$
 - $N \models_{\mathbb{L}(Q^{WF})} \varphi(a)$ via the isomorphism j.
 - $M \models \widetilde{j}(N) \models_{\mathbb{L}(Q^{WF})} \overline{\varphi}(j(a))$ by elementarity of *j*.
 - ► $j(N) \models_{\mathbb{L}(Q^{WF})} \overleftarrow{\phi}(j(a))$ as a $j(\tau)$ -structure (*M* is well-founded)
 - ► $j(N) \models_{\mathbb{L}(Q^{WF})} \varphi(j(a))$ modulo the renaming.
- Since $|N| \ge \kappa$, $|j(N)| \ge j(\kappa) > \overline{\gamma}$. \Box

イロン イヨン イヨン イヨン 三日

Upward Löwenheim-Skolem-Tarski numbers for $\mathbb{L}(Q^{WF})$ (continued)

Theorem: If $ULST(\mathbb{L}(Q^{WF}))$ exists, then it is the least measurable cardinal. **Proof**:

- Let $\operatorname{ULST}(\mathbb{L}(Q^{WF})) = \delta$.
- Suffices to show there is a measurable cardinal $\leq \delta$.
- Let $\mathcal{M} = (\mathcal{H}_{\delta^+}, \in, \delta, S, P, \mathrm{Tr}).$
- $\mathcal{M} \models_{\mathbb{L}(Q^{\mathrm{WF}})} \varphi$:
 - I am well-founded.
 - δ is the largest cardinal.
 - S is the successor function, P is the pairing function, Tr is the truth predicate.
- Let $\mathcal{N} = (N, \mathsf{E}, \overline{\delta}, \overline{S}, \overline{P}, \overline{\mathrm{Tr}}) \models \varphi$ of size $\gg \delta$ with $\mathcal{M} \subseteq \mathcal{N}$.
- Since \mathcal{N} is well-founded, we can assume:
 - ► **E** =∈,
 - N is transitive,
 - $j: H_{\delta^+} \to N$ such that $j(\delta) = \overline{\delta} \gg \delta$.
- j is elementary.
- Let $\operatorname{crit}(j) = \kappa \leq \delta$.
- Use j to derive a κ -complete ultrafilter on κ . \Box

Upward Löwenheim-Skolem-Tarski numbers for $\mathbb{L}(Q^{WF})$ (continued)

Corollary: The following are equivalent for a cardinal κ .

- κ is the least measurable cardinal.
- $\kappa = \text{ULST}(\mathbb{L}(Q^{\text{WF}})).$
- $\kappa = \text{SULST}(\mathbb{L}(Q^{\text{WF}})).$

Corollary: It is consistent that:

- $ULST(\mathbb{L}(Q^{WF})) = SULST(\mathbb{L}(Q^{WF}))$ is the least strong compactness cardinal for $\mathbb{L}(Q^{WF})$. ω_1 -strong compact can be the least measurable.
- $ULST(\mathbb{L}(Q^{WF})) = SULST(\mathbb{L}(Q^{WF}))$ is smaller than the least strong compactness cardinal for $\mathbb{L}(Q^{WF})$. ω_1 -strongly compact can be above the measurable.
- $\mathrm{ULST}(\mathbb{L}(Q^{\mathrm{WF}})) = \mathrm{SULST}(\mathbb{L}(Q^{\mathrm{WF}}))$, but $\mathbb{L}(Q^{\mathrm{WF}})$ doesn't have a strong compactness cardinal. L[U] cannot have an ω_1 -strongly compact cardinal.

(日) (四) (E) (E) (E) (E)

Upward Löwenheim-Skolem-Tarski numbers for \mathbb{L}^2 and $\mathbb{L}^{s,n}$

Observations:

- Targets of extendible embeddings are correct about \mathbb{L}^2 .
- Targets of $C^{(n)}$ -extendible embeddings are correct about $\mathbb{L}^{s,n}$.

Theorem: The following are equivalent for a cardinal κ .

- κ is the least extendible cardinal.
- κ is the least strong compactness cardinal for \mathbb{L}^2 .
- $\kappa = \operatorname{SULST}(\mathbb{L}^2).$
- $\kappa = \text{ULST}(\mathbb{L}^2).$

Theorem: The following are equivalent for a cardinal κ and $n < \omega$.

- κ is the least $C^{(n)}$ -extendible cardinal.
- κ is the least strong compactness cardinal for $\mathbb{L}^{s,n}$.
- $\kappa = \operatorname{SULST}(\mathbb{L}^{s,n}).$
- $\kappa = \text{ULST}(\mathbb{L}^{s,n}).$

Corollary: Every logic has an upward Löwenheim-Skolem-Tarski number if and only if Vopěnka's Principle holds.

イロン イヨン イヨン イヨン 三日

Tall cardinals

(Hamkins) A cardinal κ is tall if for every $\theta > \kappa$, there is an elementary embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$, $M^{\kappa} \subseteq M$, and $j(\kappa) > \theta$. A cardinal κ is tall with closure $\lambda \leq \kappa$ if $M^{\lambda} \subseteq M$, and tall with closure $<\lambda$ if $M^{<\lambda} \subset M$.

A cardinal κ is tall pushing up δ if for every $\theta > \delta$, there is an elementary embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$, $M^{\kappa} \subseteq M$, and $j(\delta) > \theta$. A cardinal κ is tall pushing up δ with closure $\lambda \leq \kappa$ if $M^{\lambda} \subseteq M$, and tall with closure $<\lambda$ if $M^{<\lambda} \subset M$.

A cardinal δ is supreme for tallness if for all $\lambda < \delta$, there is a cardinal $\lambda < \kappa \leq \delta$ that is tall pushing up δ with closure λ .

- (Gitik) Tall cardinals are stronger than measurable cardinals. equiconsistent with strong cardinals
- Strongly compact cardinals are stronger than tall cardinals.
- (Hamkins) If κ is tall with closure $<\kappa$, then κ is tall.
- (Hamkins) It is consistent that there is a tall cardinal κ pushing up some $\delta > \kappa$, which is not tall.
- A limit of tall cardinals is supreme for tallness.

Question: Are tall cardinals and tall cardinals pushing up δ equiconsistent?

イロン イヨン イヨン イヨン 三日

Upward Löwenheim-Skolem-Tarski numbers for $\mathbb{L}_{\kappa,\kappa}$

Observation: Targets of tall with closure $<\lambda$ embeddings are correct about $\mathbb{L}_{\lambda,\lambda}$.

Proposition: ULST($\mathbb{L}_{\kappa,\kappa}$) $\geq \kappa$.

Theorem: If there is a tall cardinal κ pushing up δ with closure $<\lambda$, then $\operatorname{SULST}(\mathbb{L}_{\lambda,\lambda}) \leq \delta$. In particular, if κ is tall, then $\operatorname{SULST}(\mathbb{L}_{\kappa,\kappa}) = \operatorname{ULST}(\mathbb{L}_{\kappa,\kappa}) = \kappa$.

Theorem: If $\operatorname{SULST}(\mathbb{L}_{\lambda,\lambda}) = \delta$, then there is a tall cardinal $\lambda \leq \kappa \leq \delta$ pushing up δ with closure $<\lambda$. In particular, if $\operatorname{SULST}(\mathbb{L}_{\kappa,\kappa}) = \kappa$, then κ is tall.

Corollary: It is consistent that $\text{ULST}(\mathbb{L}_{\kappa,\kappa}) = \text{SULST}(\mathbb{L}_{\kappa,\kappa}) = \kappa$, but κ is not a strong compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Theorem: If δ is supreme for tallness, then $\text{ULST}(\mathbb{L}_{\lambda,\lambda}) \leq \delta$ exists for every regular $\lambda \leq \delta$. In particular, if δ is regular, then $\text{ULST}(\mathbb{L}_{\delta,\delta}) = \delta$.

Theorem: If $ULST(\mathbb{L}_{\lambda,\lambda}) = \lambda$, then λ is supreme for tallness.

イロト イポト イヨト イヨト 二日

Upward Löwenheim-Skolem-Tarski numbers for $\mathbb{L}_{\kappa,\kappa}$ (continued)

Theorem: It is consistent that λ is inaccessible, $ULST(\mathbb{L}_{\lambda,\lambda})$ exists, but $SULST(\mathbb{L}_{\lambda,\lambda})$ does not exist.

Proof sketch: Use forcing to produce a model with:

- An inaccessible λ that is a limit of tall cardinals.
- No measurable cardinals $\geq \lambda$.

Theorem: It is consistent that λ is inaccessible and $ULST(\mathbb{L}_{\lambda,\lambda}) < SULST(\mathbb{L}_{\lambda,\lambda})$. **Proof sketch**: Use forcing to produce a model with:

- \bullet An inaccessible λ that is a limit of tall cardinals.
- λ is not tall.
- There is a tall cardinal above λ .

・ロト ・個ト ・ヨト ・ヨト

$\mathbb{L}(I)$ and well-foundedness

Let ZFC^* be a sufficiently large finite fragment of ZFC:

- the ordinals form a well-ordered class,
- for every ordinal α there is a sequence of cardinals of order-type α ,
- the sets are the union of the von Neumann hierarchy.

Theorem: (Goldberg) If $(M, E) \models ZFC^*$ is cardinal correct, then it is well-founded. **Proof**:

- Suffices to show that every ordinal is well-founded.
- Fix an ordinal α in M.
- Let $\{\kappa_{\xi} \mid \xi \to \alpha\}$ be a sequence of cardinals of order-type α in M.
- In $V |\kappa_{\xi}| < |\kappa_{\eta}|$ for all $\xi \ge \eta \ge \alpha$ (cardinal correctness).
- α is well-founded. \Box

・ロト ・回ト ・ヨト ・ヨトー

Cardinal correct extendible cardinals

A cardinal κ is cardinal correct extendible if for every $\alpha > \kappa$, there is an elementary embedding $j : V_{\alpha} \to M$ with $\operatorname{crit}(j) = \kappa$, M cardinal correct, and $j(\kappa) > \alpha$. A cardinal κ is weakly cardinal correct extendible if we remove $j(\kappa) > \alpha$.

A cardinal κ is cardinal correct extendible pushing up δ if for every $\alpha > \kappa$, there is an elementary embedding $j: V_{\alpha} \to M$ with crit $(j) = \kappa$, M cardinal correct, and $j(\delta) > \alpha$.

Theorem:

- If κ is cardinal correct extendible, then κ is strongly compact.
- If κ is weakly cardinal correct extendible, then either κ is strongly compact or there is an inaccessible α such that V_α satisfies that there is a strongly compact cardinal.

Theorem: It is consistent that the least supercompact cardinal is not not cardinal correct extendible.

Theorem: (Osinski, Poveda) It is consistent that the least supercompact cardinal is cardinal correct extendible.

Questions:

- Are cardinal correct extendible cardinals weaker than extendible cardinals?
- Can the least measurable be the least cardinal correct extendible?
- Are weakly cardinal correct extendible cardinals equivalent to cardinal correct extendible cardinals?

Upward Löwenheim Skolem numbers for $\mathbb{L}(I)$

Observation: The target of a cardinal correct extendible embedding is cardinal correct.

Theorem: If there is a cardinal correct extendible cardinal κ pushing up δ , then $SULST(\mathbb{L}(I)) \leq \delta$.

Theorem: If $ULST(\mathbb{L}(I))$ exists, then there are $\kappa \leq \gamma$ such that κ is cardinal correct extendible pushing up γ .

Theorem: It is consistent that $ULST(\mathbb{L}(I))$ is strictly above the least supercompact cardinal.

Question: If $SULST(\mathbb{L}(I)) = \delta$, is there a cardinal correct extendible $\kappa \leq \delta$ pushing up δ ?

イロト イポト イヨト イヨト 二日