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Abstract logics

First-order logic
Modern mathematics is formalized by means of first-order logic. But what is a logic and
what is so special about first-order logic?
Logic
@ Assigns a collection of formulas to every language.
@ Assigns truth values to formulas for every model.

First-order logic L., .,

o Formulas: close atomic formulas under conjunctions, disjunctions, negations,
quantifiers.

@ Truth: Tarski's recursive definition.
o Properties:

> A language has set-many formulas.
> A formula can mention finitely much of a language.
» Compactness: every finitely satisfiable theory has a model.

But first-order logic does not exist outside of mathematics.

A (fragment of a) set-theoretic background is necessary to interpret first-order logic.
@ natural numbers

@ recursion

Stronger logics require access to more of the set-theoretic background.
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Abstract logics

Infinitary logics

Add transfinite conjunctions, disjunctions, and quantifier blocks of formulas.
Suppose v < ¢ are regular cardinals.
Infinitary logics L; -

Close formulas under conjunctions and disjunctions of length <§ and quantifier blocks of
length <~.

@ A language has set-many formulas.
@ A formula can mention <d-much of a language.
Examples

o Luiw

> There is a sentence expressing that the natural numbers are standard:

Vnew[p=0Vn=1Vvn=2V--.]

> Compactness fails.
o s

> For every ordinal £ < § and formula 1 (y, x), there is a formula (pfp(x) expressing that
{y ¥y, <)} ) = (€, €).
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Abstract logics

Infinitary logics (continued)

Examples (continued)
o Loy
> For every formula 1(x, y) there is a sentence 50‘72”: expressing that the relation given by
1 is well-founded:

=3X0, X015 -5 Xny - - [P(x1,%0) Ap(x2, x1) A s AY(Xng1, Xn) A -]

> For every formula 1 (x) there is a sentence <p!$f expressing that {x | ¥(x)} is infinite:

AX0, X1y vy Xn -+ /\ Xn 7# Xm

n,m<w

® Ly,
> For every formula ¢(x) there is a sentence ,; expressing that {x | {(x)} is

uncountable:
X0, X1y ey Xg e /\ Xg # Xn
& n<wi

Victoria Gitman Upward Léwenheim Skolem numbers CUNY 5 /30



Abstract logics

Second-order logic .2

Add second-order quantifiers ranging over all relations on the model.

Expressive power
@ The relation given by a formula 1(y, x) is well-founded: every subset has a least

element.

{x | 1(x)} is infinite: there is a bijection with a proper subset.

{x [P0 = Hy [ @)}

(Magidor) ({y | ¥(x,¥)}, %) & (Va, €) for some a.
A group F is free:

> Suppose F has cardinality 9.

> F is free if and only if there is a transitive model M = ZFC~ of size § with F € M
which satisfies that F is free.

> There is a relation E on F such that (F,E)

*

*
*
*

satisfies ZFC ™,

is well-founded,

has an element isomorphic to F,
satisfies that F is free.
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Equicardinality logic (/)

Add a quantifier / such that for all formulas (x) and ¢(y):
Ixy b(x)(y) whenever [{x | (x)}| = {y [ #(y)}|

Expressive power

@ The natural numbers are standard:

Vnew|{m|men} #|{m|men+1}
o |{x | ¢¥(x)}| is infinite:
Ay [(y) AKX [0} = Hx [9(x) Ax # y}]
@ A model is cardinal correct: if k is a cardinal, then for all & < &
I€1€ <al#IE]& <k

Relationships

o (/) CIL?

Victoria Gitman Upward Léwenheim Skolem numbers CUNY 7/30



Well-foundeness logic L(Q@WT)

Add a new quantifier QV'F
Relationships

such that for all formulas ¥(x, y):
o L(Q™) € Luy

QWVFx, y1(x, y) whenever the relation given by (x, y) is well-founded
° L(QWF) g ]LZ
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Sort logics IL*"

(Va&nénen) L>"
@ w-many sorts
@ second-order quantifiers for every sort (extends L?)

e Sort quantifiers ¥ and 3

> search the set-theoretic universe for a new sort such that there is a relation on the
combination of the new and old sorts satisfying a given formula.

> at most n-alternations of sort quantifiers are allowed
Expressive power

o For every formuala ¥(y, x) there is a sentence 7, (x) expressing that
{y | ¥(y,x)},¥) =2 (Va, €) and V4 <5, V for some «.
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Abstract logics

Languages

A language 7 is a quadruple (§, %R, €, a) where:
@ § are the functions,
@ ‘R are the relations,
@ ¢ are the constants,

@ a:FUNR — w is the arity function.
A T-structure is a set with interpretations for the functions, relations, and constants in 7.

A renaming f between languages 7 = (§,R, €, a) and o0 = (§', R, ¢’,a’) is an
arity-preserving bijection between the functions, relations, and constants.

Given a renaming f, let f* be the associated bijection between T-structures and
o-structures.
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Logics

A logic is a pair (£,F.) of classes satisfying the following conditions.

L is a class function which takes a language 7 to £(7): the set of all sentences in 7.

E. is the class of all pairs (M, ¢) such that M is a 7-structure, ¢ € £(7) and
M satisfies ¢ according to L.

If 7 C o are languages, then L£(7) C L(0).

If o € L(7), o 2O 7 are languages, and M is a o-structure, then M . ¢ if and only
if the reduct M | 7 E. .

If M 2 N are 7-structures, then for all ¢ € L(7) M E. ¢ if and only if N F. ¢.
Every renaming f between languages T and o induces a bijection f. : L(7) — L(0)
such that for any 7-structure M and ¢ € L(7)

M . @ if and only if £*(M) Fz f.(p).

There is a least cardinal , called the occurrence number of L, such that for every
sentence ¢ € L(7), there is a sub-language 7" of size less than x such that
pe L(T7).

Note: Formulas are accommodated by introducing and interpreting constants.
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Compactness

Strong compactness cardinals

A cardinal k is a strong compactness cardinal for a logic L if every <k-satisfiable
L-theory has a model.

Compactness Theorem: w is a strong compactness cardinal for first-order logic.
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Compactness for L ,, and L

(Tarski) A cardinal & is strongly compact if every k-complete filter can be extended to a
rk-complete ultrafilter.

@ Strongly compact cardinals are stronger than measurable cardinals.

o (Magidor) It is consistent that the least strongly compact cardinal is the least
measurable cardinal.

Theorem: (Tarski) The following are equivalent:
@ K is a strong compactness cardinal for L, .
@ K is a strong compactness cardinal for L ..

@ K is strongly compact.
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Compactness for Ly, ,, and L(QWF)

(Magidor) A cardinal « is wi-strongly compact if every x-complete filter can be extended
to a countably complete ultrafilter.

@ wi-strongly compact cardinals are stronger than measurable cardinals.

o (Magidor) It is consistent that the least wi-strongly compact cardinal is the least
measurable cardinal.

o (Bagaria, Magidor) It is consistent that the least wi-strongly compact cardinal is
above the least measurable cardinal.

Theorem: (Magidor) The following are equivalent:
@ Kk is a strong compactness cardinal for L, ;.
@ & is a strong compactness cardinal for L(Q"F).

@ Kk is wi-strongly compact.
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Strong compactness cardinals for .2 and L(/)

A cardinal k is extendible if for every o > K, there is an elementary embedding
J i Va — Vg with crit(j) = &, and j(k) > a.

Extendible cardinals are stronger than strongly compact cardinals.

Theorem: (Magidor) The least extendible cardinal is the least strong compactness
cardinal for L%,

A cardinal k is supercompact if for every o > k, there is an elementary embedding
Jj:V — M with crit(j) = x and M* C M.

Theorem: (Boney, Osinski) It is consistent that the least strong compactness cardinal for
(1) is greater than or equal to the least supercompact cardinal.
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Strong compactness cardinals for the sort logics IL*"

"W ={aeO0rd| V, <5, V}

(Bagaria) A cardinal « is C("-extendible if for every a >  in C"), there is an elementary
embedding j : Vo, — Vj with crit(j) = &, 8 € C, and j(k) > a.

o Extendible cardinals are C™M-extendible.

o C(M_extendible cardinals form a hierarchy.

Theorem: (Boney) The least C("_extendible cardinal is the least strong compactness
cardinal for L>".
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Universal strong compactness

Vopénka's Principle holds if for every proper class of first-order structures in the same
languages there are two structures which elementarily embed.

Theorem: (Bagaria) Vopénka's Principle holds if and only if for every n < w there is a
C"_extendible cardinal.

Theorem: (Makowsky) Every logic has a strong compactness cardinal if and only if
Vopénka's Principle holds.
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Upwards Léwenheim-Skolem-Tarski numbers

Upwards Lowenheim-Skolem-Tarski numbers
Fix a logic L.

The Hanf number of L is the least cardinal ¢ such that such that for every language 7
and L(r)-sentence ¢, if a 7-structure M = ¢ has size 7 > 4, then for every cardinal
7 > 7, there is a T-structure M of size at least ¥ such that M =, .

Theorem: (Folklore) Every logic has a Hanf number.

(Galeotti, Khomskii, Vaananen) The upward Léwenheim-Skolem-Tarski number
ULST(L), if it exists, is the least cardinal § such that for every language 7 and
L(7)-sentence ¢, if a 7-structure M =, ¢ has size v > 4, then for every cardinal 7 > ~,
there is a 7-structure M of size at least 7 such that M =2 p and M C M is a
substructure of M.

The strong upward Léwenheim-Skolem-Tarski number SULST(L), if it exists, is the least
cardinal ¢ such that for every language 7 and every T-structure M of size v > §, for every
cardinal 7 > ~, there is a T-structure M of size at least 7 such that M <, M is an
L-elementary substructure of M.

Upward Léwenheim-Skolem Theorem: w is the strong upward
Léwenheim-Skolem-Tarski number of first-order logic.

Theorem: (Galeotti, Khomskii and Vaininen) If ULST(IL?) exists, then for every n € w
there is an n-extendible cardinal A < ULST(IL?).

Victoria Gitman Upward Léwenheim Skolem numbers CUNY 18 / 30



Upwards Léwenheim-Skolem-Tarski numbers

Compactness and upward Lowenheim-Skolem-Tarski numbers

Proposition: If a logic £ has a strong compactness cardinal x, then SULST(L) < k.
Proof:
o Fix a 7-structure M of size v > k.

o Fix a cardinal 7 > 7.

Let 7’ be the language T extended by adding y-many constants {c¢ | £ < 7}.
Let T be the £(7')-theory:

> L-elementary diagram of M
> {ee F e E<n <A}
o T is <k-satisfiable (holds in M).

@ T has a model. [J

Corollary: If Vopénka's Principle holds, then every logic has a strong upward
Lowenheim-Skolem-Tarski number.
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Upwards Léwenheim-Skolem-Tarski numbers

The power of substructures in set theory

Suppose (M, €) and (N, €) are transitive structures closed under the pairing function.
o Tr(p,(x1,...,xa)) if and only if (M, €) = ¢(x1, ..., Xa) is the truth predicate.
@ S(x,y) if and only if y = x U {x} is the successor function.
@ P(x,y,z)if and only if z = (x, y) is the pairing function.

Proposition: If j : (M, €,S,P, Tr) — (N, €,S, P, Tr) is an embedding, then j is
elementary.
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Lowenheim-Skolem-Tarski numbers for L(QWVF)
Theorem: If x is a measurable cardinal, then SULST(L(Q%Y)) < &.
Proof:

o Fix a 7-structure N of size v > k.

o Fix a cardinal 7 > 7.

@ Let j: V — M be an elementary embedding with crit(j) = x and j(k) > 7"
(sufficiently iterated ultrapower).

e j(N) € M is a j(r)-structure, and hence j " 7-structure.

@ j(N) is a 7-structure modulo the renaming which takes 7 to j " 7.
@ Let the renaming take ¢ to .

o N=j"NCj(N)isa r-substructure of j(N).

o N 4 N

o N -<L(QWF)j(N)

Suppose N =1 (qwr) ¢(i(a)).

N =1 qwr) 9(a) via the isomorphism j.

M |= “j(N) Erqwry ®(i(a))" by elementarity of j.

J(N) Frewr) 2(j(a)) as a j(r)-structure (M is well-founded)
J(N) Er@wr) ¢(j(a)) modulo the renaming.

@ Since [N| > &, [j(N)| > j(k) >7. O
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Lowenheim-Skolem-Tarski numbers for L(QW“F) (continued)

Theorem: If ULST(L(QWF)) exists, then it is the least measurable cardinal.
Proof:

o Let ULST(L(Q")) = 4.

@ Suffices to show there is a measurable cardinal <¢.

o Let M = (Hs+,€,0,S, P, Tr).
M = qwr) ¢

> | am well-founded.
> § is the largest cardinal.
> S is the successor function, P is the pairing function, Tr is the truth predicate.

Let N = (N,E,$,S, P, Tr) = ¢ of size > § with M C N
Since N is well-founded, we can assume:

» E =¢,

» N is transitive, B

> j: Hsi — N such that j(§) =0 > 6.

J is elementary.
Let crit(j) =~ < 4.

Use j to derive a k-complete ultrafilter on . OJ
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Lowenheim-Skolem-Tarski numbers for L(QW“F) (continued)

Corollary: The following are equivalent for a cardinal k.
@ k is the least measurable cardinal.
o k= ULST(L(Q%F)).
o x = SULST(L(Q™F)).
Corollary: It is consistent that:
o ULST(L(QWT)) = SULST(L(Q%T)) is the least strong compactness cardinal for

L WEF
(Q ) wq-strong compact can be the least measurable.

o ULST(L(QW™TF)) = SULST(L(Q"YT)) is smaller than the least strong compactness
cardinal for ]L(QWF). w1 -strongly compact can be above the measurable.

o ULST(L(QWYY)) = SULST(L(QYY)), but L(Q"F) doesn't have a strong
com pactness cardinal. L[U] cannot have an wq-strongly compact cardinal.
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Lowenheim-Skolem-Tarski numbers for I.? and L5"

Observations:
o Targets of extendible embeddings are correct about 2.

o Targets of C("-extendible embeddings are correct about L>".

Theorem: The following are equivalent for a cardinal k.

K is the least extendible cardinal.

K is the least strong compactness cardinal for L2.
k& = SULST(L?).

x = ULST(L?).

Theorem: The following are equivalent for a cardinal x and n < w.
o r is the least C("-extendible cardinal.
@ K is the least strong compactness cardinal for L*".
e k= SULST(L*>").
o k= ULST(L>").

Corollary: Every logic has an upward Léwenheim-Skolem-Tarski number if and only if
Vopénka's Principle holds.
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Upwards Léwenheim-Skolem-Tarski numbers

Tall cardinals

(Hamkins) A cardinal & is tall if for every 6§ > k, there is an elementary embedding
Jj: V= M with crit(j) = k, M C M, and j(x) > 6.
A cardinal  is tall with closure A < & if M» C M, and tall with closure <X if M<* C M.

A cardinal & is tall pushing up § if for every 6 > §, there is an elementary embedding
J: V= M with crit(j) = k, M® C M, and j(5) > 6.
A cardinal & is tall pushing up & with closure A < & if M C M, and tall with closure <\
if M<* C M.
A cardinal ¢ is supreme for tallness if for all A < 6, there is a cardinal A < k < § that is
tall pushing up § with closure A.

o (Gitik) Tall cardinals are stronger than measurable cardinals. equiconsistent with strong cardinals

@ Strongly compact cardinals are stronger than tall cardinals.

o (Hamkins) If x is tall with closure <k, then & is tall.

o (Hamkins) It is consistent that there is a tall cardinal x pushing up some § > &,
which is not tall.

@ A limit of tall cardinals is supreme for tallness.

Question: Are tall cardinals and tall cardinals pushing up ¢ equiconsistent?
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Lowenheim-Skolem-Tarski numbers for L .

Observation: Targets of tall with closure <A embeddings are correct about Ly x.
Proposition: ULST(L, ..) > k.

Theorem: If there is a tall cardinal x pushing up § with closure <X, then
SULST(LLx,x) < 4. In particular, if  is tall, then SULST(Ly,) = ULST(L ) = k.

Theorem: If SULST(LLx,») = 4, then there is a tall cardinal A < k < § pushing up §
with closure <. In particular, if SULST(LL, ) = &, then & is tall.

Corollary: It is consistent that ULST(Ly,.) = SULST(Lx ) = &, but & is not a strong
compactness cardinal for L ...

Theorem: If § is supreme for tallness, then ULST(LLx,x) < § exists for every regular
A < 4. In particular, if § is regular, then ULST(Ls,s) = 0.

Theorem: If ULST(Lx,») = A, then A is supreme for tallness.
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Léwenheim-Skolem-Tarski numbers for L ., (continued)

Theorem: It is consistent that X is inaccessible, ULST(ILx, ») exists, but SULST(Lx,x)
does not exist.

Proof sketch: Use forcing to produce a model with:

@ An inaccessible A that is a limit of tall cardinals.

@ No measurable cardinals > \.
Theorem: It is consistent that X is inaccessible and ULST(Ly, x) < SULST(LLx,x).
Proof sketch: Use forcing to produce a model with:

@ An inaccessible X that is a limit of tall cardinals.

@ )\ is not tall.

@ There is a tall cardinal above \.
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L(/) and well-foundedness

Let ZFC™ be a sufficiently large finite fragment of ZFC:
o the ordinals form a well-ordered class,
o for every ordinal « there is a sequence of cardinals of order-type «,
o the sets are the union of the von Neumann hierarchy.
Theorem: (Goldberg) If (M,E) |= ZFC” is cardinal correct, then it is well-founded.
Proof:
o Suffices to show that every ordinal is well-founded.
o Fix an ordinal av in M.
o Let {ke | EEa} be a sequence of cardinals of order-type a in M.
@ In V |ke| < |ky| for all EEnE « (cardinal correctness).
@ « is well-founded. OJ
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Upwards Léwenheim-Skolem-Tarski numbers

Cardinal correct extendible cardinals

A cardinal k is cardinal correct extendible if for every o > k, there is an elementary
embedding j : Vi, — M with crit(j) = x, M cardinal correct, and j(k) > a.
A cardinal k is weakly cardinal correct extendible if we remove j(k) > a.

A cardinal k is cardinal correct extendible pushing up ¢ if for every a > k, there is an
elementary embedding j : Vo, — M with crit(j) = k, M cardinal correct, and j() > a.
Theorem:
o If K is cardinal correct extendible, then k is strongly compact.
o If K is weakly cardinal correct extendible, then either  is strongly compact or there
is an inaccessible a such that V,, satisfies that there is a strongly compact cardinal.

Theorem: It is consistent that the least supercompact cardinal is not not cardinal correct
extendible.

Theorem: (Osinski, Poveda) It is consistent that the least supercompact cardinal is
cardinal correct extendible.
Questions:

@ Are cardinal correct extendible cardinals weaker than extendible cardinals?

@ Can the least measurable be the least cardinal correct extendible?

@ Are weakly cardinal correct extendible cardinals equivalent to cardinal correct
extendible cardinals?
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Upwards Léwenheim-Skolem-Tarski numbers

Upward Léwenheim Skolem numbers for IL(/)

Observation: The target of a cardinal correct extendible embedding is cardinal correct.

Theorem: If there is a cardinal correct extendible cardinal x pushing up ¢, then
SULST(LL(/)) < 6.

Theorem: If ULST(LL(/)) exists, then there are k < «y such that & is cardinal correct
extendible pushing up 7.

Theorem: It is consistent that ULST(IL(/)) is strictly above the least supercompact
cardinal.

Question: If SULST(IL(/)) = 6, is there a cardinal correct extendible k < § pushing up
57
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