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Mathematical Epistemology

Mathematical Epistemology
Mathematics, as opposed to other sciences, uses proofs instead of observations.

a proof is a sequence of
statements that follows the rules of logical inference

(1) “If it is Christmas, then Victoria has a day off.” (A → B)
(2) “It is Christmas.” (A)
Conclusion: “Victoria has a day off.” (B) (Modus Ponens)

(1) “Every organism can reproduce.” (∀x A(x) → B(x))
(2) “A bacteria is an organism.” (A(bacteria))
Conclusion: “A bacteria can reproduce.” (B(bacteria))

impossible to prove all mathematical laws

certain first laws, axioms, are accepted without proof

the remaining laws, theorems, are proved from
axioms

How do we choose reasonable axioms?
Non-contradictory axioms? Powerful axioms?

Do the axioms suffice to prove every true statement?
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Mathematical Epistemology

Gottlob Frege (1848-1925)

Frege

invents predicate logic: introduces symbolism, rules

jump starts a return to formal mathematics of Euclid

attempts to axiomatize the theory of sets
(sets are the building blocks of all mathematical objects!)

runs into trouble with his set building axiom
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Mathematical Epistemology

Frege’s Set Building Axiom

“For any formal criterion, there exists a set whose members are those objects (and
only those objects) that satisfy the criterion.”

Frege’s axioms allows us to build various sets:

the set N = {x : x is a natural number}
the set R = {x : x is a real number}
the set I = {x : x is an infinite set}
the set of all sets, V = {x : x = x}

Key Observation: some sets are members of themselves, while others are not!

Examples: N /∈ N, R /∈ R, I ∈ I, V ∈ V

Consider the set B of all sets that are not members of themselves:

B = {x : x /∈ x}

Something is terribly wrong with B!
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Mathematical Epistemology

Russell’s Paradox (1901)
Bertrand Russell (1872-1970)
discovers that Frege’s axioms lead to a contradiction:

B = {x : x /∈ x}
B ∈ B ⇔ B /∈ B

Key idea: Definition of B exploits self-reference allowed by the
Set Building Axiom!

Spoiler Alert: This idea shows up again in the proof of Gödel’s theorem!

Russell fixed Frege’s system in Principia Mathematica
using type theory.

This led to the Comprehension Axiom in Zermelo-Fraenkel
set theory.

Beware of self-reference:
Proof that either Tweedledum or Tweedledee exists

hint: sentence (3) must be either TRUE or FALSE
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Formal Mathematics

Formal Mathematics and Meta-mathematics

The 19th century work of Frege, Russell, Hilbert, Peano, Cantor, etc. leads to
development of:

Formal Mathematics

A formal language based on predicate logic

Axioms explicitly stated

Proofs are logical inferences from axioms

Meta-mathematics: debating the ground rules

What is a formal language?

What are logical inferences?

Are the axioms non-contradictory?

Are the axioms sufficient to prove all true statements?
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Formal Mathematics

Hilbert’s Program (1921): setting the ground rules

David Hilbert (1862-1943) aimed to provide a secure foundation for mathematics.

Two Key Questions

Consistency: How do we know that contradictory consequences
cannot be proved from the axioms?

Completeness: How do we know that all true statements follow
from the axioms?

Hilbert’s Program:
Translate all mathematics into a formal language and demonstrate
“by finitary means” that

Peano Axioms (PA) for Number Theory

Zermelo-Fraenkel (ZF) Axioms for Set Theory

Euclidian Axioms for Geometry

Principia Mathematica Axioms

are consistent and complete!

“finitary means”? think of running a computer program to verify it...
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Formal Mathematics

Primer in Formal Languages: the alphabet

1) Logical symbols:

Equality: =

Boolean connectives: ∨, ∧, ¬, →
Quantifiers: ∃, ∀

2) Functions, relations, and constants symbols: specific to subject

Number Theory: +, ·, <, 0, 1

Set Theory: ∈
Group Theory: ◦, −1, e

3) Variables:
x1, x2, x3, x4, . . . infinitely many!

4) Punctuation symbols:
(, )

For notational convenience, we will write x , y , z, . . . instead of x1, x2, x3, . . .
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Formal Mathematics

Writing Formal Mathematics: the syntax

Syntactically correct mathematical statements are called formulas

Formulas in Number Theory

x is even: even(x) := ∃y y + y = x

3 is even: ∃y y + y = (1 + 1) + 1

x divides y : x |y := ∃z z · x = y

x is prime: prime(x) := (∀y (y |x → (y = 1 ∨ y = x)) ∧ ¬x = 1)

3x = y : suggestions? (problem: the operation is recursive)

x! = y : (same problem!)

There are infinitely many primes: ∀x∃y (y > x ∧ prime(y))

Every even number > 2 is a sum of two primes:
∀x ((x > 1 + 1 ∧ even(x)) → ∃y∃z ((prime(y) ∧ prime(z)) ∧ x = y + z)))

(Goldbach Conjecture)
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Formal Mathematics

Formulas (continued...)

How do we determine whether something is a formula?

This string is a formula: (why?)

∃z(z > 0 ∧ x + y = z)

This string is not a formula: (why not?)

∀x(y ∧ ∀z z > 0)

A formula is a string of symbols built according to a finite set of simple rules.

A computer should be able to verify whether a string of symbols is a formula!
(Remember Hilbert?)

What are the rules?

“Mathematics is a game played according to certain simple rules with meaningless
marks on paper.” ....Hilbert
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Formal Mathematics

Formula Witnessing Sequences
Recursive rules for building formulas:

‘Equality’ statements are formulas: x = y , x + y = z · z

‘Less than’ statements are formulas: x + 1 < z

Boolean combinations of formulas are formulas:
if ϕ and ψ are formulas, then so are
(ϕ ∧ ψ), (ϕ ∨ ψ), ¬ϕ, (ϕ→ ψ).

A formula with a quantifier-variable pair attached in front is a formula:
if i is any natural number and ϕ is a formula and , then so are ∃xi ϕ, ∀xi ϕ.

Nothing else is a formula

∀x((x > 0 ∧ y + x = z) → ∃z y + z > 1 + 1)

A formula witnessing sequence:
(1) y + z > 1 + 1,
(2) ∃z y + z > 1 + 1,
(3) x > 0, y + x = z,
(4) (x > 0 ∧ y + x = z),
(5) (x > 0 ∧ y + x = z) → ∃z y + z > 1 + 1,
(6) ∀x((x > 0 ∧ y + x = z) → ∃z y + z > 1 + 1)

A computer program can verify whether a given string is a formula!
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Formal Mathematics

The Peano Axioms
Axiomatization of Number Theory proposed by Giuseppe Peano (1858-1932).

Peano Axioms
Addition and Multiplication

∀x∀y∀z (x + y) + z = x + (y + z) (associativity of addition)

∀x∀y x + y = y + x (commutativity of addition)

∀x∀y∀z (x · y) · z = x · (y · z) (associativity of multiplication)

∀x∀y x · y = y · x (commutativity of multiplication)

∀x∀y∀z x · (y + z) = x · y + x · z. (distributive law)

∀x (x + 0 = x ∧ x · 1 = x) (additive and multiplicative identity)
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Formal Mathematics

Peano Axioms (continued)
Order

∀x∀y∀z ((x < y ∧ y < z) → x < z) (the order is transitive)

∀x ¬x < x (the order is anti-reflexive)

∀x∀y ((x < y ∨ x = y) ∨ y < x) (any two elements are comparable)

∀x∀y∀z (x < y → x + z < y + z) (order respects addition)

∀x∀y∀z ((0 < z ∧ x < y) → x · z < x · z) (order respects multiplication)

∀x∀y (x < y ↔ ∃z (z > 0 ∧ x + z = y))

∀x (x ≥ 0 ∧ (x > 0 → x ≥ 1)) (the order is discrete)

Induction Scheme
For every formula ϕ(x) we have

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀xϕ(x)

Hilbert: “Are the Peano Axioms consistent? Are they complete?”

Sensible Mathematician: “Duh, the Peano Axioms are consistent because the natural
numbers satisfy them!”

Hilbert: “You checked all infinitely many of them?”
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Formal Mathematics

The Group Theory Axioms: An Easy Example

Language: ◦, −1, e

Group Theory Axioms
∀x∀y∀z x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)

∀x (e ◦ x = x ∧ x ◦ e = x) (e is the identity)

∀x x ◦ x−1 = e (−1 is the inverse)

Are the Group Theory Axioms consistent? Are they complete?

Z4:

◦ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

S3:

◦ e s w t u v
e e s w t u v
s s w e v t u
w w e s u v t
t t u v e s w
u u v t w e s
v v t u s w e
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Formal Mathematics

Presburger Arithmetic

Arithmetic without multiplication:

Presburger Axioms
Addition

∀x ¬0 = x + 1

∀x∀y (x + 1 = y + 1 → x = y)

∀x x + 0 = x

∀x∀y (x + y) + 1 = x + (y + 1)

Induction Scheme
For every formula ϕ(x) we have

(ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1))) → ∀xϕ(x)

Mojzesz Presburger (1904-1943) showed in 1929 using finitary arguments that
Presburger Arithmetic is consistent and complete!

A computer program that can decide whether any statement of Presburger Arithmetic
is TRUE or FALSE!
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Formal Mathematics

Gödel ends Hilbert’s Program
Theorem (Gödel, 1931)
The Peano Axioms are not complete. In fact, any “reasonable” collection of axioms for
Number Theory or Set Theory is necessarily incomplete.

Theorem (Gödel, 1931)
No proof of the consistency of the Peano Axioms can be given by “finitary means”.
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Gödel’s Proof

Richard’s Paradox (1905)

Mathematics vs. Meta-mathematics: how not to mix apples and oranges!

Jules Richard (1862-1956) considered all English language expressions that
unambiguously define a property of numbers.

x is even

x is prime

x is a number above which Goldbach Conjecture fails.

x is a number definable using prime many characters.

Each definition ϕ(x) can be assigned a unique number code pϕ(x)q.
For example, using ASCII codes, we get:

px is evenq = 120032105115101118101110
px is primeq = 120032105115032112114105109101

px is evenq is even

px is primeq is not prime

For a definition ϕ(x), it may be that ϕ(pϕ(x)q) is true, or not!

Spoiler Alert: Russell is back!
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Gödel’s Proof

Richard’s Paradox (continued...)

Call a number n ordinary if:

n = pϕ(x)q for some formula ϕ(x)

ϕ(pϕ(x)q) is not true.

This is one of Richard’s definitions!

Let m be the code of the formula “ϕ(x) = x is ordinary”, i.e. m = pϕ(x)q.

Here comes trouble:

m is ordinary ⇔ m is not ordinary!
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Gödel’s Proof

Richard’s Paradox: the morals
Linguistic concept of property does not distinguish between mathematical and
meta-mathematical definitions:

“x is prime” - mathematical

“x is a number definable using prime many characters” - meta-mathematical

“x is ordinary” - meta-mathematical

Some meta-mathematical statements incorporate infinitely many other “super
complicated mathematical statements” whose truth or falseness cannot be decided
uniformly!

“Everything is vague to a degree you do not realize till you have tried to make it
precise.” ....Russell

“Some people are always critical of vague statements. I tend rather to be critical of
precise statements; they are the only ones which can correctly be labeled ‘wrong’.”

....Smullyan
Victoria Gitman (CUNY) Gödel’s Proof January 20, 2010 19 / 31



Gödel’s Proof

Coding Meta-mathematics into Mathematics

Gödel observed that meta-mathematical properties can be coded as statements in the
formal language of Number Theory!

Assign a unique natural number to each symbol:

=
1

∨
3

∧
5

¬
7

→
9

∀
11

∃
13

+
15

·
17

<
19

0
21

1
23

(
25

)
27

x0
0

x1
2

x2
4

x3
6
. . .

A finite sequences of numbers can be coded by a single number: (think of your favorite
coding!)

Formulas can be coded by numbers

Proofs can be coded by numbers

Problems:

We need a coding that can be expressed in the formal language of number theory.

Most codings you can think of need exponentiation.

To express exponentiation formally we need coding!
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Gödel’s Proof

Coding in Number Theory: Pairing Function

Cantor’s Pairing Function:

A simple coding of two numbers as a single number.

〈x , y〉 =
(x + y)(x + y + 1)

2 + y

Example: the code of the pair 2 and 3.

〈2, 3〉 =

Formula defining the coding:

z = 〈x , y〉:

∃w (2 · w = (x + y) · ((x + y) + 1) ∧ z = w + y)
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Gödel’s Proof

Coding in Number Theory: Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
Suppose a1, . . . , ak are natural numbers, then there are natural numbers b and m such
that

a1 is the remainder of b
m + 1

a2 is the remainder of b
2m + 1

...
ak is the remainder of b

km + 1

The number 〈b,m〉 codes the sequence a1, . . . , ak !

Example: The sequence 〈6, 0, 9, 1〉 is coded by the number 710 (why?)

710 = 〈30, 7〉
No exponentiation is needed.

There are infinitely many other numbers coding the same sequence!
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Gödel’s Proof

Coding in Number Theory: Examples

Using this coding:

Every finite sequence of numbers is coded by a single number.

Every number codes some sequence of numbers.

Question: What is a 5 element sequence coded by the number 2424?

2424 = 〈60, 9〉
(2424)1 = 0 (2424)2 = 3 (2424)3 = 4 (2424)4 = 23 (2424)5 = 14

Formula defining the coding:

(s)i = z:

∃b∃m (s = 〈b,m〉 ∧ z is the remainder of b
i ·m + 1 )

Example: xy = z:

∃s ((s)1 = x ∧ (∀n (n < y → (s)n+1 = (s)n · x) ∧ (s)y = z))
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Gödel’s Proof

Being a Formula is Expressible

Many meta-mathematical statements that can now be expressed in the language of
Number Theory:

symbol(x):

(even(x) ∨ x < 28)

formula(x):

∃s∃n

(s)n = x AND
∀i i < (n + 1) →

I (s)i “is the code of an equality or less than formula” OR
I ∃j∃k (j < i ∧ k < i ∧ (s)i “is the code of a boolean combination of (s)j and (s)k ”) OR
I ∃j (j < i ∧ (s)i “is the code of quantifier variable pair concatenated with (s)j ”).
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Gödel’s Proof

Provability from PA is Expressible

PeanoAxioms(x):

x = n1 ∨ x = n2 ∨ · · · ∨ x = n13 OR

∃y (formula(y) ∧ x “codes an induction axiom for the formula coded by y ”)

proofPA(x,s):

“s codes the proof of the formula coded by x from PA.”

provablePA(x):

∃s “s codes the proof of the formula coded by x from PA.”

This is much more general than PA.

The ability to code sequences into the mathematical objects is key.

Provability is expressible for any expressible collection of axioms!

“Reasonable axioms” ⇒ expressible axioms.
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Gödel’s Proof

Is Truth Expressible?

Big Question:
Can we write a formula true(x)
that is true exactly when x codes a true formula???

Russell’s Paradox Liar Paradox

Richard’s Paradox
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Gödel’s Proof

Truth is not Expressible (as expected!):
The resolution of Richard’s Paradox

Suppose there is a formula true(x).

Call a number n ordinary if:

n = pϕ(x)q for some formula ϕ(x)

¬true(ϕ(pϕ(x)q))

Then there is a formula ordinary(n):

(formula(n) ∧ (∃y (formula(y)) ∧ “y = pϕ(n)q” ∧ ¬true(y)))

Let m = pordinary(x)q

Question: What is the problem?
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Gödel’s Proof

Proof of the First Incompleteness Theorem

Provability is expressible!

Truth is not expressible!

Provable is a subset of True!

Conclusion: There is a true statement that cannot be proved from PA!
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Gödel’s Proof

Goodstein Sequences

Hereditary base n notation
Example: Write 3003 in hereditary base 3 notation.

3003 = 37 + 36 + 34 + 2 · 31

3003 = 37 + 36 + 34 + 31 + 31

3003 = 32·3+1 + 32·3 + 33+1 + 31 + 31

3003 = 33+3+1 + 33+3 + 33+1 + 31 + 31

Goodstein Sequence G(m) for a number m:

First element: m.

Second element: write m in hereditary base 2 notation,
replace all 2’s by 3’s and subtract 1.

Third element: write second element in hereditary base 3 notation,
replace all 3’s by 4’s and subtract 1.

etc.
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Gödel’s Proof

Examples of Goodstein Sequences

G(3): 3, 3, 3, 2, 1, 0
value base expression rep. base expression subtract value

3 2 21 + 1 3 31 + 1 4-1 3

3 3 31 4 41 4-1 3
3 4 1 + 1 + 1 5 1 + 1 + 1 3 − 1 2
2 5 1 + 1 6 1 + 1 2 − 1 1
1 6 1 7 1 1 − 1 0

G(4): 4, 26, 41, 60, 83, 109, . . .
value base expression rep. base expression subtract value

4 2 22 3 33 27-1 26

26 3 31+1 + 31+1 + 3 + 3 + 1 + 1 4 41+1 + 41+1 + 4 + 4 + 1 + 1 42-1 41

41 4 41+1 + 41+1 + 4 + 4 + 1 5 51+1 + 51+1 + 5 + 5 + 1 61 − 1 60

60 5 51+1 + 51+1 + 5 + 5 6 61+1 + 61+1 + 6 + 6 84 − 1 83

83 6 61+1 + 61+1 + 6 + 1 + 1 + 1 + 1 + 1 7 71+1 + 71+1 + 7 + 1 + 1 + 1 + 1 + 1 110 − 1 109

Elements of G(4) continue to increase for a while, but at base 3 · 2402653209, they reach a
maximum of 3 · 2402653210 − 1, stay there for the next 3 · 2402653209 steps, then begin their
first and final descent to 0!
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Gödel’s Proof

Goodstein’s Theorem: A True but Unprovable Statement

Theorem (Goodstein, 1944)
For every m, the sequence G(m) is eventually 0!

Theorem (Kirby-Paris, 1982)
Goodstein’s Theorem cannot be proved from PA.

So what is it a theorem of??? Zermelo-Fraenkel Set Theory.
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